Индуцированная таксанами периферическая нейропатия: механизм развития и фармакогенетические факторы
Индуцированная таксанами периферическая нейропатия: механизм развития и фармакогенетические факторы
Шестакова Л.В., Сычев Д.А., Поддубная И.В. Индуцированная таксанами периферическая нейропатия: механизм развития и фармакогенетические факторы. Современная Онкология. 2018; 20 (1): 60–63.
________________________________________________
Shestakova L.V., Sychev D.A., Poddubnaya I.V. Taxanes induced peripheral neuropathy: mechanism of development and pharmacogenetic factors. Journal of Modern Oncology. 2018; 20 (1): 60–63.
Индуцированная таксанами периферическая нейропатия: механизм развития и фармакогенетические факторы
Шестакова Л.В., Сычев Д.А., Поддубная И.В. Индуцированная таксанами периферическая нейропатия: механизм развития и фармакогенетические факторы. Современная Онкология. 2018; 20 (1): 60–63.
________________________________________________
Shestakova L.V., Sychev D.A., Poddubnaya I.V. Taxanes induced peripheral neuropathy: mechanism of development and pharmacogenetic factors. Journal of Modern Oncology. 2018; 20 (1): 60–63.
Противоопухолевые препараты группы таксанов на протяжении многих лет являются частью классических схем лечения злокачественных новообразований разных локализаций, в том числе рака молочной железы. Однако возникновение такой побочной реакции, как периферическая нейропатия, может негативно повлиять не только на качество жизни больного, но также на эффективность его лечения. Для того чтобы своевременно предупреждать и предотвращать данную побочную реакцию, необходимо знать причины, приводящие к развитию периферической нейропатии, и понимать, какие клеточные структуры и механизмы принимают в этом участие. В данной статье представлен обзор литературных данных, посвященных вопросу развития периферической нейропатии, индуцированной таксанами.
For decades taxanes are used as a part of classical schemes for treatment of malignant tumors of various localizations including breast cancer. Peripheral neuropathy is an adverse reaction which impairs both quality of patients’ lives and treatment efficiency. To prevent or reduce the impact of peripheral neuropathy factors contributing to its development and mechanisms that are involved need to be known. This article is a review of the current status of our understanding about the mechanisms underlying the development of taxanes induced peripheral neuropathy.
1. Тюляндин С.А., Гарин А.М., Горбунова В.А. Таксаны – новые противоопухолевые препараты растительного происхождения с уникальным механизмом действия. Вестн. РОНЦ им. Н.Н.Блохина РАМН. 1993; 4 (S): 96–101. / Tiuliandin S.A., Garin A.M., Gorbunova V.A. Taksany – novye protivoopukholevye preparaty rastitel'nogo proiskhozhdeniia s unikal'nym mekhanizmom deistviia. Vestn. RONTs im. N.N.Blokhina RAMN. 1993; 4 (S): 96–101. [in Russian]
2. Корман Д.Б. Основы противоопухолевой химиотерапии. М: Практическая медицина, 2006. / Korman D.B. Osnovy protivoopukholevoi khimioterapii. M: Prakticheskaia meditsina, 2006. [in Russian]
3. Roriguez-Antona C. Pharmacogenomics of paclitaxel. Pharmacogenomics 2010; 11 (5): 621–3.
4. Krens SD, McLeod HL, Hertz DL. Pharmacogenetics, enzyme probes and therapeutic drug monitoring as potential tools for individualizing taxane therapy. Pharmacogenomics 2013; 14 (5): 555–74.
5. Jabir S, Naidu R, Azrif Bin Ahmad Annuar M et al. Pharmacogenetics of taxanes: impact of gene polymorphisms of drug transporters on pharmacokinetics and toxicity. Pharmacogenomics 2012; 13 (16): 1979–88.
6. Руководство по химиотерапии опухолевых заболеваний. Под ред. Н.И.Переводчиковой, В.А.Горбуновой. 4-е изд., расшир. и доп. М: Практическая медицина, 2015. / Rukovodstvo po khimioterapii opukholevykh zabolevanii. Pod red. N.I.Perevodchikovoi, V.A.Gorbunovoi. 4-e izd., rasshir. i dop. M: Prakticheskaia meditsina, 2015. [in Russian]
7. Kus T, Aktas G, Emin Kalender M et al. Polymorphism of CYP3A4 and ABCB1 genes increase the risk of neuropathy in breast cancer patients treated with paclitaxel and docetaxel. OncoTargets and Therapy 2016: 9: 5073–9.
8. Tanabe Y, Hashimoto K, Shimizu C et al. Paclitaxel-induced peripheral neuropathy in patients receiving adjuvant chemotherapy for breast cancer. Int J Clin Oncol 2013; 132–8.
9. Eckhoff L, Knoop AS, Jensen MB et al. Risk of docetaxel-induced peripheral neuropathy among 1,725 Danish patients with early stage breast cancer. Breast Cancer Res Treat 2013; 142: 109–18.
10. Leskelä S, Jara C, Leandro-García LJ et al. Polymorphisms in cytochromes P450 2C8 and 3A5 are associated with paclitaxel neurotoxicity. Pharmacogenomics J 2011; 11: 121–9.
11. Корман Д.Б. Мишени и механизмы действия противоопухолевых препаратов. М.: Практическая медицина, 2014; с. 132, 135. / Korman D.B. Misheni i mekhanizmy deistviia protivoopukholevykh preparatov. M.: Prakticheskaia meditsina, 2014; s. 132, 135. [in Russian]
12. Addington J, Freimer M. Chemotherapy-induced peripheral neuropathy: an update on the current understanding [version 1; referees: 2 approved]. F1000Research 2016; 5 (F1000 Faculty Rev): 1466.
13. Mironov SL, Ivannikov MV, Johansson M. [Ca2+] i signaling between mitochondria and endoplasmic reticulum in neurons is regulated by microtubules. From mitochondrial permeability transition pore to Ca2+-induced Ca2+ release. J Biol Chem 2005; 280: 715–21.
14. Canta A, Pozzi E, Alda Carozzi V. Mitochondrial Dysfunction in Chemotherapy-Induced Peripheral Neuropathy (CIPN). Toxics 2015; 3: 198–215.
15. Flatters SJ, Bennett GJ. Studies of peripheral sensory nerves in paclitaxel-induced painful peripheral neuropathy: evidence for mitochondrial dysfunction. Pain 2006; 122 (3): 245–57.
16. Evtodienko YV, Teplova VV, Sidash SS et al. Microtubule-active drugs suppress the closure of the permeability transition pore in tumour mitochondria. FEBS Lett 1996; 39: 86–8.
17. Kidd J, Pilkington M, Schell M et al. Paclitaxel affects cytosolic Ca2+ signals by opening the mitochondrial permeability transition pore. J Biol Chem 2002; 277: 6504–10.
18. Kroemer G, Galluzzi L, Brenner C. Mitochondrial membrane permeabilization in cell death. Physiol Rev 2007; 87: 99–163.
19. Baines CP. The molecular composition of the mitochondrial permeability transition pore. J Mol Cell Cardiol 2009; 46: 850–7.
20. Carré M et al. Tubulin is an inherent component of mitochondrial membranes that interacts with the voltage-dependent anion channel. J Biol Chem 2002; 277 (37): 33664–9.
21. Новиков В.Е., Левченкова О.С. Митохондриальные мишени для фармакологической регуляции адаптации клетки к воздействию гипоксии. Обзоры по клинической фармакологии и лекарственной терапии. 2014; 12 (2): 28–33. / Novikov V.E., Levchenkova O.S. Mitokhondrial'nye misheni dlia farmakologicheskoi reguliatsii adaptatsii kletki k vozdeistviiu gipoksii. Obzory po klinicheskoi farmakologii i lekarstvennoi terapii. 2014; 12 (2): 28–33. [in Russian]
22. Bernardi P, Krauskopf A, Basso E et al. The mitochondrial permeability transition from in vitro artifact to disease target. FEBS J 2006; 273: 2077–99.
23. Rodi D, Janes R, Sanganee H et al. Screening of a library of phage-displayed peptides identifies human bcl-2 as a taxol-binding protein. J Mol Biol 1999; 285: 197–203.
24. Peters CM et al. An evolving cellular pathology occurs in dorsal root ganglia, peripheral nerve and spinal cord following intravenous administration of paclitaxel in the rat. Brain Res 2007; 1168: 46–59.
25. Jabir S, Naidu R, Azrif Bin Ahmad Annuar M et al. Pharmacogenetics of taxanes: impact of gene polymorphisms of drug transporters on pharmacokinetics and toxicity. Pharmacogenomics 2012; 13 (16): 1979–88.
26. Hertz DL. Germline pharmacogenetics of paclitaxel for cancer treatment. Pharmacogenomics 2013; 14 (9): 1065–84.
27. Baker SD, Verweij J, Cusatis GA et al. Pharmacogenetic Pathway Analysis of Docetaxel Elimination. Clin Pharmacol Ther 2009; 85 (2): 155–63.
28. Li Jing. Pharmacogenomics of drug metabolizing enzymes and transporters: implications for cancer therapy. Pharmacogenomics and Personalized Medicine 2011; 11–33.
29. Bosch TM, Huitema AD, Doodeman VD et al. Pharmacogenetic screening of CYP3A and ABCB1in relation to population pharmacokinetics of docetaxel. Clin Cancer Res 2006; 5786–93.
30. Tran A, Jullien V, Alexandre J et al. Pharmacokinetics and toxicity of docetaxel: role of CYP3A, MDR1, and GST polymorphisms. Clin Pharmacol Ther 2006; 79 (6): 570–80.
31. Baker SD, Verweij J, Cusatis GA et al. Pharmacogenetic pathway analysis of docetaxel elimination. Clin Pharmacol Ther 2009; 85 (2): 155–63.
32. Gréen H, Soderkvist P, Rosenberg P et al. Pharmacogenetic studies of paclitaxel in the treatment of ovarian cancer. Basic Clin Pharmacol Toxicol 2009; 104 (2): 130–7.
33. Henningsson A, Marsh S, Loos WJ et al. Association of CYP2C8, CYP3A4, CYP3A5, and ABCB1polymorphisms with the pharmacokinetics of paclitaxel. Clin Cancer Res 2005; 11(22): 8097–104.
34. Bergmann TK, Brasch-Andersen C, Gréen H et al. Impact of CYP2C8*3 on paclitaxel clearance: a population pharmacokinetic and pharmacogenomic study in 93 patients with ovarian cancer. Pharmacogenomics J 2011; 11 (2): 113–20.
35. Fransson MN, Gréen H, Litton JE, Friberg LE. Influence of Cremophor EL and genetic polymorphisms on the pharmacokinetics of paclitaxel and its metabolites using a mechanismbased model. Drug Metab Dispos 2011; 39 (2): 247–55.
36. Marsh S, Somlo G, Li X et al. Pharmacogenetic analysis of paclitaxel transport and metabolism genes in breast cancer. Pharmacogenomics J 2007; 7 (5): 362–5.
37. Hertz DL. Roy S, Motsinger-Reif AA et al. CYP2C8*3 increases risk of neuropathy in breast cancer patients treated with paclitaxel. Ann Oncol 2013; 24 (6): 1472–8.
38. Hertz DL. Motsinger-Reif AA, Drobish A et al. CYP2C8*3 predicts benefit/risk profile in breast cancer patients receiving neoadjuvant paclitaxel. Breast Cancer Res Treat 2012; 134 (1): 401–10.
39. Abraham JE, Guo Q, Dorling L et al. Replication of genetic polymorphisms reported to be associated with taxane-related sensory neuropathy in patients with early breast cancer treated with Paclitaxel. Clin Cancer Res 2014; 20 (9): 2466–75.
40. Rizzo R, Spaggiari F, Indelli M et al. Association of CYP1B1 with hypersensitivity induced by taxane therapy in breast cancer patients. Breast Cancer Res Treat 2010; 124 (2): 593–8.
41. Chang H, Rha SY, Jeung HC et al. Association of the ABCB1 gene polymorphisms 2677G>T/A and 3435C>T with clinical outcomes of paclitaxel monotherapy in metastatic breast cancer patients. Ann Oncol 2009; 20 (2): 272–7.
________________________________________________
1. Tiuliandin S.A., Garin A.M., Gorbunova V.A. Taksany – novye protivoopukholevye preparaty rastitel'nogo proiskhozhdeniia s unikal'nym mekhanizmom deistviia. Vestn. RONTs im. N.N.Blokhina RAMN. 1993; 4 (S): 96–101. [in Russian]
2. Korman D.B. Osnovy protivoopukholevoi khimioterapii. M: Prakticheskaia meditsina, 2006. [in Russian]
3. Roriguez-Antona C. Pharmacogenomics of paclitaxel. Pharmacogenomics 2010; 11 (5): 621–3.
4. Krens SD, McLeod HL, Hertz DL. Pharmacogenetics, enzyme probes and therapeutic drug monitoring as potential tools for individualizing taxane therapy. Pharmacogenomics 2013; 14 (5): 555–74.
5. Jabir S, Naidu R, Azrif Bin Ahmad Annuar M et al. Pharmacogenetics of taxanes: impact of gene polymorphisms of drug transporters on pharmacokinetics and toxicity. Pharmacogenomics 2012; 13 (16): 1979–88.
6. Rukovodstvo po khimioterapii opukholevykh zabolevanii. Pod red. N.I.Perevodchikovoi, V.A.Gorbunovoi. 4-e izd., rasshir. i dop. M: Prakticheskaia meditsina, 2015. [in Russian]
7. Kus T, Aktas G, Emin Kalender M et al. Polymorphism of CYP3A4 and ABCB1 genes increase the risk of neuropathy in breast cancer patients treated with paclitaxel and docetaxel. OncoTargets and Therapy 2016: 9: 5073–9.
8. Tanabe Y, Hashimoto K, Shimizu C et al. Paclitaxel-induced peripheral neuropathy in patients receiving adjuvant chemotherapy for breast cancer. Int J Clin Oncol 2013; 132–8.
9. Eckhoff L, Knoop AS, Jensen MB et al. Risk of docetaxel-induced peripheral neuropathy among 1,725 Danish patients with early stage breast cancer. Breast Cancer Res Treat 2013; 142: 109–18.
10. Leskelä S, Jara C, Leandro-García LJ et al. Polymorphisms in cytochromes P450 2C8 and 3A5 are associated with paclitaxel neurotoxicity. Pharmacogenomics J 2011; 11: 121–9.
11. Korman D.B. Misheni i mekhanizmy deistviia protivoopukholevykh preparatov. M.: Prakticheskaia meditsina, 2014; s. 132, 135. [in Russian]
12. Addington J, Freimer M. Chemotherapy-induced peripheral neuropathy: an update on the current understanding [version 1; referees: 2 approved]. F1000Research 2016; 5 (F1000 Faculty Rev): 1466.
13. Mironov SL, Ivannikov MV, Johansson M. [Ca2+] i signaling between mitochondria and endoplasmic reticulum in neurons is regulated by microtubules. From mitochondrial permeability transition pore to Ca2+-induced Ca2+ release. J Biol Chem 2005; 280: 715–21.
14. Canta A, Pozzi E, Alda Carozzi V. Mitochondrial Dysfunction in Chemotherapy-Induced Peripheral Neuropathy (CIPN). Toxics 2015; 3: 198–215.
15. Flatters SJ, Bennett GJ. Studies of peripheral sensory nerves in paclitaxel-induced painful peripheral neuropathy: evidence for mitochondrial dysfunction. Pain 2006; 122 (3): 245–57.
16. Evtodienko YV, Teplova VV, Sidash SS et al. Microtubule-active drugs suppress the closure of the permeability transition pore in tumour mitochondria. FEBS Lett 1996; 39: 86–8.
17. Kidd J, Pilkington M, Schell M et al. Paclitaxel affects cytosolic Ca2+ signals by opening the mitochondrial permeability transition pore. J Biol Chem 2002; 277: 6504–10.
18. Kroemer G, Galluzzi L, Brenner C. Mitochondrial membrane permeabilization in cell death. Physiol Rev 2007; 87: 99–163.
19. Baines CP. The molecular composition of the mitochondrial permeability transition pore. J Mol Cell Cardiol 2009; 46: 850–7.
20. Carré M et al. Tubulin is an inherent component of mitochondrial membranes that interacts with the voltage-dependent anion channel. J Biol Chem 2002; 277 (37): 33664–9.
21. Novikov V.E., Levchenkova O.S. Mitokhondrial'nye misheni dlia farmakologicheskoi reguliatsii adaptatsii kletki k vozdeistviiu gipoksii. Obzory po klinicheskoi farmakologii i lekarstvennoi terapii. 2014; 12 (2): 28–33. [in Russian]
22. Bernardi P, Krauskopf A, Basso E et al. The mitochondrial permeability transition from in vitro artifact to disease target. FEBS J 2006; 273: 2077–99.
23. Rodi D, Janes R, Sanganee H et al. Screening of a library of phage-displayed peptides identifies human bcl-2 as a taxol-binding protein. J Mol Biol 1999; 285: 197–203.
24. Peters CM et al. An evolving cellular pathology occurs in dorsal root ganglia, peripheral nerve and spinal cord following intravenous administration of paclitaxel in the rat. Brain Res 2007; 1168: 46–59.
25. Jabir S, Naidu R, Azrif Bin Ahmad Annuar M et al. Pharmacogenetics of taxanes: impact of gene polymorphisms of drug transporters on pharmacokinetics and toxicity. Pharmacogenomics 2012; 13 (16): 1979–88.
26. Hertz DL. Germline pharmacogenetics of paclitaxel for cancer treatment. Pharmacogenomics 2013; 14 (9): 1065–84.
27. Baker SD, Verweij J, Cusatis GA et al. Pharmacogenetic Pathway Analysis of Docetaxel Elimination. Clin Pharmacol Ther 2009; 85 (2): 155–63.
28. Li Jing. Pharmacogenomics of drug metabolizing enzymes and transporters: implications for cancer therapy. Pharmacogenomics and Personalized Medicine 2011; 11–33.
29. Bosch TM, Huitema AD, Doodeman VD et al. Pharmacogenetic screening of CYP3A and ABCB1in relation to population pharmacokinetics of docetaxel. Clin Cancer Res 2006; 5786–93.
30. Tran A, Jullien V, Alexandre J et al. Pharmacokinetics and toxicity of docetaxel: role of CYP3A, MDR1, and GST polymorphisms. Clin Pharmacol Ther 2006; 79 (6): 570–80.
31. Baker SD, Verweij J, Cusatis GA et al. Pharmacogenetic pathway analysis of docetaxel elimination. Clin Pharmacol Ther 2009; 85 (2): 155–63.
32. Gréen H, Soderkvist P, Rosenberg P et al. Pharmacogenetic studies of paclitaxel in the treatment of ovarian cancer. Basic Clin Pharmacol Toxicol 2009; 104 (2): 130–7.
33. Henningsson A, Marsh S, Loos WJ et al. Association of CYP2C8, CYP3A4, CYP3A5, and ABCB1polymorphisms with the pharmacokinetics of paclitaxel. Clin Cancer Res 2005; 11(22): 8097–104.
34. Bergmann TK, Brasch-Andersen C, Gréen H et al. Impact of CYP2C8*3 on paclitaxelclearance: a population pharmacokinetic and pharmacogenomic study in 93 patients with ovarian cancer. Pharmacogenomics J 2011; 11 (2): 113–20.
35. Fransson MN, Gréen H, Litton JE, Friberg LE. Influence of Cremophor EL and genetic polymorphisms on the pharmacokinetics of paclitaxel and its metabolites using a mechanismbased model. Drug Metab Dispos 2011; 39 (2): 247–55.
36. Marsh S, Somlo G, Li X et al. Pharmacogenetic analysis of paclitaxel transport and metabolism genes in breast cancer. Pharmacogenomics J 2007; 7 (5): 362–5.
37. Hertz DL. Roy S, Motsinger-Reif AA et al. CYP2C8*3 increases risk of neuropathy in breast cancer patients treated with paclitaxel. Ann Oncol 2013; 24 (6): 1472–8.
38. Hertz DL. Motsinger-Reif AA, Drobish A et al. CYP2C8*3 predicts benefit/risk profile in breast cancer patients receiving neoadjuvant paclitaxel. Breast Cancer Res Treat 2012; 134 (1): 401–10.
39. Abraham JE, Guo Q, Dorling L et al. Replication of genetic polymorphisms reported to be associated with taxane-related sensory neuropathy in patients with early breast cancer treated with Paclitaxel. Clin Cancer Res 2014; 20 (9): 2466–75.
40. Rizzo R, Spaggiari F, Indelli M et al. Association of CYP1B1 with hypersensitivity induced by taxane therapy in breast cancer patients. Breast Cancer Res Treat 2010; 124 (2): 593–8.
41. Chang H, Rha SY, Jeung HC et al. Association of the ABCB1 gene polymorphisms 2677G>T/A and 3435C>T with clinical outcomes of paclitaxel monotherapy in metastatic breast cancer patients. Ann Oncol 2009; 20 (2): 272–7.
Авторы
Л.В.Шестакова*, Д.А.Сычев, И.В.Поддубная
ФГБОУ ДПО «Российская медицинская академия непрерывного последипломного образования» Минздрава России. 125993, Россия, Москва, ул. Баррикадная, д. 2/1
*Lyubov_shestakova@list.ru
________________________________________________
L.V.Shestakova*, D.A.Sychev, I.V.Poddubnaya
Russian Medical Academy of Continuous Professional Education of the Ministry of Health of the Russian Federation. 125993, Russian Federation, Moscow, ul. Barrikadnaia, d. 2/1
*Lyubov_shestakova@list.ru