1. Frijhoff AF, Conti CJ, Senderowicz AM. Advances in molecular carcinogenesis: current and future use of mouse models to screen and validate molecularly targeted anticancer drugs. Mol Carcinog 2004; 39: 183–94.
2. Welch HG, Schwartz LM, Woloshin S. Are increasing 5-year survival rates evidence of success against cancer? JAMA 2000; 283: 2975–8.
3. Wunderlich H, Schumann S, Jantitzky V et al. Increase of renal cell carcinoma incidence in central Europe. Eur Urol 1998; 33: 538–41.
4. Llovet JM, Burroughs A, Bruix J. Hepatocellular carcinoma. Lancet 2003; 362: 1907–17.
5. Peggs K. Imatinib mesylate-gold standards and silver linings. Clin Exp Med 2004; 4: 1–9.
6. Dancey J, Sausville EA. Issues and progress with protein kinase inhibitors for cancer treatment. Nat Rev Drug Discov 2003; 2: 296–313.
7. ManningG, Whyte DB, Martinez R, Hunter T, Sudarsanam S. The protein kinase complement of the human genome. Science 2002; 298: 1912–34.
8. Awada A, Hendlisz A, Gil T et al. Final results of a clinical and pharmacokinetic (PK) phase I study of the Raf kinase inhibitor BAY 43–9006 in refractory solid cancers: a promisingantit umor agent. Eur J Cancer 2002; 38 (suppl): S52 (abstr).
9. Hirte H, Moore M, Hotte SJ et al. Final results of a phase I study of the raf-1 kinase inhibitor BAY 43-9006 in patients with advanced refractory solid tumors. Eur J Cancer 2002; 38: 173.
10. Clark JW, Eder JP, Ryan D et al. Safety and pharmacokinetics of the dual action Raf kinase and vascular endothelial growth factor receptor inhibitor, BAY 43-9006, in patients with advanced, refractory solid tumors. Clin Cancer Res 2005; 11: 5472–80.
11. Strumberg D, Richly H, Hilger RA et al. Phase I clinical and pharmacokinetic study of the novel Raf kinase and vascular endothelial growth factor receptor inhibitor BAY 43-9006 in patients with advanced refractory solid tumors. J Clin Oncol 2005; 23: 965–72.
12. Moore M, Hirte HW, Siu L et al. Phase I study to determine the safety and pharmacokinetics of the novel Raf kinase and VEGFR inhibitor BAY 43-9006, administered for 28 days on/7 days off in patients with advanced, refractory solid tumors. Ann Oncol 2005; 16: 1688–94.
13. Llovet J, Ricci S, Mazzaferro V et al. Sorafenib improves survival in advanced hepatocellular carcinoma (HCC): results of a phase III randomized placebo-controlled trial (SHARP trial). N Engl J Med 2008; 359: 378–90.
14. Auclair D, Miller D, Yatsula V et al. Antitumor activity of sorafenib in FLT3-driven leukemic cells. Leukemia 2007; 21: 439–45.
15. Carlomagno F, Anaganti S, Guida T et al. BAY 43-9006 inhibition of oncogenic RET mutants. J Natl Cancer Inst 2006; 98: 326–34.
16. Castellone MD, Guarino V, De Falco V et al. Functional expression of the CXCR4 chemokine receptor is induced by RET/PTC oncogenes and is a common event in human papillary thyroid carcinomas. Oncogene 2004; 23: 5958–67.
17. Gilliland DG, Griffin JD. The roles of FLT3 in hematopoiesis and leukemia. Blood 2002; 100: 1532–42.
18. HuangS, Armstrong EA, Benavente S et al. Dualagent molecular targeting of the epidermal growth factor receptor (EGFR): combininganti-EGFR antibody with tyrosine kinase inhibitor. Cancer Res 2004; 64: 5355–62.
19. Kim HL, Seligson D, Liu X et al. Using protein expressions to predict survival in clear cell renal carcinoma. Clin Cancer Res 2004; 10: 5464–71.
20. Lassus H, Sihto H, Leminen A et al. Genetic alterations and protein expression of KIT and PDGFRA in serous ovarian carcinoma. Br J Cancer 2004; 91: 2048–55.
21. Levy AP, Pauloski N, Braun D et al. Analysis of transcription and protein expression changes in the 786-O human renal cell carcinoma tumor xenograft model in response to treatment with the multikinase inhibitor sorafenib (BAY 43-9006) [abstract and oral presentation]. Proc Am Assoc Cancer Res 2006; 47: 213–4.
22. Manie S, Santoro M, Fusco A, Billaud M. The RET receptor: function in development and dysfunction in congenital malformation. Trends Genet 2001; 17: 580–9.
23. Paz K, Zhu Z. Development of angiogenesis inhibitors to vascular endothelial growth factor receptor 2. Current status and future perspective. Front Biosci 2005; 10: 1415–39.
24. Pisacane AM, Risio M. VEGF and VEGFR-2 immunohistochemistry in human melanocytic naevi and cutaneous melanomas. Melanoma Res 2005; 15: 39–43.
25. Sternberg DW, Licht JD. Therapeutic intervention in leukemias that express the activated fms-like tyrosine kinase 3 (FLT3): opportunities and challenges. Curr Opin Hematol 2005; 12: 7–13.
26. Valtola R, Salven P, Heikkila P et al. VEGFR-3 and its ligand VEGF-C are associated with angiogenesis in breast cancer. Am J Pathol 1999; 154: 1381–90.
27. Wilhelm SM, Carter C, TangL et al. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the Raf/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res 2004; 64: 7099–109.
28. Wan PT, Garnett MJ, Roe SM et al. Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell 2004; 116: 855–67.
29. Guo T, Agaram NP, Wong GC et al. Sorafenib inhibits the imatinib-resistant KITT670I gatekeeper mutation in gastrointestinal stromal tumor. Clin Cancer Res 2007; 13: 4874–81.
30. Guida T, Anaganti S, Provitera L et al. Sorafenib inhibits imatinib-resistant KIT and platelet-derived growth factor receptor h gatekeeper mutants. Clin Cancer Res 2007; 13: 3363–9.
31. Hong D, Ye L, Gagel R et al. Medullary thyroid cancer: targeting the RET kinase pathway with sorafenib/tipifarnib. Mol Cancer Ther 2008; 7: 1001–6.
32. Gupta-Abramson V, Troxel AB, Nellore A et al. Phase II trial of sorafenib in advanced thyroid cancer. J Clin Oncol 2008; 26.
33. Lierman E, Lahortiga I, Van Miegroet H et al. The ability of sorafenib to inhibit oncogenic PDGFR_ and FLT3 mutants and overcome resistance to other small molecule inhibitors. Haematologica 2007; 92: 27–34.
34. Wilhelm S, Chien DS. BAY 43-9006: preclinical data. Curr Pharm Des 2002; 8: 2255–7.
35. Adnane L, Trail PA, Wilhelm S. Sorafenib (BAY 43-9006) antagonizes Raf function not only by inhibiting Raf kinase activity but also by sequestering Raf protein into non-functional complexes. Presented at AACR-NCI-EORTC; Philadelphia, PA; 2005 Nov.
36. Kolch W. Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions. Biochem J 2000; 351: 289–305.
37. Kolch W, Kotwaliwale A, Vass K, Janosch P. The role of Raf kinases in malignant transformation. Expert Rev Mol Med 2002; 2002: 1–18.
38. Yu C, Bruzek LM, Meng XW et al. The role of Mcl-1 downregulation in the proapoptotic activity of the multikinase inhibitor BAY 43-9006. Oncogene 2005; 24: 6861–9.
39. Liu L, Cao Y, Chen C et al. Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5. Cancer Res 2006; 66: 11851–8.
40. Molhoek KR, Griesemann H, Shu J et al. Human melanoma cytolysis by combined inhibition of mammalian target of rapamycin and vascular endothelial growth factor/vascular endothelial growth factor receptor-2. Cancer Res 2008; 68: 4392–7.
41. Lasithiotakis KG, SinnbergTW, Schittek B et al. Combined inhibition of MAPK and mTOR signaling inhibits growth, induces cell death, and abrogates invasive growth of melanoma cells. J Invest Dermatol. 2008. In print.
42. Takimoto CH, Awada A. Safety and antitumor activity of sorafenib (Nexavar) in combination with other anti-cancer agents: a review of clinical trials [review]. Cancer Chemother Pharmacol 2008; 61: 535–48.
43. Abou-Alfa GK, Johnson P, Knox J et al. Final results from a phase II (PhII), randomized, double-blind study of sorafenib plus doxorubicin (S+D) versus placebo plus doxorubicin (P+D) in patients (pts) with advanced hepatocellular carcinoma (AHCC). ASCO 2008 Gastrointestinal Cancers Symposium Abstract 128.
44. Agarwala SS, Keilholz U, Hogg D et al. Randomized phase III study of paclitaxel plus carboplatin with or without sorafenib as second-line treatment in patients with advanced melanoma. J Clin Oncol ASCO Annu Meet Proc Part I 2007; 25: 8510.
45. The multicentre phase III ESCAPE trial of sorafenib in non-small-cell lung cancer (NSCLC) has been terminated. Inpharma 2008; 1: 17–17.
46. Liu L, Cao Y, Chen C et al. Sorafenib (BAY 43-9006) inhibits the Raf/MEK/ERK pathway in hepatocellular carcinoma (HCC) cells and produces robust efficacy against PLC/PRF/5 HCC tumors in mice. Presented as a poster at AACR-NCI-EORTC; Philadelphia, PA; 2005.
47. Salvatore G, De Falco V, Salerno P et al. B-RAF is a therapeutic target in aggressive thyroid carcinoma. Clin Cancer Res 2006; 12: 1623–9.
48. ChangYS, Henderson A, Xue D et al. BAY 43-9006 (sorafenib) inhibits ectopic and orthotopic growth of a murine model of renal adenocarcinoma (Renca) predominantly through inhibition of tumor angiogenesis. Clin Cancer Res 2005; 46: 5831.
49. ChangYS, Adnane J, Trail PA et al. Sorafenib (BAY 43-9006) inhibits tumor growth and vascularization and induces tumor apoptosis and hypoxia in RCC xenograft models. Cancer Chemother Pharmacol 2007; 59: 561–74.
50. ChangYS, Adnane L, Henderson A et al. Sorafenib (BAY 43-9006) inhibits tumor growth and vascularization and induces tumor necrosis in the human RCC xenograft model, 786-O. Clin Cancer Res 2005; 11: 9011S.
51. Moore M, Hirte H, Oza A et al. Phase I study of the Raf-1 kinase inhibitor BAY 43-9006 in patients with advanced refractory solid tumors. Proc Am Soc Clin Oncol 2002; 21: Abstr. 1816.
52. Hu S, Niu H, Minkin P et al. Comparison of antitumor effects of multitargeted tyrosine kinase inhibitors in acute myelogenous leukemia. Mol Cancer Ther 2008; 7: 1110–20.
53. Turner KJ, Moore JW, Jones A et al. Expression of hypoxia-inducible factors in human renal cancer: relationship to angiogenesis and to the von Hippel-Lindau gene mutation. Cancer Res 2002; 62: 2957–61.
54. Gunaratnam L, Morley M, Franovic A et al. Hypoxia inducible factor activates the transforming growth factor-alpha/epidermal growth factor receptor growth stimulatory pathway in VHL(–/–) renal cell carcinoma cells. J Biol Chem 2003; 278: 44966–74.
55. Rafty LA, Khachigian LM. von Hippel-Lindau tumor suppressor protein represses platelet-derived growth factor B-chain gene expression via the Sp1 binding element in the proximal PDGF-B promoter. J Cell Biochem 2002; 85: 490–5.
56. Gunningham SP, Currie MJ, Han C et al. Vascular endothelial growth factor-B and vascular endothelial growth factor-C expression in renal cell carcinomas: regulation by the von Hippel-Lindau gene and hypoxia. Cancer Res 2001; 61: 3206–11.
57. Kaelin WG, Jr. The von Hippel-Lindau tumor suppressor gene and kidney cancer. Clin Cancer Res 2004; 10: 6290–5S.
58. Stadler WM. Targeted agents for the treatment of advanced renal cell carcinoma. Cancer 2005; 104: 2323–33.
59. Lamuraglia M, Escudier B, Chami L et al. To predict progression-free survival and overall survival in metastatic renal cancer treated with sorafenib: pilot study using dynamic contrast-enhanced Doppler ultrasound. Eur J Cancer 2006; 42: 2472–9.
60. Flaherty KT, Rosen MA, Heitjan DF et al. Pilot study of DCE-MRI to predict progression-free survival with sorafenib therapy in renal cell carcinoma. Cancer Biol Ther 2008; 7: 496-501.
61. Escudier B, Eisen T, Stadler WM et al. Sorafenib in advanced clearcell renal-cell carcinoma. N Engl J Med 2007; 356: 125–34.
62. Ratain MJ, Eisen T, Stadler WM et al. Phase II placebo-controlled randomized discontinuation trial of sorafenib in patients with metastatic renal cell carcinoma. J Clin Oncol 2006; 24: 2505–12.
63. Rini BI, Hutson TE, Elson P et al. A prospective trial of sorafenib in patients (pts) with metastatic clear cell renal cell carcinoma (mccRCC) refractory to prior sunitinib or bevacizumab [abstract 5123]. J Clin Oncol 2008; 26 (suppl.).
64. Abou-Alfa GK, Schwartz L, Ricci S et al. Phase II study of sorafenib in patients with advanced hepatocellular carcinoma. J Clin Oncol 2006; 24: 4293–300.
65. Llovet JM, Di Bisceglie AM, Bruix J et al. Design and endpoints of clinical trials in hepatocellular carcinoma. J Natl Cancer Inst 2008; 21: 698–711.
66. Calvisi DF, Ladu S, Gorden A et al. Ubiquitous activation of Ras and Jak/Stat pathways in human HCC. Gastroenterology 2006; 130: 1117–28.
67. Weihrauch M, Benick M, Lehner G et al. High prevalence of K-ras-2 mutations in hepatocellular carcinomas in workers exposed to vinylchloride. Int Arch Occup Environ Health 2001; 74: 405–10.
68. Villanueva A, Newell P, Chiang DY et al. Genomics and signaling pathways in hepatocellular carcinoma. Semin Liver Dis 2007; 27: 55–76.
69. Miura H, Miyazaki T, Kuroda M et al. Increased expression of vascular endothelial growth factor in human hepatocellular carcinoma. J Hepatol 1997; 27: 854–61.
70. Raskopf E, Dzienisowicz C, Hilbert T et al. Effective angiostatic treatment in a murine metastatic and orthotopic hepatoma model. Hepatology 2005; 41: 1233–40.
71. Yoon JH, Werneburg NW, Higuchi H et al. Bile acids inhibit Mcl-1 protein turnover via an epidermal growth factor receptor/Raf-1-dependent mechanism. Cancer Res 2002; 62: 6500–5.
72. Chen J, Fujii K, ZhangL, Roberts T, Fu H. Raf-1 promotes cell survival by antagonizing apoptosis signal-regulating kinase 1 through a MEK-ERK independent mechanism. Proc Natl Acad Sci USA 2001; 98: 7783–8.
73. Cheng EH, Sheiko TV, Fisher JK et al. VDAC2 inhibits BAK activation and mitochondrial apoptosis. Science 2003; 301: 513–7.
74. Salomoni P, Wasik MA, Riedel RF et al. Expression of constitutively active Raf-1 in the mitochondria restores antiapoptotic and leukemogenic potential of a transformation-deficient BCR/ABL mutant. J Exp Med 1998; 187: 1995–2007.
75. Sharma A, Trivedi NR, Zimmerman MA et al. Mutant V599EB-Raf regulates growth and vascular development of malignant melanoma tumors. Cancer Res 2005; 65: 2412–21.
76. Puri N, Ahmed S, Janamanchi V et al. c-Met is a potentially new therapeutic target for treatment of human melanoma. Clin Cancer Res 2007; 13: 2246–53.
77. Antonescu CR, Busam KJ, Francone TD et al. L576P KIT mutation in anal melanomas correlates with KIT protein expression and is sensitive to specific kinase inhibition. Int J Cancer 2007; 121: 257–64.
78. Wilhelm S, Housley T, Rong H et al. The novel Raf inhibitor BAY 43-9006 blocks signaling and proliferation in BRAF mutant and wild type melanoma and colorectal tumor cell lines. Proc Am Assoc Cancer Res 2003; 44: Abstr. 106609.
79. Murphy D, Makinnen S, Feldman M et al. BAY 43–9006 controls tumor growth inhibition of vascular development. Clin Cancer Res 2005; 46: 2985.
80. Panka DJ, Wang W, Atkins MB, Mier JW. The Raf inhibitor BAY 43-9006 (sorafenib) induces caspase-independent apoptosis in melanoma cells. Cancer Res 2006; 66: 1611–9.
81. Amaravadi R, Schuchter LM, McDermott DF et al. Updated results of a randomized phase II study comparing two schedules of temozolomide in combination with sorafenib in patients with advanced melanoma. J Clin Oncol ASCO Annu Meet Proc Part I 2007; 25: 8527.
82. Belenchia R, Broggi M, Georgelos K et al. Baseline phosphorylated ERK levels in renal cell carcinoma patients from a phase II study of BAY 43-9006. Proc Am Assoc Cancer Res 2004; 45: Abstr. 3677.
83. Karasarides M, Chiloeches A, Hayward R et al. B-RAF is a therapeutic target in melanoma. Oncogene 2004; 23: 6292–8.
84. Rahmani M, Davis EM, Bauer C et al. Apoptosis induced by the kinase inhibitor BAY 43-9006 in human leukemia cells involves down-regulation of Mcl-1 through inhibition of translation. J Biol Chem 2005; 280: 35217–27.
85. Change YS, Adnane L, Trail PA et al. Sorafenib (BAY 43-90060) inhibits tumor growth and vascularization and induces tumor apoptosis and hypoxia in RCC xenograft models. Cancer Chemother Pharmacol 2007; 59: 561–74.
1 Bayer HealthCare Pharmaceuticals, Монтвилль, Нью-Джерси
2 Программа рака печени Маунт Сайнай, Отделение заболеваний печени, Школа медицины Маунт Сайнай, Нью-Йорк
3 Группа рака печени Барселонской клиники, Отделение печени, Институт биомедицинских исследований August Pi i Sunyer, CIBERehd, Госпитальная клиника, Барселона (Испания)