Консенсус экспертов Российского медицинского общества по артериальной гипертонии: артериальная гипертония и COVID-19
Консенсус экспертов Российского медицинского общества по артериальной гипертонии: артериальная гипертония и COVID-19
Чазова И.Е., Блинова Н.В., Невзорова В.А. и др. Консенсус экспертов Российского медицинского общества по артериальной гипертонии: артериальная гипертония и COVID-19. Системные гипертензии. 2020; 17 (3): 35–41. DOI: 10.26442/2075082X.2020.3.200362
________________________________________________
Chazova I.E., Blinova N.V., Nevzorova V.A. et al. Russian Medical Society for Arterial Hypertension Expert Consensus: Hypertension and COVID-19. Systemic Hypertension. 2020; 17 (3): 35–41. DOI: 10.26442/2075082X.2020.3.200362
Консенсус экспертов Российского медицинского общества по артериальной гипертонии: артериальная гипертония и COVID-19
Чазова И.Е., Блинова Н.В., Невзорова В.А. и др. Консенсус экспертов Российского медицинского общества по артериальной гипертонии: артериальная гипертония и COVID-19. Системные гипертензии. 2020; 17 (3): 35–41. DOI: 10.26442/2075082X.2020.3.200362
________________________________________________
Chazova I.E., Blinova N.V., Nevzorova V.A. et al. Russian Medical Society for Arterial Hypertension Expert Consensus: Hypertension and COVID-19. Systemic Hypertension. 2020; 17 (3): 35–41. DOI: 10.26442/2075082X.2020.3.200362
Новая коронавирусная инфекция (COVID-19), вызванная b-коронавирусом SARS-CoV-2, которая приводит к развитию острого респираторного дистресс-синдрома, затронула более 19 млн человек во всем мире, что привело к 0,7 млн смертей по состоянию на август 2020 г. Установленный факт, что вирус использует ангиотензинпревращающий фермент 2 в качестве рецептора входа в клетку-мишень, и высокая распространенность артериальной гипертонии и других сердечно-сосудистых заболеваний среди пациентов с COVID-19 вызвали серьезные дискуссии по ведению таких пациентов. В консенсусе экспертов Российского медицинского общества по артериальной гипертонии проанализированы существующие данные о связи между COVID-19 и артериальной гипертонией, патофизиологические аспекты проникновения вируса в клетки-мишени и применения блокаторов ренин-ангиотензин-альдостероновой системы у пациентов с артериальной гипертонией и COVID-19.
The novel coronavirus infection (COVID-19) caused by the b-coronavirus SARS-CoV-2, and leads to acute respiratory distress-syndrome, has affected more than nineteen million people worldwide, resulting in 0.7 million deaths as of August 2020. The fact that the virus uses angiotensin-converting enzyme 2 as a receptor for entering the target cell, and the high prevalence of hypertension and other cardiovascular diseases among patients with COVID-19, have caused serious discussions on the management of such patients. This consensus of experts from the Russian Medical Society for Arterial Hypertension analyzed the existing data on the relationship between COVID-19 and hypertension, the pathophysiological aspects of the penetration of the virus into target cells and the use of renin-angiotensin-aldosterone system inhibitors in patients with hypertension and COVID-19.
1. Hall G, Laddu DR, Phillips SA et al. A tale of two pandemics: how will COVID-19 and global trends in physical inactivity and sedentary behavior affect one another? Prog Cardiovasc Dis 2020. DOI: 10.1016/j.pcad.2020.04.005
2. Global Burden of Disease Risk Factor Collaborators. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 95 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018; 392: 1923–94.
3. Чазова И.Е., Жернакова Ю.В. Диагностика и лечение артериальной гипертонии. Системные гипертензии. 2019; 16 (1): 6–31. DOI: 10.26442/2075082X.2019.1.190179
[Chazova I.E., Zhernakova Yu.V. Diagnostics and treatment of arterial hypertension. Systemic Hypertension. 2019; 16 (1): 6–31. DOI: 10.26442/2075082X.2019.1.190179 (in Russian).]
4. Муромцева Г.А., Концевая А.В., Константинов В.В. и др. Распространенность факторов риска неинфекционных заболеваний в российской популяции в 2012–2013 гг. Результаты исследования ЭССЕ-РФ. Кардиоваскулярная терапия и профилактика. 2014; 13 (6): 4–11. DOI: 10.15829/1728-8800-2014-6-4-11
[Muromtseva G.A., Kontsevaia A.V., Konstantinov V.V. et al. Rasprostranennost' faktorov riska neinfektsionnykh zabolevanii v rossiiskoi populiatsii v 2012–2013 gg. Rezul'taty issledovaniia ESSE-RF. Kardiovaskuliarnaia terapiia i profilaktika. 2014; 13 (6): 4–11. DOI: 10.15829/1728-8800-2014-6-4-11 (in Russian).]
5. Mills KT, Bundy JD, Kelly TN et al. Global disparities of hypertension prevalence and control: a systematic analysis of population-based studies from 90 countries. Circulation 2016; 134: 441–50.
6. Бойцов С.А., Баланова Ю.А., Шальнова С.А. и др. Артериальная гипертония среди лиц 25–64 лет: распространенность, осведомленность, лечение и контроль. По материалам исследования ЭССЕ. Кардиоваскулярная терапия и профилактика. 2014; 4: 4–14. DOI: 10.15829/1728-8800-2014-4-4-14
[Boitsov S.A., Balanova Iu.A., Shal'nova S.A. et al. Arterial'naia gipertoniia sredi lits 25–64 let: rasprostranennost', osvedomlennost', lechenie i kontrol'. Po materialam issledovaniia ESSE. Kardiovaskuliarnaia terapiia i profilaktika. 2014; 4: 4–14. DOI: 10.15829/1728-8800-2014-4-4-14 (in Russian).]
7. Kearney PM, Whelton M, Reynolds K et al. Global burden of hypertension: analysis of worldwide data. Lancet 2005; 365: 217–23.
8. Ryu S, Chun BC. An interim review of the epidemiological characteristics of 2019 novel coronavirus. Epid. Health 2020; 42: e2020006. DOI: 10.4178/epih.e2020006
9. Wu F, Zhao S, Yu B et al. A new coronavirus associated with human respiratory disease in China. Nature 2020. DOI: 10.1038/s41586-020-2008-3
10. World Health Organization. Novel Coronavirus (2019-nCoV). Situation Report22 (11 February 2020). https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200211-sitrep-22-ncov.pdf?s...
11. Временные методические рекомендации. Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19). Версия 7 (03.06.2020).
[Temporary guidelines. Prevention, diagnosis and treatment of new coronavirus infection (COVID-19). Version 7 (06.03.2020) (in Russian).]
12. Lu R, Zhao X, Li J et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 2020; 395 (10224): 565–74. DOI: 10.1016/S0140-6736(20)30251-8
13. Шпаков А.О. Ангиотензин-превращающий фермент 2-го типа, как молекулярный посредник для инфицирования клетки вирусами SARS-COV-2. Рос. физиологический журн. им. И.М. Сеченова. 2020; 106 (7): 795–810.
[Shpakov A.O. Angiotenzin-prevrashchaiushchii ferment 2-go tipa, kak molekuliarnyi posrednik dlia infitsirovaniia kletki virusami SARS-COV-2. Ros. fiziologicheskii zhurn. im. I.M. Sechenova. 2020; 106 (7): 795–810 (in Russian).]
14. Cyranoski D. Mystery deepens over animal source of coronavirus. Nature 2020; 579 (7797): 18–9. DOI: 10.1038/d41586-020-00548-w
15. Karnik SS, Unal H, Kemp JR et al. International Union of Basic and Clinical Pharmacology. XCIX. Angiotensin Receptors: Interpreters of Pathophysiological Angiotensinergic Stimuli [corrected]. Pharmacol Rev 2015; 67 (4): 754–819. DOI: 10.1124/pr.114.010454
16. Donoghue M, Hsieh F, Baronas E et al. A novel angiotensin-converting enzyme-relatedcarboxypeptidase (ACE2) converts angiotensin I to angiotensin 1–9. Circ Res 2000; 87: E1–9. DOI: 10.1161/01.res.87.5.e1
17. Lambert DW, Yarski M, Warner FJ et al. Tumor necrosis factor-alpha convertase (ADAM17) mediates regulated ectodomain shedding of the severe-acute respiratory syndrome-coronavirus (SARS-CoV) receptor, angiotensin-converting enzyme-2 (ACE2). J Biol Chem 2005; 280 (34): 30113–9. DOI: 10.1074/jbc.M505111200
18. Xu J, Sriramula S, Xia H et al. Clinical relevance and role of neuronal AT1 receptors in ADAM17-mediated ACE2 shedding in neurogenic hypertension. Circ Res 2017; 121: 43–55. DOI: 10.1161/CIRCRESAHA.116.310509
19. Shirogane Y, Takeda M, Iwasaki M et al. Efficient multiplication of human metapneumovirus in Vero cells expressing the transmembrane serine protease TMPRSS2. J Virol 2008; 82 (17): 8942–6. DOI: 10.1128/JVI.00676-08
20. Matsuyama S, Nagata N, Shirato K et al. Efficient activation of the severe acute respiratory syndrome coronavirus spike protein by the transmembrane protease TMPRSS2. J Virol 2010 84: 12658–64. DOI: 10.1128/JVI.01542-10
21. Lambert DW, Yarski M, Warner FJ et al. Tumor necrosis factor-alpha convertase (ADAM17) mediates regulated ectodomain shedding of the severe-acute respiratory syndrome-coronavirus (SARS-CoV) receptor, angiotensin-converting enzyme-2 (ACE2). J Biol Chem 2005; 280 (34): 30113–9. DOI: 10.1074/jbc.M505111200
22. Heurich A, Hofmann-Winkler H, Gierer S et al. TMPRSS2 and ADAM17 cleave ACE2 differentially and only proteolysis by TMPRSS2 augments entry driven by the severe acute respiratory syndrome coronavirus spike protein. J Virol 2014; 88 (2): 1293–307. DOI: 10.1128/JVI.02202-13
23. Hoffmann M, Kleine-Weber H, Schroeder S et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020; 181 (2): 271–80. DOI: 10.1016/j.cell.2020.02.052
24. Matsuyama S, Nao N, Shirato K et al. Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells. Proc Natl Acad Sci USA 2020; 117 (13): 7001–3. DOI: 10.1073/pnas.2002589117
25. Zheng YY, Ma YT, Zhang JY, Xie X. COVID-19 and the cardiovascular system. Nat Rev Cardiol 2020. DOI: 10.1038/s41569-020-0360-5
26. Pal R, Bhansali A. COVID-19, Diabetes Mellitus and ACE2: The conundrum. Diabetes Res Clin Pract 2020; 29: 108132. DOI: 10.1016/j.diabres.2020.108132
27. Schouten LR, van Kaam AH, Kohse F et al. Age-dependent differences in pulmonary host responses in ARDS: a prospective observational cohort study. Ann Intensive Care 2019; 9: 55.
28. Cao Y, Li L, Feng Z et al. Comparative genetic analysis of the novel coronavirus (2019-nCoV/SARS-CoV-2) receptor ACE2 in different populations. Cell Discov 2020; 6: 11.
29. Cai G. Bulk and single-cell transcriptomics identify tobacco-use disparity in lung gene expression of ACE2, the receptor of 2019-nCov. medRxiv 2020. https://www.medrxiv.org/content/10.1101/2020.02.05.20020107v3
30. Wang L, He W, Yu X et al. Coronavirus Disease 2019 in elderly patients: characteristics and prognostic factors based on 4-week follow-up. J Infection 2020. DOI: 10.1016/j. jinf.2020.03.019
31. Guo T, Fan Y, Chen M et al. Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19). JAMA cardiology 2020. DOI: 10.1001/jamacardio.2020.1017
32. Shibata S, Arima H, Asayama K et al. Hypertension and related diseases in the era of COVID-19: a report from the Japanese Society of Hypertension Task Force on COVID-19. Hypertens Res 2020. DOI: 10.1038/s41440-020-0515-0
33. Richardson S, Hirsch JS, Narasimhan M et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York city area. JAMA 2020; 323: 2052–59.
34. Whelton PK, Carey RM, Aronow WS et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/
NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension 2018; 71 (6): 1269–324.
35. Li X, Xu S, Yu M et al. Risk factors for severity and mortality in adult COVID-19 inpatients in Wuhan. J Allergy Clin Immunol 2020. DOI: 10.1016/j.jaci.2020.04.006
36. Shi Y, Yu X, Zhao H et al. Host susceptibility to severe COVID-19 and establishment of a host risk score: findings of 487 cases outside Wuhan. Crit Care 2020; 24 (1): 108.
37. Centers for Disease Control and Prevention. People who are at higher risk for severe illness. https://www.cdc.gov/coronavirus/2019-ncov/need-extra-precautions/people-at-higher-risk.html
38. Simonnet A, Chetboun M, Poissy J et al. High prevalence of obesity in severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) requiring invasive mechanical ventilation. Obesity 2020; 28: 1195–9.
39. Centers for Disease Control and Prevention. People who are at higher risk for severe illness. https://www.cdc.gov/coronavirus/2019-ncov/need-extra-precautions/people-at-higher-risk.html
40. Баланова Ю.А., Шальнова С.А., Деев А.Д. и др. Ожирение в российской популяции – распространенность и ассоциации с факторами риска хронических неинфекционных заболеваний. Рос. кардиологический журн. 2018; 6: 123–30. DOI: 10.15829/1560-4071-2018-6-123-130
[Balanova Iu.A., Shal'nova S.A., Deev A.D. et al. Ozhirenie v rossiiskoi populiatsii – rasprostranennost' i assotsiatsii s faktorami riska khronicheskikh neinfektsionnykh zabolevanii. Ros. kardiologicheskii zhurn. 2018; 6: 123–30. DOI: 10.15829/1560-4071-2018-6-123-130 (in Russian).]
41. Simonnet A, Chetboun M, Poissy J et al. LICORN and the Lille COVID-19 and Obesity study group. High Prevalence of Obesity in Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) Requiring Invasive Mechanical Ventilation. Obesity (Silver Spring) 2020; 28 (7): 1195–9.
42. Goyal P et al. Clinical characteristics of COVID-19 in New York City. N Engl J. Med 2020; 382: 2372–4.
43. Cai Q, Chen F, Wang T et al. Obesity and COVID-19 severity in a designated hospital in Shenzhen, China. Diabetes Care 2020; 43: 1392–8.
44. Zheng KI, Gao F, Wang XB et al. Letter to the Editor: Obesity as a risk factor for greater severity of COVID-19 in patients with metabolic associated fatty liver disease. Metabolism 2020; 108: 154244.
45. Kass DA, Duggal P, Cingolani O. Obesity could shift severe COVID-19 disease to younger ages. Lancet 2020; 395: 1544–5.
46. McNelis JC, Olefsky JM. Macrophages, immunity, and metabolic disease. Immunity 2014; 41: 36–48. DOI: 10.1016/j.immuni.2014.05.010
47. Korakas E, Ikonomidis I, Kousathana F et al. Obesity and COVID-19: immune and metabolic derangement as a possible link to adverse clinical outcomes. Am J Physiol Endocrinol Metab 2020. DOI: 10.1152/ajpendo.00198.2020
48. Desta DM, Wondafrash DZ, Tsadik AG et al. Prevalence of Hypertensive Emergency and Associated Factors Among Hospitalized Patients with Hypertensive Crisis: A Retrospective Cross-Sectional Study. Integr Blood Press Control 2020; 13: 95–102. DOI: 10.2147/IBPC.S265183
49. Mao L, Wang M, Chen S et al. Neurological Manifestations of Hospitalized Patients with COVID-19 in Wuhan, China: a ret-rospective case series study. MedRExiv 2020. DOI: 10.1101/2020.02.22.20026500
50. Alenina N, Bader M. ACE2 in brain physiology and pathophysiology: Evidence from transgenic nimal models. Neurochem Res 2019; 44 (6): 1323–9. DOI: 10.1007/s11064-018-2679-4
51. Чазова И.Е., Аксенова А.В., Ощепкова Е.В. Особенности течения артериальной гипертонии у мужчин и женщин (по данным Национального регистра артериальной гипертонии). Терапевтический архив. 2019; 91 (1): 4–12. DOI: 10.26442/00403660.2019.01.000021
[Chazova I.E., Aksenova A.V., Oshchepkova E.V. Features of the course of arterial hypertension in men and women (according to the National Register of Arterial Hypertension). Therapeutic Archive. 2019; 91 (1): 4–12. DOI: 10.26442/00403660.2019.01.000021 (in Russian).]
52. Ferrario CM, Jessup J, Chappell MC et al. Effect of Angiotensin-Converting Enzyme Inhibition and Angiotensin II Receptor Blockers on Cardiac Angiotensin-Converting Enzyme 2. Circulation 2005; 111: 2605–10. DOI: 10.1161/CIRCULATIONAHA.104.510461
53. Jessup J, Gallagher PE, Averill DB et al. Effect of Angiotensin II blockade on a new congenic model of hypertension derived from the transgenic Ren-2 rat. Am J Physiol Heart Circ 2006; 291 (5): H2166–7H72. DOI: 10.1152/ajpheart.00061.2006
54. Wang X, Ye Y, Gong H et al. The effects of different Angiotensin II Type 1 Receptor blockers on the regulation of the ACE-AngII-AT1 and ACE2-Ang-(1-7)-Mas axes in pressure overload-induced cardiac remodeling in male mice. Mol Cell Cardiol 2016; 97: 180–90. DOI: 10.1016/j.yjmcc.2016.05.012
55. Igase M, Strawn WB, Gallagher PE et al. (2005) Angiotensin II AT1 receptors regulate ACE2 and angiotensin-(1-7) expression in the aorta of spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol 2005; 289 (3): H1013–H9. DOI: 10.1152/ajpheart.00068.2005
56. Baker Heart and Diabetes Institute, Melbourne, Australia. Public Health Directorate, Northern Territory Department of Health, Australia. DOI: 10.30824/2006-13
57. Kuba K, Imai Y, Ohto-Nakanishi T, Penninger JM. Trilogy of ACE2: a peptidase in the renin-angiotensin system, a SARS receptor, and a partnerfor aminoacidtransporters. Pharmacol Ther 2010; 128: 119–28.
58. Wösten-van Asperen RM, Lutter R, Specht PA et al. Acute respiratory distress syndrome leads to reduced ratio of ACE/ACE2 activities and is prevented by angiotensin (1–7) or an angiotensin II receptor antagonist. J Pathol 2011; 225: 618–27.
59. Mancia G, Rea F, Ludergnani M et al. Renin-angiotensin-aldosterone system blockers and the risk of Covid19. N Engl J Med 2020. DOI: 10.1056/NEJMoa2006923
60. Reynolds HR, Adhikari S, Pulgarin C et al. Renin-angiotensin-aldosterone system inhibitors and risk of Covid-19. N Engl J Med 2020; 382: 2441–8.
61. International Society of Hypertension. A statement from the International Society of Hypertension on COVID-19. https://ish-world.com/news/a/A-statement-from-the-International-Society-of-Hypertension-on-COVID-19/
62. European Society of Hypertension. Statement of the European Society of Hypertension (ESH) on hypertension, renin angiotensin system blockers and COVID-19. https://www.eshonline.org/spotlights/esh-statement-on-covid-19/
63. ESC Council on Hypertension. Position statement of the ESC Council on hypertension on ACE-inhibitors and angiotensin receptor blockers. https://www.escardio.org/Councils/Councilon-Hypertension-(CHT)/News/position-statement-of-theesccoun...
64. Statement from the American Heart Association tHFSoAatACoC. Patients taking ACE-i and ARBs who contract COVID-19 should continue treatment, unless otherwise advised by their physician. https://newsroom.heart.org/news/patients-taking-acei-and-arbs-who-contract-covid-19-should-continue-...
________________________________________________
1. Hall G, Laddu DR, Phillips SA et al. A tale of two pandemics: how will COVID-19 and global trends in physical inactivity and sedentary behavior affect one another? Prog Cardiovasc Dis 2020. DOI: 10.1016/j.pcad.2020.04.005
2. Global Burden of Disease Risk Factor Collaborators. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 95 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018; 392: 1923–94.
3. Chazova I.E., Zhernakova Yu.V. Diagnostics and treatment of arterial hypertension. Systemic Hypertension. 2019; 16 (1): 6–31. DOI: 10.26442/2075082X.2019.1.190179 (in Russian).
4. Muromtseva G.A., Kontsevaia A.V., Konstantinov V.V. et al. Rasprostranennost' faktorov riska neinfektsionnykh zabolevanii v rossiiskoi populiatsii v 2012–2013 gg. Rezul'taty issledovaniia ESSE-RF. Kardiovaskuliarnaia terapiia i profilaktika. 2014; 13 (6): 4–11. DOI: 10.15829/1728-8800-2014-6-4-11 (in Russian).
5. Mills KT, Bundy JD, Kelly TN et al. Global disparities of hypertension prevalence and control: a systematic analysis of population-based studies from 90 countries. Circulation 2016; 134: 441–50.
6. Boitsov S.A., Balanova Iu.A., Shal'nova S.A. et al. Arterial'naia gipertoniia sredi lits 25–64 let: rasprostranennost', osvedomlennost', lechenie i kontrol'. Po materialam issledovaniia ESSE. Kardiovaskuliarnaia terapiia i profilaktika. 2014; 4: 4–14. DOI: 10.15829/1728-8800-2014-4-4-14 (in Russian).
7. Kearney PM, Whelton M, Reynolds K et al. Global burden of hypertension: analysis of worldwide data. Lancet 2005; 365: 217–23.
8. Ryu S, Chun BC. An interim review of the epidemiological characteristics of 2019 novel coronavirus. Epid. Health 2020; 42: e2020006. DOI: 10.4178/epih.e2020006
9. Wu F, Zhao S, Yu B et al. A new coronavirus associated with human respiratory disease in China. Nature 2020. DOI: 10.1038/s41586-020-2008-3
10. World Health Organization. Novel Coronavirus (2019-nCoV). Situation Report22 (11 February 2020). https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200211-sitrep-22-ncov.pdf?s...
11. Temporary guidelines. Prevention, diagnosis and treatment of new coronavirus infection (COVID-19). Version 7 (06.03.2020) (in Russian).
12. Lu R, Zhao X, Li J et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 2020; 395 (10224): 565–74. DOI: 10.1016/S0140-6736(20)30251-8
13. Shpakov A.O. Angiotenzin-prevrashchaiushchii ferment 2-go tipa, kak molekuliarnyi posrednik dlia infitsirovaniia kletki virusami SARS-COV-2. Ros. fiziologicheskii zhurn. im. I.M. Sechenova. 2020; 106 (7): 795–810 (in Russian).
14. Cyranoski D. Mystery deepens over animal source of coronavirus. Nature 2020; 579 (7797): 18–9. DOI: 10.1038/d41586-020-00548-w
15. Karnik SS, Unal H, Kemp JR et al. International Union of Basic and Clinical Pharmacology. XCIX. Angiotensin Receptors: Interpreters of Pathophysiological Angiotensinergic Stimuli [corrected]. Pharmacol Rev 2015; 67 (4): 754–819. DOI: 10.1124/pr.114.010454
16. Donoghue M, Hsieh F, Baronas E et al. A novel angiotensin-converting enzyme-relatedcarboxypeptidase (ACE2) converts angiotensin I to angiotensin 1–9. Circ Res 2000; 87: E1–9. DOI: 10.1161/01.res.87.5.e1
17. Lambert DW, Yarski M, Warner FJ et al. Tumor necrosis factor-alpha convertase (ADAM17) mediates regulated ectodomain shedding of the severe-acute respiratory syndrome-coronavirus (SARS-CoV) receptor, angiotensin-converting enzyme-2 (ACE2). J Biol Chem 2005; 280 (34): 30113–9. DOI: 10.1074/jbc.M505111200
18. Xu J, Sriramula S, Xia H et al. Clinical relevance and role of neuronal AT1 receptors in ADAM17-mediated ACE2 shedding in neurogenic hypertension. Circ Res 2017; 121: 43–55. DOI: 10.1161/CIRCRESAHA.116.310509
19. Shirogane Y, Takeda M, Iwasaki M et al. Efficient multiplication of human metapneumovirus in Vero cells expressing the transmembrane serine protease TMPRSS2. J Virol 2008; 82 (17): 8942–6. DOI: 10.1128/JVI.00676-08
20. Matsuyama S, Nagata N, Shirato K et al. Efficient activation of the severe acute respiratory syndrome coronavirus spike protein by the transmembrane protease TMPRSS2. J Virol 2010 84: 12658–64. DOI: 10.1128/JVI.01542-10
21. Lambert DW, Yarski M, Warner FJ et al. Tumor necrosis factor-alpha convertase (ADAM17) mediates regulated ectodomain shedding of the severe-acute respiratory syndrome-coronavirus (SARS-CoV) receptor, angiotensin-converting enzyme-2 (ACE2). J Biol Chem 2005; 280 (34): 30113–9. DOI: 10.1074/jbc.M505111200
22. Heurich A, Hofmann-Winkler H, Gierer S et al. TMPRSS2 and ADAM17 cleave ACE2 differentially and only proteolysis by TMPRSS2 augments entry driven by the severe acute respiratory syndrome coronavirus spike protein. J Virol 2014; 88 (2): 1293–307. DOI: 10.1128/JVI.02202-13
23. Hoffmann M, Kleine-Weber H, Schroeder S et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020; 181 (2): 271–80. DOI: 10.1016/j.cell.2020.02.052
24. Matsuyama S, Nao N, Shirato K et al. Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells. Proc Natl Acad Sci USA 2020; 117 (13): 7001–3. DOI: 10.1073/pnas.2002589117
25. Zheng YY, Ma YT, Zhang JY, Xie X. COVID-19 and the cardiovascular system. Nat Rev Cardiol 2020. DOI: 10.1038/s41569-020-0360-5
26. Pal R, Bhansali A. COVID-19, Diabetes Mellitus and ACE2: The conundrum. Diabetes Res Clin Pract 2020; 29: 108132. DOI: 10.1016/j.diabres.2020.108132
27. Schouten LR, van Kaam AH, Kohse F et al. Age-dependent differences in pulmonary host responses in ARDS: a prospective observational cohort study. Ann Intensive Care 2019; 9: 55.
28. Cao Y, Li L, Feng Z et al. Comparative genetic analysis of the novel coronavirus (2019-nCoV/SARS-CoV-2) receptor ACE2 in different populations. Cell Discov 2020; 6: 11.
29. Cai G. Bulk and single-cell transcriptomics identify tobacco-use disparity in lung gene expression of ACE2, the receptor of 2019-nCov. medRxiv 2020. https://www.medrxiv.org/content/10.1101/2020.02.05.20020107v3
30. Wang L, He W, Yu X et al. Coronavirus Disease 2019 in elderly patients: characteristics and prognostic factors based on 4-week follow-up. J Infection 2020. DOI: 10.1016/j. jinf.2020.03.019
31. Guo T, Fan Y, Chen M et al. Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19). JAMA cardiology 2020. DOI: 10.1001/jamacardio.2020.1017
32. Shibata S, Arima H, Asayama K et al. Hypertension and related diseases in the era of COVID-19: a report from the Japanese Society of Hypertension Task Force on COVID-19. Hypertens Res 2020. DOI: 10.1038/s41440-020-0515-0
33. Richardson S, Hirsch JS, Narasimhan M et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York city area. JAMA 2020; 323: 2052–59.
34. Whelton PK, Carey RM, Aronow WS et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/
NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension 2018; 71 (6): 1269–324.
35. Li X, Xu S, Yu M et al. Risk factors for severity and mortality in adult COVID-19 inpatients in Wuhan. J Allergy Clin Immunol 2020. DOI: 10.1016/j.jaci.2020.04.006
36. Shi Y, Yu X, Zhao H et al. Host susceptibility to severe COVID-19 and establishment of a host risk score: findings of 487 cases outside Wuhan. Crit Care 2020; 24 (1): 108.
37. Centers for Disease Control and Prevention. People who are at higher risk for severe illness. https://www.cdc.gov/coronavirus/2019-ncov/need-extra-precautions/people-at-higher-risk.html
38. Simonnet A, Chetboun M, Poissy J et al. High prevalence of obesity in severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) requiring invasive mechanical ventilation. Obesity 2020; 28: 1195–9.
39. Centers for Disease Control and Prevention. People who are at higher risk for severe illness. https://www.cdc.gov/coronavirus/2019-ncov/need-extra-precautions/people-at-higher-risk.html
40. Balanova Iu.A., Shal'nova S.A., Deev A.D. et al. Ozhirenie v rossiiskoi populiatsii – rasprostranennost' i assotsiatsii s faktorami riska khronicheskikh neinfektsionnykh zabolevanii. Ros. kardiologicheskii zhurn. 2018; 6: 123–30. DOI: 10.15829/1560-4071-2018-6-123-130 (in Russian).
41. Simonnet A, Chetboun M, Poissy J et al. LICORN and the Lille COVID-19 and Obesity study group. High Prevalence of Obesity in Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) Requiring Invasive Mechanical Ventilation. Obesity (Silver Spring) 2020; 28 (7): 1195–9.
42. Goyal P et al. Clinical characteristics of COVID-19 in New York City. N Engl J. Med 2020; 382: 2372–4.
43. Cai Q, Chen F, Wang T et al. Obesity and COVID-19 severity in a designated hospital in Shenzhen, China. Diabetes Care 2020; 43: 1392–8.
44. Zheng KI, Gao F, Wang XB et al. Letter to the Editor: Obesity as a risk factor for greater severity of COVID-19 in patients with metabolic associated fatty liver disease. Metabolism 2020; 108: 154244.
45. Kass DA, Duggal P, Cingolani O. Obesity could shift severe COVID-19 disease to younger ages. Lancet 2020; 395: 1544–5.
46. McNelis JC, Olefsky JM. Macrophages, immunity, and metabolic disease. Immunity 2014; 41: 36–48. DOI: 10.1016/j.immuni.2014.05.010
47. Korakas E, Ikonomidis I, Kousathana F et al. Obesity and COVID-19: immune and metabolic derangement as a possible link to adverse clinical outcomes. Am J Physiol Endocrinol Metab 2020. DOI: 10.1152/ajpendo.00198.2020
48. Desta DM, Wondafrash DZ, Tsadik AG et al. Prevalence of Hypertensive Emergency and Associated Factors Among Hospitalized Patients with Hypertensive Crisis: A Retrospective Cross-Sectional Study. Integr Blood Press Control 2020; 13: 95–102. DOI: 10.2147/IBPC.S265183
49. Mao L, Wang M, Chen S et al. Neurological Manifestations of Hospitalized Patients with COVID-19 in Wuhan, China: a ret-rospective case series study. MedRExiv 2020. DOI: 10.1101/2020.02.22.20026500
50. Alenina N, Bader M. ACE2 in brain physiology and pathophysiology: Evidence from transgenic nimal models. Neurochem Res 2019; 44 (6): 1323–9. DOI: 10.1007/s11064-018-2679-4
51. Chazova I.E., Aksenova A.V., Oshchepkova E.V. Features of the course of arterial hypertension in men and women (according to the National Register of Arterial Hypertension). Therapeutic Archive. 2019; 91 (1): 4–12. DOI: 10.26442/00403660.2019.01.000021 (in Russian).
52. Ferrario CM, Jessup J, Chappell MC et al. Effect of Angiotensin-Converting Enzyme Inhibition and Angiotensin II Receptor Blockers on Cardiac Angiotensin-Converting Enzyme 2. Circulation 2005; 111: 2605–10. DOI: 10.1161/CIRCULATIONAHA.104.510461
53. Jessup J, Gallagher PE, Averill DB et al. Effect of Angiotensin II blockade on a new congenic model of hypertension derived from the transgenic Ren-2 rat. Am J Physiol Heart Circ 2006; 291 (5): H2166–7H72. DOI: 10.1152/ajpheart.00061.2006
54. Wang X, Ye Y, Gong H et al. The effects of different Angiotensin II Type 1 Receptor blockers on the regulation of the ACE-AngII-AT1 and ACE2-Ang-(1-7)-Mas axes in pressure overload-induced cardiac remodeling in male mice. Mol Cell Cardiol 2016; 97: 180–90. DOI: 10.1016/j.yjmcc.2016.05.012
55. Igase M, Strawn WB, Gallagher PE et al. (2005) Angiotensin II AT1 receptors regulate ACE2 and angiotensin-(1-7) expression in the aorta of spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol 2005; 289 (3): H1013–H9. DOI: 10.1152/ajpheart.00068.2005
56. Baker Heart and Diabetes Institute, Melbourne, Australia. Public Health Directorate, Northern Territory Department of Health, Australia. DOI: 10.30824/2006-13
57. Kuba K, Imai Y, Ohto-Nakanishi T, Penninger JM. Trilogy of ACE2: a peptidase in the renin-angiotensin system, a SARS receptor, and a partnerfor aminoacidtransporters. Pharmacol Ther 2010; 128: 119–28.
58. Wösten-van Asperen RM, Lutter R, Specht PA et al. Acute respiratory distress syndrome leads to reduced ratio of ACE/ACE2 activities and is prevented by angiotensin (1–7) or an angiotensin II receptor antagonist. J Pathol 2011; 225: 618–27.
59. Mancia G, Rea F, Ludergnani M et al. Renin-angiotensin-aldosterone system blockers and the risk of Covid19. N Engl J Med 2020. DOI: 10.1056/NEJMoa2006923
60. Reynolds HR, Adhikari S, Pulgarin C et al. Renin-angiotensin-aldosterone system inhibitors and risk of Covid-19. N Engl J Med 2020; 382: 2441–8.
61. International Society of Hypertension. A statement from the International Society of Hypertension on COVID-19. https://ish-world.com/news/a/A-statement-from-the-International-Society-of-Hypertension-on-COVID-19/
62. European Society of Hypertension. Statement of the European Society of Hypertension (ESH) on hypertension, renin angiotensin system blockers and COVID-19. https://www.eshonline.org/spotlights/esh-statement-on-covid-19/
63. ESC Council on Hypertension. Position statement of the ESC Council on hypertension on ACE-inhibitors and angiotensin receptor blockers. https://www.escardio.org/Councils/Councilon-Hypertension-(CHT)/News/position-statement-of-theesccoun...
64. Statement from the American Heart Association tHFSoAatACoC. Patients taking ACE-i and ARBs who contract COVID-19 should continue treatment, unless otherwise advised by their physician. https://newsroom.heart.org/news/patients-taking-acei-and-arbs-who-contract-covid-19-should-continue-...
1 ФГБУ «Национальный медицинский исследовательский центр кардиологии» Минздрава России, Москва, Россия;
2 ФГБОУ ВО «Тихоокеанский государственный медицинский университет» Минздрава России, Владивосток, Россия;
3 ФГАОУ ВО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России, Москва, Россия;
4 ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России, Москва, Россия;
5 ФГБОУ ВО «Московский государственный медико-стоматологический университет им. А.И. Евдокимова» Минздрава России, Москва, Россия
*c34h@yandex.ru
________________________________________________
Irina E. Chazova*1, Nataliia V. Blinova1, Vera A. Nevzorova2, Juliya V. Zhernakova1, Mikhail P. Savenkov3, Elena V. Oshchepkova1, Olga D. Ostroumova4, Oksana A. Kisliak3, Sergey A. Boytsov1,5
1 National Medical Research Center for Cardiology, Moscow, Russia;
2 Pacific State Medical University, Vladivostok, Russia;
3 Pirogov Russian National Research Medical University, Moscow, Russia;
4 Russian Medical Academy of Continuous Professional Education, Moscow, Russia;
5 Yevdokimov Moscow State University of Medicine and Dentistry, Moscow, Russia
*c34h@yandex.ru