Влияние полиморфизмов гена CYP2C19 на фармакокинетику и фармакодинамику тамоксифена
Влияние полиморфизмов гена CYP2C19 на фармакокинетику и фармакодинамику тамоксифена
Савельева М.И., Игнатова А.К., Панченко Ю.С. и др. Влияние полиморфизмов гена CYP2C19 на фармакокинетику и фармакодинамику тамоксифена. Современная Онкология. 2017; 19 (2): 28–32.
________________________________________________
Savelyeva M.I., Ignatova A.K., Panchenko Yu.S. et al. Perspectives of pharmacokinetics approach to personalized tamoxifen therapy. Journal of Modern Oncology. 2017; 19 (20): 28–32.
Влияние полиморфизмов гена CYP2C19 на фармакокинетику и фармакодинамику тамоксифена
Савельева М.И., Игнатова А.К., Панченко Ю.С. и др. Влияние полиморфизмов гена CYP2C19 на фармакокинетику и фармакодинамику тамоксифена. Современная Онкология. 2017; 19 (2): 28–32.
________________________________________________
Savelyeva M.I., Ignatova A.K., Panchenko Yu.S. et al. Perspectives of pharmacokinetics approach to personalized tamoxifen therapy. Journal of Modern Oncology. 2017; 19 (20): 28–32.
Тамоксифен относится к селективным модуляторам эстрогеновых рецепторов и широко применяется в лечении эстрогензависимых опухолей молочной железы. Адъювантная терапия тамоксифеном значительно снижает риск рецидива и улучшает выживаемость пациенток с раком молочной железы. Однако прослеживается индивидуальная изменчивость ответа на лекарственную терапию тамоксифеном. Одной из причин данной изменчивости, вероятно, является генетический полиморфизм ферментов I фазы биотрансформации тамоксифена – цитохрома P450, которые отвечают за превращение тамоксифена в его активные метаболиты. Варианты нуклеотидных последовательностей генов, кодирующих ферменты со сниженной или отсутствующей ферментативной активностью, могут быть ассоциированы с более низкой концентрацией активных метаболитов тамоксифена в крови, что, в свою очередь, может оказывать негативное влияние на эффективность терапии. Фармакогенетический подход представляется перспективным инструментом персонализированной медицины и, вероятно, в будущем сможет помочь персонифицировать фармакотерапию рака молочной железы. В этом обзоре мы проанализируем информацию, имеющуюся на данный момент, о влиянии полиморфизмов гена CYP2C19 на фармакокинетику и фармакодинамику тамоксифена.
Tamoxifen is a selective modulator of estrogen receptors and is widely used in receptor-a-positive breast cancer treatment. Adjuvant tamoxifen treatment substantially reduces breast cancer relapse and mortality rates. However, high interindividual variability in response is observed. One of the causes of this variability may be genetic polymorphisms of the cytochrome P450 (CYP) enzymes, which are responsible for the formation of tamoxifen active metabolites. Polymorphisms of genes encoding the enzymes with decreased or absent activity could be associated with lower tamoxifen active metabolites concentration in serum and consequently reduce the effectiveness of treatment. Pharmacogenetic approach is a promising tool of personalized medicine and may help personolize pharmacotherapy of breast cancer in the future. Throughout this review we analyze the up-to-date information on the influence of the gene CYP2C19 polymorphisms that they have on pharmacokinetic and pharmacodynamic of tamoxifen.
Key words: tamoxifen, CYP2C19, breast cancer, pharmacogenomics, pharmacogenetics.
1. Burstein HJ, Griggs JJ, Prestrud AA, Temin S. American Society of Clinical Oncology clinical practice guideline update on adjuvant endocrine therapy for women with hormone receptor-positive breast cancer. J Oncol Pract 2010; 6 (5): 243–6.
2. Forrest AR. Aromatase inhibitors in breast cancer. N Engl J Med 2003; 349: 1090.
3. Early Breast Cancer Trialists' Collaborative Group. Tamoxifen for early breast cancer: an overview of the randomised trials. Lancet 1998; 351: 1451–67.
4. Early Breast Cancer Trialists' Collaborative Group (EBCTCG). Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet 2005; 365: 1687–717.
5. Early Breast Cancer Trialists' Collaborative Group (EBCTCG). Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen: patient-level meta-analysis of randomised trials. Lancet 2011; 378: 771–84.
6. Lim YC, Desta Z, Flockhart DA, Skaar TC. Endoxifen (4-hydroxy-N-desmethyl-tamoxifen) has anti-estrogenic effects in breast cancer cells with potency similar to 4-hydroxy-tamoxifen. Cancer Chemother Pharmacol 2005; 55: 471–8.
7. Johnson MD1, Zuo H, Lee KH et al. Pharmacological characterization of 4-hydroxy-N-desmethyl tamoxifen, a novel active metabolite of tamoxifen. Breast Cancer Res Treat 2004; 85: 151–9.
8. Desta Z, Ward BA, Soukhova NV, Flockhart DA. Comprehensive evaluation of tamoxifen sequential biotransformation by the human cytochrome P450 system in vitro: prominent roles for CYP3A and CYP2D6. J Pharmacol Exp Ther 2004; 310: 1062–75.
9. NCCN Clinical Practice Guidelines in Oncology. Breast cancer version 2.2017 – April 6, 2017.
10. Jin Y, Desta Z, Stearns V et al. CYP2D6 genotype, antidepressant use, and tamoxifen metabolism during adjuvant breast cancer treatment. J Natl Cancer Inst. 2005; 97:30-9.
11. Borges S, Desta Z, Li L et al. Quantitative effect of CYP2D6 genotype and inhibitors on tamoxifen metabolism: implication for optimization of breast cancer treatment. Clin Pharmacol Ther 2006; 80: 61–74.
12. Schroth W, Antoniadou L, Fritz P et al. Breast cancer treatment outcome with adjuvant tamoxifen relative to patient CYP2D6 and CYP2C19 genotypes. J Clin Oncol 2007; 25: 5187–93.
13. Brauch H, Mürdter TE, Eichelbaum M, Schwab M. Pharmacogenomics of tamoxifen therapy. Clin Chem 2009; 55: 1770–82.
14. Desta Z, Ward BA, Soukhova NV, Flockhart DA. Comprehensive evaluation of tamoxifen sequential biotransformation by the human cytochrome P450 system in vitro: prominent roles for CYP3A and CYP2D6. J Pharmacol Exp Ther 2004; 310: 1062–75.
15. Brauch H, Mürdter TE, Eichelbaum M, Schwab M. Pharmacogenomics of Tamoxifen Therapy. Clinical Chemistry 2009; 55 (10): 1770–82.
16. Human cytochrome P450 (CYP) allele nomenclature T. The Human Cytochrome P450 (CYP) Allele Nomenclature Database.
17. Gjerde J, Geisler J, Lundgren S et al. Associations between tamoxifen, estrogens, and FSH serum levels during steady state tamoxifen treatment of postmenopausal women with breast cancer. BMC Cancer 2010; 10: 313.
18. Zafra-Ceres M, de Haro T, Farez-Vidal E et al. Influence of CYP2D6 Polymorphisms on Serum Levels of Tamoxifen Metabolites in Spanish Women with Breast Cancer. Int J Med Sci 2013; 10: 932–7.
19. Powers JL, Buys SS, Fletcher D et al. Multigene and Drug Interaction Approach for Tamoxifen Metabolite Patterns Reveals Possible Involvement of CYP2C9, CYP2C19, and ABCB1. J Clin Pharmacol 2016; 56: 1570–81.
20. Lim JS, Chen XA, Singh O et al. Impact of CYP2D6, CYP3A5, CYP2C9 and CYP2C19 polymorphisms on tamoxifen pharmacokinetics in Asian breast cancer patients. Br J Clin Pharmacol 2011; 71: 737–50.
21. Mürdter TE, Schroth W, Bacchus-Gerybadze L et al; German Tamoxifen and AI Clinicians Group, Eichelbaum M, Schwab M, Brauch H. Activity levels of tamoxifen metabolites at the estrogen receptor and the impact of genetic polymorphisms of phase I and II enzymes on their concentration levels in plasma. Clin Pharmacol Ther 2011; 89: 708–17.
22. Saladores P, Mürdter T, Eccles D et al. Tamoxifen metabolism predicts drug concentrations and outcome in premenopausal patients with early breast cancer. Pharmacogenomics J 2015; 15: 84–94.
23. Lim JS, Sutiman N, Muerdter TE et al. Association of CYP2C19*2 and associated haplotypes with lower norendoxifen concentrations in tamoxifen-treated Asian breast cancer patients. Br J Clin Pharmacol 2016; 81: 1142–52.
24. Lu WJ, Desta Z, Flockhart DA. Tamoxifen metabolites as active inhibitors of aromatase in the treatment of breast cancer. Breast Cancer Res Treat 2012; 131: 473–81.
25. Lu WJ, Xu C, Pei Z et al. The tamoxifen metabolite norendoxifen is a potent and selective inhibitor of aromatase (CYP19) and a potential lead compound for novel therapeutic agents. Breast Cancer Res Treat 2012; 133: 99–109.
26. Lv WJ, Liu J, Lu D et al. Synthesis of mixed (E,Z)-, (E)-, and (Z)-norendoxifen with dual aromatase inhibitory and estrogen receptor modulatory activities. J Med Chem 2013; 56: 4611–8.
27. Wei Lv, Jinzhong Liu, Skaar TC et al. Design and Synthesis of Norendoxifen Analogues with Dual Aromatase Inhibitory and Estrogen Receptor Modulatory Activities. J Med Chem 2015; 58: 2623–48.
28. Okishiro M, Taguchi T, Jin Kim S et al. Genetic polymorphisms of CYP2D6 10 and CYP2C19 2, 3 are not associated with prognosis, endometrial thickness, or bone mineral density in Japanese breast cancer patients treated with adjuvant tamoxifen. Cancer 2009; 1 (115): 952–61.
29. Mwinyi J, Vokinger K, Jetter A et al. Impact of variable CYP genotypes on breast cancer relapse in patients undergoing adjuvant tamoxifen therapy. Cancer Chemother Pharmacol 2014; 73: 1181–8.
30. Moyer AM, Suman VJ, Weinshilboum RM et al. SULT1A1, CYP2C19 and disease-free survival in early breast cancer patients receiving tamoxifen. Pharmacogenomics 2011; 12: 1535–43.
31. Chamnanphon M, Pechatanan K, Sirachainan E et al. Association of CYP2D6 and CYP2C19 polymorphisms and disease-free survival of Thai post-menopausal breast cancer patients who received adjuvant tamoxifen. Pharmgenomics Pers Med 2013; 6: 37–48.
32. Ruiter R, Bijl MJ, van Schaik RH et al. CYP2C19*2 polymorphism is associated with increased survival in breast cancer patients using tamoxifen. Pharmacogenomics 2010; 11: 1367–75.
33. Beelen K, Opdam M, Severson TM et al. CYP2C19*2 predicts substantial tamoxifen benefit in postmenopausal breast cancer patients randomized between adjuvant tamoxifen and no systemic treatment. Breast Cancer Res Treat 2013; 139: 649–55.
34. Schroth W, Antoniadou L, Fritz P et al. Breast cancer treatment outcome with adjuvant tamoxifen relative to patient CYP2D6 and CYP2C19 genotypes. J Clin Oncol 2007; 25: 5187–93.
35. Schaik RH, Kok M, Sweep FC et al. The CYP2C19*2 genotype predicts tamoxifen treatment outcome in advanced breast cancer patients. Pharmacogenomics 2011; 12: 1137–46.
36. Bai L, He J, He GH et al. Association of CYP2C19 polymorphisms with survival of breast cancer patients using tamoxifen: results of a meta- analysis. Asian Pac J Cancer Prev 2014; 15: 8331–5.
37. Justenhoven C, Hamann U, Pierl CB et al. CYP2C19*17 is associated with decreased breast cancer risk. Breast Cancer Res Treat 2009; 115: 391–6.
________________________________________________
1. Burstein HJ, Griggs JJ, Prestrud AA, Temin S. American Society of Clinical Oncology clinical practice guideline update on adjuvant endocrine therapy for women with hormone receptor-positive breast cancer. J Oncol Pract 2010; 6 (5): 243–6.
2. Forrest AR. Aromatase inhibitors in breast cancer. N Engl J Med 2003; 349: 1090.
3. Early Breast Cancer Trialists' Collaborative Group. Tamoxifen for early breast cancer: an overview of the randomised trials. Lancet 1998; 351: 1451–67.
4. Early Breast Cancer Trialists' Collaborative Group (EBCTCG). Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet 2005; 365: 1687–717.
5. Early Breast Cancer Trialists' Collaborative Group (EBCTCG). Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen: patient-level meta-analysis of randomised trials. Lancet 2011; 378: 771–84.
6. Lim YC, Desta Z, Flockhart DA, Skaar TC. Endoxifen (4-hydroxy-N-desmethyl-tamoxifen) has anti-estrogenic effects in breast cancer cells with potency similar to 4-hydroxy-tamoxifen. Cancer Chemother Pharmacol 2005; 55: 471–8.
7. Johnson MD1, Zuo H, Lee KH et al. Pharmacological characterization of 4-hydroxy-N-desmethyl tamoxifen, a novel active metabolite of tamoxifen. Breast Cancer Res Treat 2004; 85: 151–9.
8. Desta Z, Ward BA, Soukhova NV, Flockhart DA. Comprehensive evaluation of tamoxifen sequential biotransformation by the human cytochrome P450 system in vitro: prominent roles for CYP3A and CYP2D6. J Pharmacol Exp Ther 2004; 310: 1062–75.
9. NCCN Clinical Practice Guidelines in Oncology. Breast cancer version 2.2017 – April 6, 2017.
10. Jin Y, Desta Z, Stearns V et al. CYP2D6 genotype, antidepressant use, and tamoxifen metabolism during adjuvant breast cancer treatment. J Natl Cancer Inst. 2005; 97:30-9.
11. Borges S, Desta Z, Li L et al. Quantitative effect of CYP2D6 genotype and inhibitors on tamoxifen metabolism: implication for optimization of breast cancer treatment. Clin Pharmacol Ther 2006; 80: 61–74.
12. Schroth W, Antoniadou L, Fritz P et al. Breast cancer treatment outcome with adjuvant tamoxifen relative to patient CYP2D6 and CYP2C19 genotypes. J Clin Oncol 2007; 25: 5187–93.
13. Brauch H, Mürdter TE, Eichelbaum M, Schwab M. Pharmacogenomics of tamoxifen therapy. Clin Chem 2009; 55: 1770–82.
14. Desta Z, Ward BA, Soukhova NV, Flockhart DA. Comprehensive evaluation of tamoxifen sequential biotransformation by the human cytochrome P450 system in vitro: prominent roles for CYP3A and CYP2D6. J Pharmacol Exp Ther 2004; 310: 1062–75.
15. Brauch H, Mürdter TE, Eichelbaum M, Schwab M. Pharmacogenomics of Tamoxifen Therapy. Clinical Chemistry 2009; 55 (10): 1770–82.
16. Human cytochrome P450 (CYP) allele nomenclature T. The Human Cytochrome P450 (CYP) Allele Nomenclature Database.
17. Gjerde J, Geisler J, Lundgren S et al. Associations between tamoxifen, estrogens, and FSH serum levels during steady state tamoxifen treatment of postmenopausal women with breast cancer. BMC Cancer 2010; 10: 313.
18. Zafra-Ceres M, de Haro T, Farez-Vidal E et al. Influence of CYP2D6 Polymorphisms on Serum Levels of Tamoxifen Metabolites in Spanish Women with Breast Cancer. Int J Med Sci 2013; 10: 932–7.
19. Powers JL, Buys SS, Fletcher D et al. Multigene and Drug Interaction Approach for Tamoxifen Metabolite Patterns Reveals Possible Involvement of CYP2C9, CYP2C19, and ABCB1. J Clin Pharmacol 2016; 56: 1570–81.
20. Lim JS, Chen XA, Singh O et al. Impact of CYP2D6, CYP3A5, CYP2C9 and CYP2C19 polymorphisms on tamoxifen pharmacokinetics in Asian breast cancer patients. Br J Clin Pharmacol 2011; 71: 737–50.
21. Mürdter TE, Schroth W, Bacchus-Gerybadze L et al; German Tamoxifen and AI Clinicians Group, Eichelbaum M, Schwab M, Brauch H. Activity levels of tamoxifen metabolites at the estrogen receptor and the impact of genetic polymorphisms of phase I and II enzymes on their concentration levels in plasma. Clin Pharmacol Ther 2011; 89: 708–17.
22. Saladores P, Mürdter T, Eccles D et al. Tamoxifen metabolism predicts drug concentrations and outcome in premenopausal patients with early breast cancer. Pharmacogenomics J 2015; 15: 84–94.
23. Lim JS, Sutiman N, Muerdter TE et al. Association of CYP2C19*2 and associated haplotypes with lower norendoxifen concentrations in tamoxifen-treated Asian breast cancer patients. Br J Clin Pharmacol 2016; 81: 1142–52.
24. Lu WJ, Desta Z, Flockhart DA. Tamoxifen metabolites as active inhibitors of aromatase in the treatment of breast cancer. Breast Cancer Res Treat 2012; 131: 473–81.
25. Lu WJ, Xu C, Pei Z et al. The tamoxifen metabolite norendoxifen is a potent and selective inhibitor of aromatase (CYP19) and a potential lead compound for novel therapeutic agents. Breast Cancer Res Treat 2012; 133: 99–109.
26. Lv WJ, Liu J, Lu D et al. Synthesis of mixed (E,Z)-, (E)-, and (Z)-norendoxifen with dual aromatase inhibitory and estrogen receptor modulatory activities. J Med Chem 2013; 56: 4611–8.
27. Wei Lv, Jinzhong Liu, Skaar TC et al. Design and Synthesis of Norendoxifen Analogues with Dual Aromatase Inhibitory and Estrogen Receptor Modulatory Activities. J Med Chem 2015; 58: 2623–48.
28. Okishiro M, Taguchi T, Jin Kim S et al. Genetic polymorphisms of CYP2D6 10 and CYP2C19 2, 3 are not associated with prognosis, endometrial thickness, or bone mineral density in Japanese breast cancer patients treated with adjuvant tamoxifen. Cancer 2009; 1 (115): 952–61.
29. Mwinyi J, Vokinger K, Jetter A et al. Impact of variable CYP genotypes on breast cancer relapse in patients undergoing adjuvant tamoxifen therapy. Cancer Chemother Pharmacol 2014; 73: 1181–8.
30. Moyer AM, Suman VJ, Weinshilboum RM et al. SULT1A1, CYP2C19 and disease-free survival in early breast cancer patients receiving tamoxifen. Pharmacogenomics 2011; 12: 1535–43.
31. Chamnanphon M, Pechatanan K, Sirachainan E et al. Association of CYP2D6 and CYP2C19 polymorphisms and disease-free survival of Thai post-menopausal breast cancer patients who received adjuvant tamoxifen. Pharmgenomics Pers Med 2013; 6: 37–48.
32. Ruiter R, Bijl MJ, van Schaik RH et al. CYP2C19*2 polymorphism is associated with increased survival in breast cancer patients using tamoxifen. Pharmacogenomics 2010; 11: 1367–75.
33. Beelen K, Opdam M, Severson TM et al. CYP2C19*2 predicts substantial tamoxifen benefit in postmenopausal breast cancer patients randomized between adjuvant tamoxifen and no systemic treatment. Breast Cancer Res Treat 2013; 139: 649–55.
34. Schroth W, Antoniadou L, Fritz P et al. Breast cancer treatment outcome with adjuvant tamoxifen relative to patient CYP2D6 and CYP2C19 genotypes. J Clin Oncol 2007; 25: 5187–93.
35. Schaik RH, Kok M, Sweep FC et al. The CYP2C19*2 genotype predicts tamoxifen treatment outcome in advanced breast cancer patients. Pharmacogenomics 2011; 12: 1137–46.
36. Bai L, He J, He GH et al. Association of CYP2C19 polymorphisms with survival of breast cancer patients using tamoxifen: results of a meta- analysis. Asian Pac J Cancer Prev 2014; 15: 8331–5.
37. Justenhoven C, Hamann U, Pierl CB et al. CYP2C19*17 is associated with decreased breast cancer risk. Breast Cancer Res Treat 2009; 115: 391–6.
1 ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России. 125993, Россия, Москва, ул. Баррикадная, д. 2/1;
2 ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М.Сеченова» Минздрава России. 119991, Россия, Москва, ул. Трубецкая, д. 8, стр. 2
*marinasavelyeva@mail.ru
1 Russian Medical Academy of Continuous Professional Education of the Ministry of Health of the Russian Federation. 125993, Russian Federation, Moscow, ul. Barrikadnaia, d. 2/1;
2 I.M.Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation. 119991, Russian Federation, Moscow, ul. Trubetskaia, d. 8, str. 2
*marinasavelyeva@mail.ru