Клиническая значимость достижения МОБ-негативности у больных хроническим лимфолейкозом
Клиническая значимость достижения МОБ-негативности у больных хроническим лимфолейкозом
Миролюбова Ю.В., Стадник Е.А. Клиническая значимость достижения МОБ-негативности у больных хроническим лимфолейкозом. Современная Онкология. 2018; 20 (1): 17–22.
DOI: 10.26442/1815-1434_20.1.17-22
________________________________________________
Mirolyubova Yu.V., Stadnik E.A. Clinical significance of the achievement of MRD-negativity in patients with chronic lymphocytic leukemia. Journal of Modern Oncology. 2018; 20 (1): 17–22.
DOI: 10.26442/1815-1434_20.1.17-22
Клиническая значимость достижения МОБ-негативности у больных хроническим лимфолейкозом
Миролюбова Ю.В., Стадник Е.А. Клиническая значимость достижения МОБ-негативности у больных хроническим лимфолейкозом. Современная Онкология. 2018; 20 (1): 17–22.
DOI: 10.26442/1815-1434_20.1.17-22
________________________________________________
Mirolyubova Yu.V., Stadnik E.A. Clinical significance of the achievement of MRD-negativity in patients with chronic lymphocytic leukemia. Journal of Modern Oncology. 2018; 20 (1): 17–22.
DOI: 10.26442/1815-1434_20.1.17-22
Определение минимальной остаточной болезни (МОБ) при хроническом лимфолейкозе (ХЛЛ) обрело значимость в связи с успехами терапии этого заболевания. Иммуннохимиотерапевтические схемы лечения продлили жизнь больных ХЛЛ, что ассоциировалось с достижением МОБ-негативных ремиссий. МОБ-статус стал расцениваться как предиктор беспрогрессивной выживаемости и конечная точка в клинических исследованиях. Применение новых препаратов – таргетных ингибиторов BCR-сигналинга, ингибиторов Bcl-2, новых моноклональных антител и их комбинаций – открыло перспективы для прогностически неблагоприятных вариантов ХЛЛ. Значение МОБ-негативности в эпоху новых препаратов стало объектом современных исследований. Развивались и методы определения МОБ при ХЛЛ. В статье представлены данные по влиянию МОБ-негативности на выживаемость пациентов на современном уровне развития терапии, а также перспективы клинического применения МОБ-статуса в практике ведения больных. В работе использованы результаты анализа МОБ в рамках проспективного исследования BEN-001, проведенного в России (бендамустин-ритуксимаб в 1-й линии терапии ХЛЛ). Проанализированы результаты определения МОБ-статуса методом проточной цитометрии у 84 человек. Образцы костного мозга были исследованы у 81 (96,4%) пациентов. МОБ-негативность после 6-го курса терапии составила 27,4%, что согласуется с данными, представленными в мировой литературе.
The determination of the minimal residual disease (MRD) in chronic lymphocytic leukemia (CLL) has acquired significance in connection with the success of therapy for this disease. Immunochemotherapy regimens significantly prolonged the life of CLL patients, which was associated with the achievement of MRD-negative remissions. MRD-status has been regarded as a predictor of progression-free survival and an endpoint in clinical studies. The use of new drugs – targeted BCR-signal inhibitors, bcl-2 inhibitors, new monoclonal antibodies and their combinations opened new perspectives for prognostically unfavorable CLL cases. The importance of MRD-negativity in the era of new drugs has become the object of modern research. There were also developing methods for determining MRD in CLL. This article presents data on the effect of MRD-negativity on the survival rates of patients at the current level of the development of therapy, as well as the prospects for the clinical use of the MRD status in the practice of patient management. Furthermore, we present results of an exploratory MRD analysis of a prospective BEN-001 study in Russia (bendamustine-rituximab in the first-line treatment of CLL). MRD status was evaluated in 84 pts. Bone marrow samples were available and evaluated in 81 (96.4%) pts. MRD-negative status after 6 courses of treatment was achieved in 27.4%. Our results in a sample of Russian patients are well aligned with MRD negativity rates from literature.
1. Swerdlow SH, Campo E, Harris NL et al. WHO classification of tumors of hematopoietic and lymphoid tissues. IARC, Lyon, 2008
2. Swerdlow SH, Campo E, Pileri SA et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood 2016; 127 (20): 2375–90. DOI: 10.1182/blood-2016-01-643569
3. Российские клинические рекомендации по диагностике и лечению лимфопролиферативных заболеваний. Под ред. И.В.Поддубной, В.Г.Савченко. М., 2016; с. 224–53. / Rossiiskie klinicheskie rekomendatsii po diagnostike i lecheniiu limfoproliferativnykh zabolevanii. Pod red. I.V.Poddubnoi, V.G.Savchenko. M., 2016; s. 224–53. [in Russian]
4. Hallek M, Cheson BD, Catovsky D et al. Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: A report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute-Working Group 1996 guidelines. Blood 2008; 111 (12): 5446–56.
5. NCCN – Cinical Practice Guidelines in Oncology, B-cell lymphomas version 7.2017, https://www.nccn.org/professionals/physician_ gls/pdf/b-cell.pdf (accessed 29 Dec 2017)
6. Keating MJ, O’Brien S, Albitar M et al. Early results of a chemoimmunotherapy regimen of fludarabine, cyclophosphamide, and rituximab as initial therapy for chronic lymphocytic leukemia. J Clin Oncol 2005; 23 (18): 4079–88.
7. Moreton P, Kennedy B, Lucas G et al. Eradication of minimal residual disease in B-cell chronic lymphocytic leukemia after alemtuzumab therapy is associated with prolonged survival. J Clin Oncol 2005; 23 (13): 2971–9.
8. Rawstron AC, Kennedy B, Evans PA et al. Quantitation of minimal disease levels in chronic lymphocytic leukemia using a sensitive flow cytometric assay improves the prediction of outcome and can be used to optimize therapy. Blood 2001; 98 (1): 29–35.
9. Vuillier F, Claisse JF, Vandenvelde C et al. Evaluation of residual disease in B-cell chronic lymphocytic leukemia patients in clinical and bone-marrow remission using CD5-CD19 markers and PCR study of gene rearrangements. Leuk Lymphoma 1992; 7 (3): 195–204.
10. Lenormand B, Bizet M, Fruchart C et al. Residual disease in B-cell chronic lymphocytic leukemia patients and prognostic value. Leukemia 1994; 8 (6): 1019–26.
11. Cabezudo E, Matutes E, Ramrattan M et al. Analysis of residual disease in chronic lymphocytic leukemia by flow cytometry. Leukemia 1997; 11: 1909–14.
12. Rawstron AC, Villamor N, Ritgen M et al. International standardized approach for flow cytometric residual disease monitoring in chronic lymphocytic leukaemia. Leukemia 2007; 21 (5): 956–64.
13. Rawstron AC, Bottcher S, Letestu R et al. Improving efficiency and sensitivity: European Research Initiative in CLL (ERIC) update on the international harmonised approach for flow cytometric residual disease monitoring in CLL. Leukemia 2013; 27 (1): 142–9.
14. Rawstron AC, Fazi C, Agathangelidis A et al. A complementary role of multiparameter flow cytometry and high-throughput sequencing for minimal residual disease detection in chronic lymphocytic leukemia: an European Research Initiative on CLL study. Leukemia 2016; 30 (4): 929–36.
15. Farren TW, Liu F, Macey MG et al. Combined ROR1 and CD160 Detection for Improved Minimal Residual Disease in Patients with Chronic Lymphocytic Leukemia (CLL). Blood 2013; 122 (21): 2572.
16. Farren TW, Giustiniani J, Fanous M et al. Minimal residual disease detection with tumor-specific CD160 correlates with event-free survival in chronic lymphocytic leukemia. Blood Cancer J 2015; 5 (1): e273.
17. Voena C, Ladetto M, Astolfi M et al. A novel nested-PCR strategy for the detection of rearranged immunoglobulin heavy-chain genes in B cell tumors. Leukemia 1997; 11 (10): 1793–8.
18. Böttcher S, Stilgenbauer S, Busch R et al. Standardized MRD flow and ASO IGH RQ-PCR for MRD quantification in CLL patients after rituximab-containing immunochemotherapy: a comparative analysis. Leukemia 2009; 23 (11): 2007–17.
19. Pfitzner T, Engert A, Wittor H et al. A real-time PCR assay for the quantification of residual malignant cells in B cell chronic lymphatic leukemia. Leukemia 2000; 14: 754–66.
20. Logan AC, Zhang B, Narasimhan B et al. Minimal residual disease quantification using consensus primers and high-throughput IGH sequencing predicts post-transplant relapse in chronic lymphocytic leukemia. Leukemia 2013; 27 (8): 1659–65.
21. Thompson PA, Wierda WG. Eliminating minimal residual disease as a therapeutic end point: working toward cure for patients with CLL. Blood 2016; 127 (3): 279–86.
22. Turtle CJ, Hay KA, Hanafi LA et al. Durable Molecular Remissions in Chronic Lymphocytic Leukemia Treated With CD19-Specific Chimeric Antigen Receptor-Modified T Cells After Failure of Ibrutinib. J Clin Oncol 2017; 35 (26): 3010–20.
23. Stehlikova O, Chovancova J, Tichy B et al. Detecting minimal residual disease in patients with chronic lymphocytic leukemia using 8-color flow cytometry protocol in routine hematological practice. Int J Lab Hematol 2014; 36 (2): 165–71.
24. Луговская С.А., Почтарь М.Е., Наумова Е.В. Диагностика минимальной остаточной болезни при В-клеточном хроническом лимфолейкозе методом многопараметрической лазерной проточной цитофлюориметрии. Клин. лаб. диагностика. 2010; 9: 20–20а. / Lugovskaia S.A., Pochtar' M.E., Naumova E.V. Diagnostika minimal'noi ostatochnoi bolezni pri V-kletochnom khronicheskom limfoleikoze metodom mnogoparametricheskoi lazernoi protochnoi tsitofliuorimetrii. Klin. lab. diagnostika. 2010; 9: 20–20a. [in Russian]
25. Kovacs G, Robrecht S, Fink AM et al. Minimal Residual Disease Assessment Improves Prediction of Outcome in Patients with Chronic Lymphocytic Leukemia (CLL) Who Achieve Partial Response: Comprehensive Analysis of Two Phase III Studies of the German CLL Study Group. J Clin Oncol 2016; 34 (31): 3758–65.
26. Guideline on the use of minimal residue disease as an endpoint in chronic lymphocytic leukaemia studies EMA/629967/2014 http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2014/12/WC500179047.pdf
27. Böttcher S, Ritgen M, Fischer K et al. Minimal residual disease quantification is an independent predictor of progression-free and overall survival in chronic lymphocytic leukemia: a multivariate analysis from the randomized GCLLSG CLL8 trial. J Clin Oncol 2012; 30 (9): 980–8.
28. Eichhorst B, Fink AM, Bahlo J et al. First-line chemoimmunotherapy with bendamustine and rituximab versus fludarabine, cyclophosphamide, and rituximab in patients with advanced chronic lymphocytic leukaemia (CLL10): an international, open-label, randomised, phase 3, non-inferiority trial. Lancet Oncol 2016; 17 (7): 928–42.
29. Kwok M, Rawstron A, Varghese A et al. Minimal residual disease is an independent predictor for 10-year survival in CLL. Blood 2016; 128 (24): 2770–3.
30. Thompson PA, Tam CS, O’Brien SM et al. Fludarabine, cyclophosphamide, and rituximab treatment achieves long-term disease-free survival in IGHV-mutated chronic lymphocytic leukemia. Blood 2016; 127 (3): 303–9.
31. Strati P, Keating MJ, O’Brien SM et al. Eradication of bone marrow minimal residual disease may prompt early treatment discontinuation in CLL. Blood 2014; 123 (24): 3727–32.
32. Santacruz R, Villamor N, Aymerich M et al. The prognostic impact of minimal residual disease in patients with chronic lymphocytic leukemia requiring first-line therapy. Haematologica 2014; 99 (5): 873–80.
33. Herman SE, Niemann CU, Farooqui M et al. Ibrutinib-induced lymphocytosis in patients with chronic lymphocytic leukemia: correlative analyses from a phase II study. Leukemia 2014; 28 (11): 2188–96.
34. Chanan-Khan A, Cramer P, Demirkan F et al. Ibrutinib combined with bendamustine and rituximab compared with placebo, bendamustine, and rituximab for previously treated chronic lymphocytic leukaemia or small lymphocytic lymphoma (HELIOS): a randomised, double-blind, phase 3 study. Lancet Oncol 2016; 17 (2): 200–11.
35. Collett L, Howard DR, Munir T et al. Assessment of ibrutinib plus rituximab in front-line CLL (FLAIR trial): study protocol for a phase III randomised controlled trial. Trials 2017; 18 (1): 387.
36. Sharman JP, Farber CM, Mahadevan D et al. Ublituximab (TG-1101), a novel glycoengineered anti-CD20 antibody, in combination with ibrutinib is safe and highly active in patients with relapsed and/or refractory chronic lymphocytic leukaemia: results of a phase 2 trial. Br J Haematol 2017; 176 (3): 412–20.
37. Winqvist M, Palma M, Heimersson K et al. Dual targeting of Bruton tyrosine kinase and CD52 induces minimal residual disease-negativity in the bone marrow of poor-prognosis chronic lymphocytic leukaemia patients but is associated with opportunistic infections – Results from a phase I study. Br J Haematol 2017. DOI: 10.1111/bjh.14836 [Epub ahead of print]
38. Hillmen P, Rawstron A, Munir T et al. The initial report of the Bloodwise TAP CLARITY study containing ibrutinib and venetoclax in relapsed, refractory CLL shows acceptable safety and promising early indications of efficacy. EHA 2017; Abstract S770
39. Seymour JF, Ma S, Brander DM et al. Venetoclax plus rituximab in relapsed or refractory chronic lymphocytic leukaemia: a phase 1b study. Lancet Oncol 2017; 18 (2): 230–40.
40. Stilgenbauer S, Chyla B, Eichhorst B et al. Venetoclax in relapsed/refractory chronic lymphocytic leukemia (CLL) with 17p deletion: outcome and minimal residual disease from the full population of the pivotal M13-982 trial. EHA2017; Abstract S771.
41. Stilgenbauer S, Morschhauser F, Wendtner CM et al. Phase Ib study (GO28440) of Venetoclax with bendamustine/rituximab or bendamustine/obinutuzumab in patients with relapsed/refractory or previously untreated chronic lymphocytic leukemia. Blood 2016;
128 (22): Abstract 4393.
42. Varghese AM, Howard DR, Pocock C et al. Eradication of minimal residual disease improves overall and progression-free survival in patients with chronic lymphocytic leukaemia, evidence from NCRN CLL207: a phase II trial assessing alemtuzumab consolidation. Br J Haematol 2017; 176 (4): 573–82.
43. Oughton JB, Collett L, Howard DR et al. GA101 (obinutuzumab) monoclonal Antibody as Consolidation Therapy In CLL (GALACTIC) trial: study protocol for a phase II/III randomised controlled trial. Trials 2017; 18 (1): 353.
44. Dreger P, Schetelig J, Andersen N et al. Managing high-risk CLL during transition to a new treatment era: stem cell transplantation or novel agents? Blood 2014; 124 (26): 3841–9.
45. Dreger P, Dohner H, Ritgen M et al; German CLL Study Group. Allogeneic stem cell transplantation provides durable disease control in poor-risk chronic lymphocytic leukemia: long-term clinical and MRD results of the German CLL Study Group CLL3X trial. Blood 2010; 116 (14): 2438–47.
46. Farina L, Carniti C, Dodero A et al. Qualitative and quantitative polymerase chain reaction monitoring of minimal residual disease in relapsed chronic lymphocytic leukemia: early assessment can predict long-term outcome after reduced intensity allogeneic transplantation. Haematologica 2009; 94 (5): 654–62.
47. Hallek M. Chronic lymphocytic leukemia: 2017 update on diagnosis, risk stratification, and treatment. Am J Hematol 2017; 92 (9): 946–65.
48. Никитин Е.А. Дифференцированная терапия хронического лимфолейкоза. Дис. … д-ра мед. наук. М., 2014. / Nikitin E.A. Differentsirovannaia terapiia khronicheskogo limfoleikoza. Dis. … d-ra med. nauk. M., 2014. [in Russian]
49. Кувшинов А.Ю., Волошин С.В., Мартынкевич И.С. и др. Хронический лимфолейкоз: прогностическое значение минимальной остаточной болезни, возможности современных методов ее выявления и коррекции (обзор литературы). Клин. онкогематология. 2016; 9 (2): 191–8. / Kuvshinov A.Iu., Voloshin S.V., Martynkevich I.S. i dr. Khronicheskii limfoleikoz: prognosticheskoe znachenie minimal'noi ostatochnoi bolezni, vozmozhnosti sovremennykh metodov ee vyiavleniia i korrektsii (obzor literatury). Klin. onkogematologiia. 2016; 9 (2): 191–8. [in Russian
________________________________________________
1. Swerdlow SH, Campo E, Harris NL et al. WHO classification of tumors of hematopoietic and lymphoid tissues. IARC, Lyon, 2008
2. Swerdlow SH, Campo E, Pileri SA et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood 2016; 127 (20): 2375–90. DOI: 10.1182/blood-2016-01-643569
3. Rossiiskie klinicheskie rekomendatsii po diagnostike i lecheniiu limfoproliferativnykh zabolevanii. Pod red. I.V.Poddubnoi, V.G.Savchenko. M., 2016; s. 224–53. [in Russian]
4. Hallek M, Cheson BD, Catovsky D et al. Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: A report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute-Working Group 1996 guidelines. Blood 2008; 111 (12): 5446–56.
5. NCCN – Cinical Practice Guidelines in Oncology, B-cell lymphomas version 7.2017, https://www.nccn.org/professionals/physician_ gls/pdf/b-cell.pdf (accessed 29 Dec 2017)
6. Keating MJ, O’Brien S, Albitar M et al. Early results of a chemoimmunotherapy regimen of fludarabine, cyclophosphamide, and rituximab as initial therapy for chronic lymphocytic leukemia. J Clin Oncol 2005; 23 (18): 4079–88.
7. Moreton P, Kennedy B, Lucas G et al. Eradication of minimal residual disease in B-cell chronic lymphocytic leukemia after alemtuzumab therapy is associated with prolonged survival. J Clin Oncol 2005; 23 (13): 2971–9.
8. Rawstron AC, Kennedy B, Evans PA et al. Quantitation of minimal disease levels in chronic lymphocytic leukemia using a sensitive flow cytometric assay improves the prediction of outcome and can be used to optimize therapy. Blood 2001; 98 (1): 29–35.
9. Vuillier F, Claisse JF, Vandenvelde C et al. Evaluation of residual disease in B-cell chronic lymphocytic leukemia patients in clinical and bone-marrow remission using CD5-CD19 markers and PCR study of gene rearrangements. Leuk Lymphoma 1992; 7 (3): 195–204.
10. Lenormand B, Bizet M, Fruchart C et al. Residual disease in B-cell chronic lymphocytic leukemia patients and prognostic value. Leukemia 1994; 8 (6): 1019–26.
11. Cabezudo E, Matutes E, Ramrattan M et al. Analysis of residual disease in chronic lymphocytic leukemia by flow cytometry. Leukemia 1997; 11: 1909–14.
12. Rawstron AC, Villamor N, Ritgen M et al. International standardized approach for flow cytometric residual disease monitoring in chronic lymphocytic leukaemia. Leukemia 2007; 21 (5): 956–64.
13. Rawstron AC, Bottcher S, Letestu R et al. Improving efficiency and sensitivity: European Research Initiative in CLL (ERIC) update on the international harmonised approach for flow cytometric residual disease monitoring in CLL. Leukemia 2013; 27 (1): 142–9.
14. Rawstron AC, Fazi C, Agathangelidis A et al. A complementary role of multiparameter flow cytometry and high-throughput sequencing for minimal residual disease detection in chronic lymphocytic leukemia: an European Research Initiative on CLL study. Leukemia 2016; 30 (4): 929–36.
15. Farren TW, Liu F, Macey MG et al. Combined ROR1 and CD160 Detection for Improved Minimal Residual Disease in Patients with Chronic Lymphocytic Leukemia (CLL). Blood 2013; 122 (21): 2572.
16. Farren TW, Giustiniani J, Fanous M et al. Minimal residual disease detection with tumor-specific CD160 correlates with event-free survival in chronic lymphocytic leukemia. Blood Cancer J 2015; 5 (1): e273.
17. Voena C, Ladetto M, Astolfi M et al. A novel nested-PCR strategy for the detection of rearranged immunoglobulin heavy-chain genes in B cell tumors. Leukemia 1997; 11 (10): 1793–8.
18. Böttcher S, Stilgenbauer S, Busch R et al. Standardized MRD flow and ASO IGH RQ-PCR for MRD quantification in CLL patients after rituximab-containing immunochemotherapy: a comparative analysis. Leukemia 2009; 23 (11): 2007–17.
19. Pfitzner T, Engert A, Wittor H et al. A real-time PCR assay for the quantification of residual malignant cells in B cell chronic lymphatic leukemia. Leukemia 2000; 14: 754–66.
20. Logan AC, Zhang B, Narasimhan B et al. Minimal residual disease quantification using consensus primers and high-throughput IGH sequencing predicts post-transplant relapse in chronic lymphocytic leukemia. Leukemia 2013; 27 (8): 1659–65.
21. Thompson PA, Wierda WG. Eliminating minimal residual disease as a therapeutic end point: working toward cure for patients with CLL. Blood 2016; 127 (3): 279–86.
22. Turtle CJ, Hay KA, Hanafi LA et al. Durable Molecular Remissions in Chronic Lymphocytic Leukemia Treated With CD19-Specific Chimeric Antigen Receptor-Modified T Cells After Failure of Ibrutinib. J Clin Oncol 2017; 35 (26): 3010–20.
23. Stehlikova O, Chovancova J, Tichy B et al. Detecting minimal residual disease in patients with chronic lymphocytic leukemia using 8-color flow cytometry protocol in routine hematological practice. Int J Lab Hematol 2014; 36 (2): 165–71.
24. Lugovskaia S.A., Pochtar' M.E., Naumova E.V. Diagnostika minimal'noi ostatochnoi bolezni pri V-kletochnom khronicheskom limfoleikoze metodom mnogoparametricheskoi lazernoi protochnoi tsitofliuorimetrii. Klin. lab. diagnostika. 2010; 9: 20–20a. [in Russian]
25. Kovacs G, Robrecht S, Fink AM et al. Minimal Residual Disease Assessment Improves Prediction of Outcome in Patients with Chronic Lymphocytic Leukemia (CLL) Who Achieve Partial Response: Comprehensive Analysis of Two Phase III Studies of the German CLL Study Group. J Clin Oncol 2016; 34 (31): 3758–65.
26. Guideline on the use of minimal residue disease as an endpoint in chronic lymphocytic leukaemia studies EMA/629967/2014 http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2014/12/WC500179047.pdf
27. Böttcher S, Ritgen M, Fischer K et al. Minimal residual disease quantification is an independent predictor of progression-free and overall survival in chronic lymphocytic leukemia: a multivariate analysis from the randomized GCLLSG CLL8 trial. J Clin Oncol 2012; 30 (9): 980–8.
28. Eichhorst B, Fink AM, Bahlo J et al. First-line chemoimmunotherapy with bendamustine and rituximab versus fludarabine, cyclophosphamide, and rituximab in patients with advanced chronic lymphocytic leukaemia (CLL10): an international, open-label, randomised, phase 3, non-inferiority trial. Lancet Oncol 2016; 17 (7): 928–42.
29. Kwok M, Rawstron A, Varghese A et al. Minimal residual disease is an independent predictor for 10-year survival in CLL. Blood 2016; 128 (24): 2770–3.
30. Thompson PA, Tam CS, O’Brien SM et al. Fludarabine, cyclophosphamide, and rituximab treatment achieves long-term disease-free survival in IGHV-mutated chronic lymphocytic leukemia. Blood 2016; 127 (3): 303–9.
31. Strati P, Keating MJ, O’Brien SM et al. Eradication of bone marrow minimal residual disease may prompt early treatment discontinuation in CLL. Blood 2014; 123 (24): 3727–32.
32. Santacruz R, Villamor N, Aymerich M et al. The prognostic impact of minimal residual disease in patients with chronic lymphocytic leukemia requiring first-line therapy. Haematologica 2014; 99 (5): 873–80.
33. Herman SE, Niemann CU, Farooqui M et al. Ibrutinib-induced lymphocytosis in patients with chronic lymphocytic leukemia: correlative analyses from a phase II study. Leukemia 2014; 28 (11): 2188–96.
34. Chanan-Khan A, Cramer P, Demirkan F et al. Ibrutinib combined with bendamustine and rituximab compared with placebo, bendamustine, and rituximab for previously treated chronic lymphocytic leukaemia or small lymphocytic lymphoma (HELIOS): a randomised, double-blind, phase 3 study. Lancet Oncol 2016; 17 (2): 200–11.
35. Collett L, Howard DR, Munir T et al. Assessment of ibrutinib plus rituximab in front-line CLL (FLAIR trial): study protocol for a phase III randomised controlled trial. Trials 2017; 18 (1): 387.
36. Sharman JP, Farber CM, Mahadevan D et al. Ublituximab (TG-1101), a novel glycoengineered anti-CD20 antibody, in combination with ibrutinib is safe and highly active in patients with relapsed and/or refractory chronic lymphocytic leukaemia: results of a phase 2 trial. Br J Haematol 2017; 176 (3): 412–20.
37. Winqvist M, Palma M, Heimersson K et al. Dual targeting of Bruton tyrosine kinase and CD52 induces minimal residual disease-negativity in the bone marrow of poor-prognosis chronic lymphocytic leukaemia patients but is associated with opportunistic infections – Results from a phase I study. Br J Haematol 2017. DOI: 10.1111/bjh.14836 [Epub ahead of print]
38. Hillmen P, Rawstron A, Munir T et al. The initial report of the Bloodwise TAP CLARITY study containing ibrutinib and venetoclax in relapsed, refractory CLL shows acceptable safety and promising early indications of efficacy. EHA 2017; Abstract S770
39. Seymour JF, Ma S, Brander DM et al. Venetoclax plus rituximab in relapsed or refractory chronic lymphocytic leukaemia: a phase 1b study. Lancet Oncol 2017; 18 (2): 230–40.
40. Stilgenbauer S, Chyla B, Eichhorst B et al. Venetoclax in relapsed/refractory chronic lymphocytic leukemia (CLL) with 17p deletion: outcome and minimal residual disease from the full population of the pivotal M13-982 trial. EHA2017; Abstract S771.
41. Stilgenbauer S, Morschhauser F, Wendtner CM et al. Phase Ib study (GO28440) of Venetoclax with bendamustine/rituximab or bendamustine/obinutuzumab in patients with relapsed/refractory or previously untreated chronic lymphocytic leukemia. Blood 2016;
128 (22): Abstract 4393.
42. Varghese AM, Howard DR, Pocock C et al. Eradication of minimal residual disease improves overall and progression-free survival in patients with chronic lymphocytic leukaemia, evidence from NCRN CLL207: a phase II trial assessing alemtuzumab consolidation. Br J Haematol 2017; 176 (4): 573–82.
43. Oughton JB, Collett L, Howard DR et al. GA101 (obinutuzumab) monoclonal Antibody as Consolidation Therapy In CLL (GALACTIC) trial: study protocol for a phase II/III randomised controlled trial. Trials 2017; 18 (1): 353.
44. Dreger P, Schetelig J, Andersen N et al. Managing high-risk CLL during transition to a new treatment era: stem cell transplantation or novel agents? Blood 2014; 124 (26): 3841–9.
45. Dreger P, Dohner H, Ritgen M et al; German CLL Study Group. Allogeneic stem cell transplantation provides durable disease control in poor-risk chronic lymphocytic leukemia: long-term clinical and MRD results of the German CLL Study Group CLL3X trial. Blood 2010; 116 (14): 2438–47.
46. Farina L, Carniti C, Dodero A et al. Qualitative and quantitative polymerase chain reaction monitoring of minimal residual disease in relapsed chronic lymphocytic leukemia: early assessment can predict long-term outcome after reduced intensity allogeneic transplantation. Haematologica 2009; 94 (5): 654–62.
47. Hallek M. Chronic lymphocytic leukemia: 2017 update on diagnosis, risk stratification, and treatment. Am J Hematol 2017; 92 (9): 946–65.
48. Nikitin E.A. Differentsirovannaia terapiia khronicheskogo limfoleikoza. Dis. … d-ra med. nauk. M., 2014. [in Russian]
49. Kuvshinov A.Iu., Voloshin S.V., Martynkevich I.S. i dr. Khronicheskii limfoleikoz: prognosticheskoe znachenie minimal'noi ostatochnoi bolezni, vozmozhnosti sovremennykh metodov ee vyiavleniia i korrektsii (obzor literatury). Klin. onkogematologiia. 2016; 9 (2): 191–8. [in Russian]
Авторы
Ю.В.Миролюбова*, Е.А.Стадник
ФГБУ «Национальный медицинский исследовательский центр им. В.А.Алмазова» Минздрава России. 197341, Россия, Санкт-Петербург, ул. Аккуратова, д. 2
*juli9702@yandex.ru
________________________________________________
Yu.V.Mirolyubova*, E.A.Stadnik
V.A.Almazov National Medical Research Center. 197341, Russian Federation, Saint Petersburg, ul. Akkuratova, 2
*juli9702@yandex.ru