В статье представлен литературный обзор современных данных о молекулярно-генетическом базисе наследственных синдромов, ассоциированных с развитием нейроэндокринных опухолей поджелудочной железы, таких как множественная эндокринная неоплазия 1-го типа, болезнь фон Гиппеля–Линдау, нейрофиброматоз 1-го типа и туберозный склероз.
Ключевые слова: нейроэндокринная опухоль, поджелудочная железа, множественная эндокринная неоплазия 1-го типа, болезнь фон Гиппеля–Линдау, нейрофиброматоз 1-го типа, туберозный склероз, MEN1, VHL, NF1, TSC1, TSC2.
________________________________________________
The paper provides a literature review of an update on the molecular genetic basis of inherited syndromes associated with the development of pancreatic neuroendocrine tumors, such as type 1 multiple neuroendocrine neoplasia, von Hippel–Lindau disease, type 1 neurofibromatosis, and tuberous sclerosis.
Key words: neuroendocrine neoplasia, pancreas, type 1 multiple neuroendocrine neoplasia, von Hippel–Lindau disease, type 1 neurofibromatosis, tuberous sclerosis, MEN1, VHL, NF1, TSC1, TSC2.
1. Маев И.В., Кучерявый Ю.А. Болезни поджелудочной железы. В 2 т. М.: Медицина, Шико, 2008.
2. Muniraj T, Vignesh S, Shetty S et al. Pancreatic neuroendocrine tumors. Dis Mon 2013; 59 (1): 5–19.
3. Jensen RT, Berna MJ, Bingham DB, Norton JA. Inherited pancreatic endocrine tumor syndromes: advances in molecular pathogenesis, diagnosis, management, and controversies. Cancer 2008; 113: 1807–43.
4. Alexakis N, Connor S, Ghaneh P et al. Hereditary pancreatic endocrine tumours. Pancreatology 2004; 4 (5): 417–33.
5. Jensen RT, Norton JA. Endocrine tumors of the pancreas and gastrointestinal tract. In: Feldman M, Friedman LS, Brandt LJ, ed. Sleisinger and Fordtrans's gastrointestinal and liver disease, 9th ed. Philadelphia: WB Saunders; 2010: chap 32: 625.
6. Эндокринология. Национальное руководство. Краткое издание. Под ред. И.И.Дедова, Г.А.Мельниченко. М.: ГЭОТАР-Медиа, 2011.
7. Thakker RV. Multiple endocrine neoplasia type 1. Endocrinol Metab Clin North Am 2000; 29: 541–67.
8. Marx S, Spiegel AM, Skarulis MC et al. Multiple endocrine neoplasia type 1: clinical and genetic topics. Ann Intern Med 1998; 129: 484–94.
9. Gibril F, Schumann M, Pace A, Jensen RT. Multiple endocrine neoplasia type 1 and Zollinger-Ellison syndrome: a prospective study of 107 cases and comparison with 1009 cases from the literature. Medicine (Baltimore) 2004; 83 (1): 43–83.
10. Larsson C, Skogseid B, Oberg K et al. Multiple endocrine neoplasia type 1 gene maps to chromosome 11 and is lost in insulinoma. Nature 1988; 332: 85–7.
11. Lemos MC, Thakker RV. Multiple endocrine neoplasia type 1 (MEN1): analysis of 1336 mutations reported in the first decade following identification of the gene. Hum Mutat 2008; 29 (1): 22–32.
12. Knudson AG Jr. Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci USA 1971; 68: 820–3.
13. Zhuang Z, Vortmeyer AO, Pack S et al. Somatic mutations of the MEN1 tumor suppressor gene in sporadic gastrinomas and insulinomas. Cancer Res 1997; 57: 4682–6.
14. Agarwal SK, Lee Burns A, Sukhodolets KE et al. Molecular pathology of the MEN1 gene. Ann N Y Acad Sci 2004; 1014: 189–98.
15. Marx SJ. Molecular genetics of multiple endocrine neoplasia types 1 and 2. Nat Rev Cancer 2005; 5: 367–75.
16. Poisson A, Zablewska B, Gaudray P. Menin interacting proteins as clues toward the understanding of multiple endocrine neoplasia type 1. Cancer Lett 2003; 189: 1–10.
17. Yang Y, Hua X. In search of tumor suppressing functions of menin. Mol Cell Endocrinol 2007; 265–6: 34–41.
18. Milne TA, Hughes CM, Lloyd R et al. Menin and MLL cooperatively regulate expression of cyclin-dependent kinase inhibitors. Proc Natl Acad Sci USA 2005; 102: 749–54.
19. Karnik SK, Hughes CM, Gu X et al. Menin regulates pancreatic islet growth by promoting histone methylation and expression of genes encoding p27Kip1 and p18INK4c. Proc Natl Acad Sci USA 2005; 102: 14 659–64.
20. Sato N, Sato M, Nakayama M et al. Cell cycle regulation of chromatin binding and nuclear localization of human Cdc7 ASK kinase complex. Gene Cell 2003; 8: 451–63.
21. Schnepp RW, Hou Z, Wang H et al. Functional interaction between tumor suppressor menin and activator of S-phase kinase. Cancer Res 2004; 64 (18): 6791–6.
22. Agarwal SK, Guru SC, Heppner C et al. Menin interacts with the AP1 transcription factor JunD and represses JunD activated transcription. Cell 1999; 96: 143–52.
23. Kim H, Lee JE, Cho EJ et al. Menin, a tumor suppressor, represses JunD mediated transcriptional activity by association with an mSin3A histone deacetylase complex. Cancer Res 2003; 63: 6135–9.
24. Agarwal SK, Novotny EA, Crabtree JS et al. Transcriptional factor JunD, deprived of menin, switches from growth suppressor to growth promoter. Proc Natl Acad Sci USA 2003; 100: 10 770–5.
25. Heppner C, Bilimoria KY, Agarwal SK et al. The tumor suppressor protein menin interacts with NF-kappaB proteins and inhibits NF-kappaB-mediated transactivation. Oncogene 2001; 20 (36): 4917–25.
26. Lin SY, Elledge SJ. Multiple tumor suppressor pathways negatively regulate telomerase. Cell 2003; 113 (7): 881–9.
27. Hashimoto M, Kyo S, Hua X et al. Role of menin in the regulation of telomerase activity in normal and cancer cells. Int J Oncol 2008; 33 (2): 333–40.
28. Jin S, Mao H, Schnepp RW et al. Menin associates with FANCD2, a protein involved in repair of DNA damage. Cancer Res 2003; 63: 4204–10.
29. Sukhodolets KE, Hickman AB, Agarwal SK et al. The 32-kilodalton subunit of replication protein A interacts with menin, the product of the MEN1 tumor suppressor gene. Mol Cell Biol 2003; 23: 493–509.
30. Averous J, Proud CG. When translation meets transformation: the mTOR story. Oncogene 2006; 25 (48): 6423–35.
31. Shida T, Kishimoto T, Furuya M et al. Expression of an activated mammalian target of rapamycin (mTOR) in gastroenteropancreatic neuroendocrine tumors. Cancer Chemother Pharmacol 2010; 65 (5): 889–93.
32. Chen M, Van Ness M, Guo Y, Gregg J. Molecular pathology of pancreatic neuroendocrine tumors. J Gastrointest Oncol 2012; 3 (3): 182–8.
33. Kasajima A, Pavel M, Darb-Esfahani S et al. mTOR expression and activity patterns in gastroenteropancreatic neuroendocrine tumours. Endocr Relat Cancer 2011; 18 (1): 181–92.
34. Di Florio A, Adesso L, Pedrotti S et al. Src kinase activity coordinates cell adhesion and spreading with activation of mammalian target of rapamycin in pancreatic endocrine tumour cells. Endocr Relat Cancer 2011; 18 (5): 541–54.
35. Wang Y, Ozawa A, Zaman S et al. The tumor suppressor protein menin inhibits AKT activation by regulating its cellular localization. Cancer Res 2011; 71 (2): 371–82.
36. Corcos O, Couvelard A, Giraud S et al. Endocrine pancreatic tumors in von Hippel-Lindau disease: clinical, histological, and genetic features. Pancreas 2008; 37 (1): 85–93.
37. Mukhopadhyay B, Sahdev A, Monson JP et al. Pancreatic lesions in von Hippel-Lindau disease. Clin Endocrinol (Oxf) 2002; 57 (5): 603–8.
38. Schmitt AM, Schmid S, Rudolph T et al. VHL inactivation is an important pathway for the development of malignant sporadic pancreatic endocrine tumors. Endocr Relat Cancer 2009; 16 (4): 1219–27.
39. Chou A, Toon C, Pickett J, Gill AJ. Von hippel-lindau syndrome. Front Horm Res 2013; 41: 30–49.
40. Shuin T, Yamasaki I, Tamura K et al. Von Hippel-Lindau disease: molecular pathological basis, clinical criteria, genetic testing, clinical features of tumors and treatment. Jpn J Clin Oncol 2006; 36 (6): 337–43.
41. Ferner RE. Neurofibromatosis 1 and neurofibromatosis 2: a twenty first century perspective. Lancet Neurol 2007; 6 (4): 340–51.
42. McClatchey AI. Neurofibromatosis. Annu Rev Pathol 2007; 2: 191–216.
43. Rosner M, Hanneder M, Siegel N et al. The mTOR pathway and its role in human genetic diseases. Mutat Res 2008; 659 (3): 284–92.
44. Schwartz RA, Fernández G, Kotulska K, Jóźwiak S. Tuberous sclerosis complex: advances in diagnosis, genetics, and management. J Am Acad Dermatol 2007; 57 (2): 189–202.
45. Curatolo P, Bombardieri R, Jozwiak S. Tuberous sclerosis. Lancet 2008; 372 (9639): 657–68.
46. Rosner M, Hanneder M, Siegel N et al. The tuberous sclerosis gene products hamartin and tuberin are multifunctional proteins with a wide spectrum of interacting partners. Mutat Res 2008; 658 (3): 234–46.
47. Jiao Y, Shi C, Edil BH et al. DAXX/ATRX, MEN1, and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors. Science 2011; 331 (6021): 1199–203.
1 ГБОУ ВПО Московский государственный медико-стоматологический университет им. А.И.Евдокимова Минздрава РФ
2 ГБУЗ медико-санитарная часть №51 (Московский городской центр профпатологии) Департамента здравоохранения г. Москвы