Считается, что трансформированная клетка может образовать опухолевую массу только в том случае, если она секретирует факторы роста эндотелия и направленно формирует собственную сосудистую сеть. Процессы сосудообразования в карциномах отличаются от нормального ангиогенеза: вновь образовавшиеся капилляры не обладают правильной структурой и соединяются между собой достаточно случайным образом – это приводит к затруднению кровотока и возникновению отека. Современные антиангиогенные препараты уничтожают подобные неполноценные сосуды и таким образом нормализуют кровоток.
В результате улучшается доставка цитостатических препаратов в опухолевый очаг, а также наблюдается сенситизация трансформированных клеток к лечебным воздействиям. Комбинированное назначение ингибиторов ангиогенеза и химиотерапии сопровождается достоверным улучшением результатов лечения онкологических больных.
The ability of a transformed cell to evolve into the tumor lump is believed to require the secretion of angiogenic factors and active orchestrating of capillary development. Tumor angiogenesis is distinct from the normal one: rapidly growing capillaries lack proper tissue organization and connect to each other in a rather stochastic way, leading to abnormal blood flow and intratumoral oedema. Angiogenic inhibitors selectively destroy immature capillaries and thus normalize tumor vascularization. This results in improved delivery of cytotoxic drugs and sensitization of transformed cells to antitumor treatments. Combined administration of cytotoxic and antiangiogenic drugs improves outcomes of cancer therapies.
1. Amit L, Ben-Aharon I, Vidal L et al. The impact of Bevacizumab (Avastin) on survival in metastatic solid tumors – a meta-analysis and systematic review. PLoS One 2013; 8 (1): e51780.
2. Bellou S, Pentheroudakis G, Murphy C, Fotsis T. Anti-angiogenesis in cancer therapy: Hercules and hydra. Cancer Lett. 2013 Sep 28; 338(2): 219-28.
3. Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature 2011; 473 (7347): 298–307.
4. Cesca M, Bizzaro F, Zucchetti M, Giavazzi R. Tumor Delivery of Chemotherapy Combined with Inhibitors of Angiogenesis and Vascular Targeting Agents. Front Oncol 2013; 3: 259.
5. Chau NG, Haddad RI. Vandetanib for the treatment of medullary thyroid cancer. Clin Cancer Res 20131; 19 (3): 524–9.
6. Custodio A, Barriuso J, de Castro J et al. Molecular markers to predict outcome to antiangiogenic therapies in colorectal cancer: current evidence and future perspectives. Cancer Treat Rev 2013; 39 (8): 908–24.
7. de Gramont A, Van Cutsem E, Schmoll HJ et al. Bevacizumab plus oxaliplatin-based chemotherapy as adjuvant treatment for colon cancer (AVANT): a phase 3 randomised controlled trial. Lancet Oncol 2012; 13 (12): 1225–33.
8. Di Marco V, De Vita F, Koskinas J et al. Sorafenib: from literature to clinical practice. Ann Oncol 2013; 24 (Suppl. 2): ii30–7.
9. Dietvorst MH, Eskens FA. Current and Novel Treatment Options for Metastatic Colorectal Cancer: Emphasis on Aflibercept. Biol Ther 2013; 3: 25–33.
10. Dutcher JP. Recent developments in the treatment of renal cell carcinoma. Ther Adv Urol 2013; 5 (6): 338–53.
11. Folkman J, Merler E, Abernathy C, Williams G. Isolation of a tumor factor responsible for angiogenesis. J Exp Med 1971; 133 (2): 275–88.
12. Gaya A, Tse V. A preclinical and clinical review of aflibercept for the management of cancer. Cancer Treat Rev 2012; 38 (5): 484–93.
13. Giantonio BJ, Catalano PJ, Meropol NJ et al. Eastern Cooperative Oncology Group Study E3200. Bevacizumab in combination with oxaliplatin, fluorouracil, and leucovorin (FOLFOX4) for previously treated metastatic colorectal cancer: results from the Eastern Cooperative Oncology Group Study E3200. J Clin Oncol 2007; 25 (12): 1539–44.
14. Goel S, Wong AH, Jain RK. Vascular normalization as a therapeutic strategy for malignant and nonmalignant disease. Cold Spring Harb Perspect Med 2012; 2 (3): a006486.
15. Gross-Goupil M, François L, Quivy A, Ravaud A. Axitinib: A Review of its Safety and Efficacy in the Treatment of Adults with Advanced Renal Cell Carcinoma. Clin Med Insights Oncol 2013; 7: 269–77.
16. Grothey A, Van Cutsem E, Sobrero A et al. CORRECT Study Group. Regorafenib monotherapy for previously treated metastatic colorectal cancer (CORRECT): an international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet 2013; 381 (9863): 303–12.
17. Heinrich MC, Maki RG, Corless CL et al. Primary and secondary kinase genotypes correlate with the biological and clinical activity of sunitinib in imatinib-resistant gastrointestinal stromal tumor. J Clin Oncol 2008; 26 (33): 5352–9.
18. Huang Y, Goel S, Duda DG et al. Vascular normalization as an emerging strategy to enhance cancer immunotherapy. Cancer Res 2013; 73 (10): 2943–8.
19. Jain RK. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 2005; 307 (5706): 58–62.
20. Jain RK. Normalizing tumor microenvironment to treat cancer: bench to bedside to biomarkers. J Clin Oncol 2013; 31 (17): 2205–18.
21. Joulain F, Proskorovsky I, Allegra C et al. Mean overall survival gain with aflibercept plus FOLFIRI vs placebo plus FOLFIRI in patients with previously treated metastatic colorectal cancer. Br J Cancer 2013; 109 (7): 1735–43.
22. Kassem MG, Motiur Rahman AF, Korashy HM. Sunitinib malate. Profiles Drug Subst Excip Relat Methodol 2012; 37: 363–88.
23. Lainakis G, Bamias A. Targeting angiogenesis in renal cell carcinoma. Curr Cancer Drug Targets 2008; 8 (5): 349–58.
24. Lambrechts D, Lenz HJ, de Haas S et al. Markers of response for the antiangiogenic agent bevacizumab. J Clin Oncol 2013; 31 (9): 1219–30.
25. Mitchell EP. Targeted therapy for metastatic colorectal cancer: role of aflibercept. Clin Colorectal Cancer 2013; 12 (2): 73–85.
26. Mortimer J, Zonder HB, Pal SK. Lessons learned from the bevacizumab experience. Cancer Control 2012; 19 (4): 309–16.
27. Patel A, Sun W. Ziv-aflibercept in metastatic colorectal cancer. Biologics 2014; 8: 13–25.
28. Sirohi B, Philip DS, Shrikhande SV. Regorafenib: carving a niche in the crowded therapeutic landscape. Expert Rev Anticancer Ther 2013; 13 (4): 385–93.
29. Sun W. Angiogenesis in metastatic colorectal cancer and the benefits of targeted therapy. J Hematol Oncol 2012; 5: 63.
30. Suspitsin EN, Kashyap A, Shelekhova KV et al. Evidence for angiogenesis-independent contribution of VEGFR1 (FLT1) in gastric cancer recurrence. Med Oncol 2013; 30 (3): 644.
31. Tabernero J, Van Cutsem E, Lakomý R et al. Aflibercept versus placebo in combination with fluorouracil, leucovorin and irinotecan in the treatment of previously treated metastatic colorectal cancer: Prespecified subgroup analyses from the VELOUR trial. Eur J Cancer 2014; 50 (2): 320–31.
32. Takano S. Glioblastoma angiogenesis: VEGF resistance solutions and new strategies based on molecular mechanisms of tumor vessel formation. Brain Tumor Pathol 2012; 29 (2): 73–86.
33. Van Cutsem E, Tabernero J, Lakomy R et al. Addition of aflibercept to fluorouracil, leucovorin, and irinotecan improves survival in a phase III randomized trial in patients with metastatic colorectal cancer previously treated with an oxaliplatin-based regimen. J Clin Oncol 2012; 30 (28): 3499–506.
34. van Geel RM, Beijnen JH, Schellens JH. Concise drug review: pazopanib and axitinib. Oncologist 2012; 17 (8): 1081–9.
35. Wells SA Jr, Gosnell JE, Gagel RF et al. Vandetanib for the treatment of patients with locally advanced or metastatic hereditary medullary thyroid cancer. J Clin Oncol 2010; 28 (5): 767–72.
36. Welti J, Loges S, Dimmeler S, Carmeliet P. Recent molecular discoveries in angiogenesis and antiangiogenic therapies in cancer. J Clin Invest 2013; 123 (8): 3190–200.
Авторы
Е.Н.Имянитов
ФГБУ НИИ онкологии им. Н.Н.Петрова Минздрава России, Санкт-Петербург