Патогенетический путь фактора роста фибробластов и его рецепторов имеет большое значение в развитии и прогрессировании почечно-клеточного рака. Различные его компоненты рассматриваются в качестве мишеней таргетной терапии. Возможно, в ближайшем будущем появятся новые препараты, которые повысят общую эффективность терапии метастатического рака почки и других опухолей.
Ключевые слова: почечно-клеточный рак, рецептор фактора роста фибробластов 1-го типа, резистентность, таргетная терапия, ангиогенез.
________________________________________________
Pathogenetic pathway of fibroblast growth factor and its receptors are of great importance in the development and progression of renal cell cancer. Its various components are considered as r targeted therapies objectives. Perhaps in the nearest future new products will enhance the overall effectiveness of treatment of metastatic kidney cancer and other tumors.
1. Kluger HM, Siddiqui SF, Angeletti C et al. Classification of renal cell carcinoma based on expression of VEGF and VEGF receptors in both tumor cells and endothelial cells. Laboratory Investigation 2008; 88: 962–72.
2. Rini BI, Atkins MB. Resistance to targeted therapy in renal-cell carcinoma. Lancet Oncol 2009; 10: 992–1000.
3. Saylor PJ, Escudier B, Michaelson MD. Importance of fibroblast growth factor receptor in neovascularization and tumor escape from antiangiogenic therapy. Clin Genitourin Cancer 2012; 10 (2): 77–83.
4. Fernando NT, Koch M, Rothrock C et al. Tumor escape from endogenous, extracellular matrix-associated angiogenesis inhibitors by up-regulation of multiple proangiogenic factors. Clin Cancer Res 2008; 14: 1529–39.
5. Beenken A, Mohammadi M. The FGF family: biology, pathophysiology and therapy. Nat Rev Drug Dis 2009; 8: 235–53.
6. Eswarakumar VP, Lax I, Schlessinger J. Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev 2005; 16: 139–49.
7. Brooks AN, Kilgour E, Smith PD. Molecular pathways: fibroblast growth factor signaling. A new therapeutic opportunity in cancer. Clin Cancer Res 2012; 18: 1855–62.
8. Tomlinson DC, Knowles MA. Altered splicing of FGFR-1 is associated with high tumor grade and stage and leads to increased sensitivity to FGF-1 in bladder cancer. Am J Pathol 2010; 177 (5): 2379–86.
9. Abuharbeid S, Czubayko F, Aigner A. The fibroblast growth factor-binding protein FGF-BP. Int J Biochem Cell Biol 2006; 38 (9): 1463–8.
10. Turner N, Grose R. Fibroblast growth factor signaling: from development to cancer. Nat Rev Cancer 2010; 10 (2): 116–29.
11. Tsimafeyeu I, Demidov L, Stepanova E, Wynn N. Overexpression of fibroblast growth factor receptors FGFR-1 and FGFR-2 in renal cell carcinoma. Scandinav J Urol Nephrol 2011; 3: 190–5.
12. Ho T et al. The role of FGF signaling in VEGF-pathway targeted therapy resistance. Data from patients and model systems. J Clin Oncol 2013; 31 (Suppl. 6). Abstr. 386.
13. Tsimafeyeu I, Wynn N, Gordiyev M, Khasanova A. FGFR-2 expression and mutation are rare in papillary renal cell carcinoma. In: Proceedings of the 104th Annual Meeting of the American Association for Cancer Research 2013 Apr 6–10. Washington DC. Philadelphia PA: AACR. Cancer Res 2013; 73 (Suppl. 8). Abstr. 4069.
14. Stoehr CG et al. Mutational activation of FGFR-3: no involvement in the development of renal cell carcinoma. J Cancer Res Clin Oncol 2012; 138 (2): 359–61.
15. Hsu T, Adereth Y, Kose N, Dammai V. Endocytic function of von Hippel–Lindau tumor suppressor protein regulates surface localization of fibroblast growth factor receptor 1 and cell motility. J Biol Chem 2006; 281 (17): 12 069–80.
16. Тимофеев И.В., Демидов Л.В., Степанова Е.В. и др. Роль фактора роста фибробластов и его рецептора в патогенезе почечно-клеточного рака. Онкоурология. 2011; с. 247–8.
17. Porto C et al. Changes in circulating pro-angiogenic cytokines, other than VEGF, before progression to sunitinib therapy in advanced renal cell carcinoma patients. Oncol 2013; 84 (2): 115–22.
18. Tsimafeyeu I, Demidov L, Ta H et al. Fibroblast growth factor pathway in renal cell carcinoma. J Clin Oncol 2010; 28: 15s. Abstr. 4621.
19. Mydlo JH, Kral JG, Macchia RJ. Preliminary results comparing the recovery of basic fibroblast growth factor (FGF-2) in adipose tissue and benign and malignant renal tissue. J Urol 1998; 159 (6): 2159–63.
20. Avnet S et al. Interferon-a inhibits in vitro osteoclast differentiation and renal cell carcinoma-induced angiogenesis. Int J Oncol 2007; 30 (2): 469–76.
21. Cenni E et al. Inhibition of angiogenesis via FGF-2 blockage in primitive and bone metastatic renal cell carcinoma. Anticancer Res 2007; 27 (1): 315–9.
22. Bahramsoltani M, De Spiegelaere W, Janczyk P et al. Quantitation of angiogenesis in vitro induced by VEGF-A and FGF-2 in two different human endothelial cultures – an all-in-one assay. Clin Hemorheol Microcirc 2010; 46 (2–3): 189–202.
23. Tsimafeyeu I, Demidov L, Wynn N. A role of the FGF-pathway in the VEGF/VEGFR targeting. Cancer Research 2011; 71: 5157.
24. Cao R, Bråkenhielm E, Pawliuk R et al. Angiogenic synergism, vascular stability and improvement of hind-limb ischemia by a combination of PDGF-BB and FGF-2. Nat Wed 2003; 9 (5): 604–13.
25. Murakami M, Nguyen LT, Hatanaka K et al. FGF-dependent regulation of VEGF receptor 2 expression in mice. J Clin Inv 2011; 121 (7): 2668–78.
26. Lee SH, Schloss DJ, Swain JL. Maintenance of vascular integrity in the embryo requires signaling through the fibroblast growth factor receptor. J Biol Chem 2000; 275 (43): 33 679–87.
27. Dell'Era P, Belleri M, Stabile H et al. Paracrine and autocrine effects of fibroblast growth factor-4 in endothelial cells. Oncogene 2001; 20 (21): 2655–63.
28. Wang Y, Becker D. Antisense targeting of basic fibroblast growth factor and fibroblast growth factor receptor-1 in human melanomas blocks intratumoral angiogenesis and tumor growth. Nat Med 1997; 3 (8): 887–93.
29. Birrer MJ, Johnson ME, Hao K et al. Whole genome oligonucleotide-based array comparative genomic hybridization analysis identified fibroblast growth factor 1 as a prognostic marker for advanced-stage serous ovarian adenocarcinomas. J Clin Oncol 2007; 25 (16): 2281–7.
30. Presta M, Dell'Era P, Mitola S et al. Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine Growth Factor Rev 2005; 16 (2): 159–78.
31. Underwood PA, Bean PA, Gamble JR. Rate of endothelial expansion is controlled by cell: cell adhesion. Int J Biochem Cell Biol 2002; 34 (1): 55–69.
32. El Hariry I, Pignatelli M, Lemoine NR. FGF-1 and FGF-2 modulate the E-cadherin/catenin system in pancreatic adenocarcinoma cell lines. Br J Cancer 2001; 84 (12): 1656–63.
33. Elfenbein A, Simons M. Syndecan-4 signaling at a glance. J Cell Sci 2013; 126 (17): 3799–804.
34. Mori S, Tran V, Nishikawa K et al. A dominant-negative FGF-1 mutant (the R50E mutant) suppresses tumor genesis and angiogenesis. PLoS One 2013; 8 (2): e57 927.
35. Seghezzi G, Patel S, Ren CJ et al. Fibroblast growth factor-2 (FGF-2) induces vascular endothelial growth factor (VEGF) expression in the endothelial cells of forming capillaries: an autocrine mechanism contributing to angiogenesis. J Cell Biol 1998; 141 (7): 1659–73.
36. Tsunoda S, Nakamura T, Sakurai H, Saiki I. Fibroblast growth factor-2-induced host stroma reaction during initial tumor growth promotes progression of mouse melanoma via vascular endothelial growth factor A-dependent neovascularization. Cancer Sci 2007; 98 (4): 541–8.
37. Gozgit JM, Wong MJ, Moran L et al. Ponatinib (AP24534), a multitargeted pan-FGFR inhibitor with activity in multiple FGFR-amplified or mutated cancer models. Mol Cancer Ther 2012; 11: 690–9.
38. Lee SH, Lopes de Menezes D, Vora J et al. In vivo target modulation and biological activity of CHIR-258, a multitargeted growth factor receptor kinase inhibitor, in colon cancer models. Clin Cancer Res 2005; 11 (10): 3633–41.
39. Zhen Wei C, Yongzheng Zh, Borzilleri R et al. Discovery of Brivanib Alaninate ((S)-((R)-1-(4-(4-Fluoro-2-methyl-1H-indol-5-yloxy)-5-methylpyrrolo[2,1-f][1,2,4]triazin-6-yloxy)propan-2-yl)2-aminopropanoate). A novel prodrug of dual vascular endothelial growth factor receptor-2 and fibroblast growth factor receptor-1 kinase inhibitor (BMS-540215). J Med Chemist 2008; 51 (6): 1976–80.
40. Hilberg F, Roth GJ, Krssak M et al. BIBF 1120: triple angiokinase inhibitor with sustained receptor blockade and good antitumor efficacy. Cancer Res 2008; 68 (12): 4774–82.
41. Matsui J, Funahashi Y, Uenaka T et al. Multi-kinase inhibitor E7080 suppresses lymph node and lung metastases of human mammary breast tumor MDA-MB-231 via inhibition of vascular endothelial growth factor-receptor (VEGF-R) 2 and VEGF-R3 kinase. Clin Cancer Res 2008; 14 (17): 5459–65.
42. Zhao G, Li W, Chen D et al. A novel, selective inhibitor of fibroblast growth factor receptors that shows a potent broad spectrum of antitumor activity in several tumor xenograft models. Mol Cancer Ther 2011; 10: 2200–10.
43. Gavine PR, Mooney L, Kilgour E et al. AZD 4547: an orally bioavailable, potent, and selective inhibitor of the fibroblast growth factor receptor tyrosine kinase family. Cancer Res 2012; 72 (8): 2045–56.
44. Guagnano V, Furet P, Spanka C et al. Discovery of 3-(2,6-dichloro-3,5-dimethoxy-phenyl)-1-{6-[4-(4-ethyl-piperazin-1-yl)-phenylamino]-pyrimidin-4-yl}-1-methyl-urea (NVP-BGJ398). A potent and selective inhibitor of the fibroblast growth factor receptor family of receptor tyrosine kinase. J Med Chem 2011; 54 (20): 7066–83.
45. Siu L et al. Final analysis of the phase III randomized trial of cetuximab (CET) plus either brivanib alaninate (BRIV) or placebo in patients (pts) with chemotherapy refractory, K-RAS wild-type (WT), metastatic colorectal carcinoma (mCRC). The NCIC Clinical Trials Group and AGITG CO 20 trial. J Clin Oncol 2012; 30. Abstr. 3504.
6. Reck M et al. Nintedanib (BIBF 1120) plus docetaxel in NSCLC patients progressing after first-line chemotherapy: LUME Lung 1, a randomized, double-blind phase III trial. J Clin Oncol 2013; 31. Abstr. LBA 8011.
47. Eisen T et al. Phase II efficacy and safety study of nintedanib vs sunitinib in previously untreated renal cell carcinoma (RCC) patients. J Clin Oncol 2013; 31. Abstr. 4506.
48. Maio M et al. Lenvatinib combined with dacarbazine vs dacarbazine alone as first-line treatment in patients with stage IV melanoma. J Clin Oncol 2013; 31. Abstr. 9027.
49. Schlumberger M et al. A phase II trial of the multitargeted kinase inhibitor lenvatinib (E7080) in advanced medullary thyroid cancer (MTC). J Clin Oncol 2012; 30. Abstr. 5591.
50. Tsimafeyeu IV, Zaveleva E, Low W. Preclinical activity of OM-RCA-01, a humanized anti-FGFR1 antibody, in renal cell carcinoma (RCC). Cancer Res 2012; 72 (Suppl. 8): 2848.
51. Bai A, Meetze K, Vo NY et al. GP369, an FGFR2-IIIb-specific antibody, exhibits potent antitumor activity against human cancers driven by activated FGFR-2 signaling. Cancer Res 2010; 70 (19): 7630–9.
52. Motzer R et al. Phase 3 trial of dovitinib vs sorafenib in patients with metastatic renal cell carcinoma after 1 prior VEGF pathway-targeted and 1 prior mTOR inhibitor therapy. Eur Cancer Congress 2013. Abstr. 34.
53. Angevin E, Grünwald V, Ravaud A et al. A phase II study of dovitinib (TKI258), an FGFR- and VEGFR-inhibitor, in patients with advanced or metastatic renal cell cancer (mRCC). J Clin Oncol 2011; 29. Abstr. 4551.
54. Kim KB, Chesney J, Robinson D et al. Phase I–II and pharmacodynamic study of dovitinib (TKI 258), an inhibitor of fibroblast growth factor receptors and VEGF receptors, in patients with advanced melanoma. Clin Cancer Res 2011; 17 (23): 7451–61.
55. Okamoto I, Kaneda H, Satoh T et al. Phase I safety, pharmacokinetic, and biomarker study of BIBF 1120, an oral triple tyrosine kinase inhibitor in patients with advanced solid tumors. Mol Cancer Ther 2010; 9 (10): 2825–33.
56. Tsimafeyeu I, Zaveleva E, Low W. OM-RCA-01, an FGFR1 specific humanized antibody for the treatment of renal cell carcinoma (RCC). J Clin Oncol 2012; 30. Abstr. 3070.
57. Tsimafeyeu I, Zaveleva E, Tolkacheva T. Does dose-dependent targeting of fibroblast growth factor (FGF) receptor 1 (FGFR1) impact on growth of renal cell carcinoma? Proceedings of the 27th Annual Congress of the European Association of Urology 2012. Abstr. 306.
58. Tsimafeyeu I, Zaveleva E, Stepanova E, Low W. OM-RCA-01, a novel humanized monoclonal antibody targeting fibroblast growth factor receptor 1, in renal cell carcinoma model. Invest New Drugs 2013.
59. Sun HD, Malabunga M, Tonra JR et al. Monoclonal antibody antagonists of hypothalamic FGFR1 cause potent but reversible hypophagia and weight loss in rodents and monkeys. Am J Physiol Endocrin Metabol 2007; 292 (3): e964–76.
60. Trudel SA, Stewart K, Rom E et al. The inhibitory anti-FGFR3 antibody, PRO-001, is cytotoxic to t(4;14) multiple myeloma cells. Blood 2006; 107: 4039–46.
61. Qing J, Du X, Chen Y, Chan P. Antibody-based targeting of FGFR-3 in bladder carcinoma and t(4;14)-positive multiple myeloma in mice. J Clin Inv 2009; 119 (5): 1216–29.
62. Park H, Wang L, Chim S et al. HuGAL-FR 21, a humanized monoclonal antibody to Fibroblast Growth Factor Receptor 2, effectively inhibits the growth of gastric tumor xenografts. Cancer Res 2011; 71 (Suppl. 8): 5056.
63. Harding TC, Long L, Palencia S et al. Blockade of nonhormonal fibroblast growth factors by FP-1039 inhibits growth of multiple types of cancer. Sci Transl Med 2013; 5 (178): 39.
64. http://clinicaltrials.gov/ct2/show/NCT01868022?term=
NCT01868022&rank=1
Авторы
И.В.Тимофеев
Бюро по изучению рака почки, Общество онкологов-химиотерапевтов, Москва