В настоящее время увеличивается количество показателей, рассматривающихся в качестве потенциальных маркеров рака молочной железы, отражая достижения и находки в области изучения механизмов регуляции пролиферации и дифференцировки опухолевых клеток. Это относится и к таким маркерам, как CD55 и остеопонтин. Повышенная экспрессия остеопонтина в опухолях молочной железы свидетельствует об инвазивном потенциале опухолевой ткани, а степень экспрессии остеопонтина увеличивается с повышением степени злокачественности опухоли. Многие исследователи высказывают предположение, что наличие даже небольшого количества клеток с экспрессией СD55 в ткани опухоли обусловливает неблагоприятный прогноз. Данная работа посвящена изучению значения CD55 и остеопонтина в качестве прогностических онкомаркеров рака молочной железы.
The number of factors considered as oncomarkers in case of breast cancer have been increasing nowadays. These factors indicate achievements and findings in field of the studying the mechanism for the regulation of the proliferation and cell differentiation in tumour. The same thing we can say about CD55 and osteopontin (OPN). Increased expression of osteopontin in human breast cancer indicates the invasive potential of the tumour. And the elevated level of OPN expression suggests that the tumour cell has high level malignancy. Many researchers consider that even if there are only several cells with the expression of the CD55, the case is associated with poor prognosis of cancer patient. The purpose of this article is to study the significance of CD55 and osteopontin (OPN) as prognostic oncomarkers in breast cancer.
Key words: breast cancer, oncomarkers, CD55, osteopontin (OPN).
1. Ashkar S, Weber GF, Panoutsakopoulou V et al. Eta-1 (osteopontin): an early component of type-1 (cell-mediated) immunity. Science 2000; 287 (5454): 860–4.
2. Bellovici M, Ketelslegers JM, Colson A et al. Smoking is associated with increased levels of osteopontin in type 2 diabetic patients: preliminary results. Diabetes Metab 2006; 32 (5): 485–6.
3. Cho HJ, Cho HJ, Kim HS. Osteopontin: a multifunctional protein at the crossroads of inflammation, atherosclerosis, and vascular calcification. Curr Atheroscler Rep 2009; 11 (3): 206–13.
4. Coppola DM, White LE. Visual experience promotes the isotropic representation of orientation preference. Vis Neurosci 2004; 21 (1): 39–51.
5. Denhardt DT, Burger EH, Kazanecki C et al. Osteopontin-deficient bone cells are defective in their ability to produce NO in response to pulsatile fluid flow. Biochem Biophys Res Commun 2001; 288 (2): 448–53.
6. Faneyte IF, Kristel PM, Maliepaard M et al. Expression of the breast cancer resistance protein in breast cancer. Clin Cancer Res 2002; 8 (4): 1068–74.
7. Franzen A, Heinegard D. Isolation and characterisation of two sialoproteins present only in bone calcified matrix. Biochemical J 1985; 232: 715–24.
8. Furger KA, Menon RK, Tuck AB et al. The functional and clinical roles of osteopontin in cancer and metastasis. Curr Mol Med 2001; 1 (5): 621–32.
9. Gómez-Ambrosi J, Catalán V, Ramírez B et al. Plasma osteopontin levels and expression in adipose tissue are increased in obesity. J Clin Endocrinol Metab 2007; 92 (9): 3719–27.
10. Hijiya N, Setoguchi M, Higuchi Y et al. Cloning and characterization of the human osteopontine gene and its promoter. Biochemical J 1994; 303: 255–62.
11. Ibrahim T, Leong I, Sanchez-Sweatman O et al. Expression of bone sialoprotein and osteopontin in breast cancer bone metastases. Clin & Experim Metastasis 2000; 18 (3): 253–60.
12. Ikeda J, Morii E, Liu Y et al. Prognostic significance of CD55 expression in breast cancer. Clin Cancer Res 2008; 14 (15): 4780–6.
13. Kapoor S. Inhibition of osteopontin dependent carcinogenesis. J Cancer Res Clin Oncol 2008; 134 (8): 927–8.
14. Klusonová P, Reháková L, Borchert G et al. Chronic intermittent hypoxia induces 11-beta-hydroxysteroid dehydrogenase in rat heart. Endocrinol 2009; 150 (9): 4270–7.
15. Madjd Z, Durrant LG, Bradley R et al. Loss of CD55 is associated with aggressive breast tumors. Clin Cancer Res 2004; 15: 2797–803.
16. Mazzali M, Hughes J, Dantas M et al. Effects of cyclosporine in osteopontin null mice. Kidney Int 2002; 62 (1): 78–85.
17. Patani N, Jouhra F, Jiang W et al. Osteopontin expression profiles predict pathological and clinical outcome in breast cancer. Anticancer Res 2008; 28 (6): 4105–10.
18. Patarca R, Freeman G, Singh R et al. Structural and functional studies of the early T-lymphocyte activation-1 (Eta-1) gene. J of Experim Med 1989; 170: 145–61.
19. Ribeiro-Silva A, Oliveira da Costa JP et al. Osteopontin expression according to molecular profile of invasive breast cancer: a clinicopathological and immunohistochemical study. Int J Biol Markers 2008; 23 (3): 154–60.
20. Rushmere NK, Knowlden JM, Gee JM et al. Analysis of the level of mRNA expression of the membrane regulators of complement, CD59, CD55 and CD46, in breast cancer. Intern J Cancer 2004; 108 (6): 930–6.
21. Trueblood NA, Inscore PR, Brenner D et al. Biphasic temporal pattern in exercise capacity after myocardial infarction in the rat: relationship to left ventricular remodeling. Am J Physiol Heart Circ Physiol 2005; 288 (1): 244–9.
22. Vetrone SA, Montecino-Rodrigues E, Kudryashova E et al. Osteopontin promotes fibrosis in dystrophic mouse muscle by modulating immune cell subsets and intramuscular TGF-beta. J Clin Invest 2009; 119 (6): 1583–94.
23. Wang X, Chao L, Ma G et al. Primary breast carcinoma: association of mammographic calcifications with osteopontin expression. Radiology 2010; 254 (1): 69–78.
24. Xu JX, Morii E, Liu Y et al. High tolerance to apoptotic stimuli induced by serum depletion and ceramide in side-population cells: high expression of CD55 as a novel character for side-population. Experim Cell Research 2007; 313 (9): 1877–85.