Эволюция взглядов на возможности лекарственной терапии в преодолении приобретенной резистентности, не связанной с мутацией Т790М, к анти-EGFR-препаратам при немелкоклеточном раке легкого
Эволюция взглядов на возможности лекарственной терапии в преодолении приобретенной резистентности, не связанной с мутацией Т790М, к анти-EGFR-препаратам при немелкоклеточном раке легкого
Карабина Е.В., Любченко Л.Н., Гарунов А.Н. Эволюция взглядов на возможности лекарственной терапии в преодолении приобретенной резистентности, не связанной с мутацией Т790М, к анти-EGFR-препаратам при немелкоклеточном раке легкого. Современная Онкология. 2018; 20 (3): 10–18. DOI: 10.26442/1815-1434_2018.3.10-18
________________________________________________
Karabina E.V., Lubchenko L.N., Garunov A.N. The evolution of views on the possibilities of drug therapy in overcoming acquired resistance not associated with Т790М mutation to anti-EGFR drugs in NSCLC. Journal of Modern Oncology. 2018; 20 (3): 10–18. DOI: 10.26442/1815-1434_2018.3.10-18
Эволюция взглядов на возможности лекарственной терапии в преодолении приобретенной резистентности, не связанной с мутацией Т790М, к анти-EGFR-препаратам при немелкоклеточном раке легкого
Карабина Е.В., Любченко Л.Н., Гарунов А.Н. Эволюция взглядов на возможности лекарственной терапии в преодолении приобретенной резистентности, не связанной с мутацией Т790М, к анти-EGFR-препаратам при немелкоклеточном раке легкого. Современная Онкология. 2018; 20 (3): 10–18. DOI: 10.26442/1815-1434_2018.3.10-18
________________________________________________
Karabina E.V., Lubchenko L.N., Garunov A.N. The evolution of views on the possibilities of drug therapy in overcoming acquired resistance not associated with Т790М mutation to anti-EGFR drugs in NSCLC. Journal of Modern Oncology. 2018; 20 (3): 10–18. DOI: 10.26442/1815-1434_2018.3.10-18
Понимание механизмов приобретенной резистентности к ингибиторам тирозинкиназы важно для клиницистов с позиции возможностей формирования более эффективных опций 2-й и последующих линий терапии немелкоклеточного рака легкого (НМРЛ). Перспективы лечебных стратегий пациентов с НМРЛ и наличием приобретенной резистентности к ингибиторам тирозинкиназы, не связанной с мутацией Т790М, с научных позиций достаточно широки, но в рутинной клинической практике пока недоступны в полном объеме. В данной статье описаны современные представления о механизмах приобретенной резистентности к ингибиторам тирозинкиназы, не связанной с мутацией Т790М, изложена эволюция взглядов на лечение НМРЛ, прогрессирующего на фоне этой группы препаратов. Также рассмотрены возможности эффективного использования таргетной терапии и различных комбинаций противоопухолевых агентов в подобных случаях. Принимая во внимание многогранность нерешенных вопросов и направлений дальнейших научных поисков, нельзя забывать об имеющихся результатах исследований и умении грамотного использования описанных опций в рутинной клинической практике.
Understanding the mechanisms of acquired resistance to tyrosine kinase inhibitors is important for clinicians from the perspective of the possibility of forming more effective options for the second and subsequent treatment of non-small cell lung cancer. The prospects of treatment strategies for patients with non-small cell lung cancer featuring the acquired resistance to tyrosine kinase inhibitors, not associated with the Т790М mutation, are quite vast from a scientific point of view, but in routine clinical practice they are not yet available in full. This article describes the current understanding of the mechanisms of acquired resistance to tyrosine kinase inhibitors not associated with the mutation of T790M, the evolution of views concerning the treatment of non-small cell lung cancer, progressing in the course of the treatment by this group of drugs. The possibilities of effective use of targeted therapy and various combinations of antitumor agents in such cases are also considered. Taking into account the diversity of unresolved issues and directions of further scientific research, we should not forget about the available research results and the ability to use the described options in routine clinical practice in a proper way.
1. Lynch TJ, Bell DW, Sordella R et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 2004; 350: 1229–39.
2. Paez JG, Janne PA, Lee JC et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 2004; 304: 1497–500.
3. Sharma SV, Bell DW, Settleman J et al. Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer 2007; 7: 169–81.
4. Inoue A et al. Prospective phase II study of gefitinib for chemotherapy-naive patients with advanced non-small-cell lung cancer with epidermal growth factor receptor gene mutations. J Clin Oncol 2006; 24: 3340–6.
5. Rosell R et al. Screening for epidermal growth factor receptor mutations in lung cancer. N Engl J Med 2009; 361 (10): 958–67.
6. Yonesaka K, Kudo K, Nishida S et al. The pan-HER family tyrosine kinase inhibitor afatinib overcomes HER3 ligand heregulin-mediated resistance to EGFR inhibitors in non-small cell lung cancer. Oncotarget 2015; 6: 33602–11.
7. Yu HA, Arcila ME, Rekhtman N et al. Analysis of tumor specimens at the time of acquired resistance to EGFR-TKI therapy in 155 patients with EGFR-mutant lung cancer. Clin Cancer Res 2013; 19: 2240–7.
8. Engelman JA, Zejnullahu K, Mitsudomi T et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 2007; 316: 1039–43.
9. Fukuoka M et al. Biomarker analyses and final overall survival results from a phase III, randomized, open-label, first-line study of gefitinib versus carboplatin/paclitaxel in clinically selected patients with advanced non-small-cell lung cancer in Asia (IPASS). J Clin Oncol 2011; 29: 2866–74.
10. Mok TS et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med 2009; 361: 947–57.
11. Cortot AB, Jänne PA. Molecular mechanisms of resistance in epidermal growth factor receptor-mutant lung adenocarcinomas. Eur Respir Rev 2014; 23 (133): 356–66.
12. Jackman D et al. Clinical definition of acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in non-small-cell lung cancer. J Clin Oncol 2010; 28 (2): 357–60.
13. Oxnard GR, Arcila ME, Sima CS et al. Acquired resistance to EGFR tyrosine kinase inhibitors in EGFR-mutant lung cancer: distinct natural history of patients with tumors harboring the T790M mutation. Clin Cancer Res 2011; 17:1616–22.
14. Sun JM, Ahn MJ, Choi YL et al. Clinical implications of T790M mutation in patients with acquired resistance to EGFR tyrosine kinase inhibitors. Lung Cancer 2013; 82 (2): 294–8.
15. Kuiper JL, Heideman DA, Thunnissen E et al. Incidence of T790M mutation in (sequential) rebiopsies in EGFR-mutated NSCLC-patients. Lung Cancer 2014; 85 (1): 19–24.
16. Li W, Ren S, Li J et al. T790M mutation is associated with better efficacy of treatment beyond progression with EGFR-TKI in advanced NSCLC patients. Lung Cancer 2014; 84 (3): 295–300.
17. Sequist LV, Waltman BA, Dias-Santagata D et al. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci Transl Med 2011; 3 (75): 75ra26–75ra26.
18. Inoue A, Kobayashi K, Maemondo M et al. Updated overall survival results from a randomized phase III trial comparing gefitinib with carboplatin-paclitaxel for chemo-naïve non-small cell lung cancer with sensitive EGFR gene mutations (NEJ002). Ann Oncol 2013; 24: 54–9.
19. Maemondo M, Inoue A, Kobayashi K et al. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N Engl J Med 2010; 362: 2380–8.
20. Mitsudomi T, Morita S, Yatabe Y et al. Gefitinib versus cisplatin plus docetaxel in patients with non-small-cell lung cancer harboring mutations of the epidermal growth factor receptor (WJTOG3405): an open label, randomized phase 3 trial. Lancet Oncol 2010; 11: 121–8.
21. Yun CH et al. The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. Proc Natl Acad Sci USA 2008; 105: 2070–5.
22. Kobayashi S et al. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N Engl J Med 2005; 352: 786–92.
23. Cross DA et al. AZD9291, an irreversible EGFR TKI, overcomes T790M-mediated resistance to EGFR inhibitors in lung cancer. Cancer Discov 2014; 4: 1046–61.
24. Сакаева Д.Д., Гордиев М.Г. Основные механизмы резистентности к ингибиторам тирозинкиназы EGFR. Фарматека. 2017; 8 (341): 59–65. / Sakaeva D.D., Gordiev M.G. Osnovnye mekhanizmy rezistentnosti k ingibitoram tirozinkinazy EGFR. Farmateka. 2017; 8 (341): 59–65. [in Russian]
25. Solca F, Dahl G, Zoephel A et al. Target binding properties and cellular activity of afatinib (BIBW 2992), an irreversible ErbB family blocker. J Pharmacol Exp Ther 2012; irreversible 343: 342–50.
26. Helmout Modjtahedi et al. A comprehensive review of the preclinical efficacy profile of the ErbB family blocker afatinib in cancer. Naunyn-Schmiedeberg's Arch Pharmacol 2014, 387: 505–21.
27. Li D, Ambrogio L, Shimamura T et al. BIBW 2992, an irreversible EGFR/HER2 inhibitor highly effective in preclinical lung cancer models. Oncogene 2008; 27: 4702–11.
28. Katakami N, Atagi S, Goto K et al. lUX-lung 4: a phase II trial of afatinib in patients with advanced non-small-cell lung cancer who progressed during prior treatment with erlotinib, gefitinib, or both. J Clin Oncol 2013; 31 (27): 3335–41.
29. Miller VA. Phase IIb/III double-blind randomized trial of afatinib (BIBW 2992, an irreversible inhibitor of egfr/her1 and her2) + best supportive care (bsc) versus placebo + bsc in patients with nsclc failing 1–2 lines of chemotherapy and erlotinib or gefitinib (LUX-Lung 1) [abstract LBAI]. Ann Oncol 2010; 21 (Suppl. 8).
30. Yang JC, Shih JY, Su WC et al. Afatinib for patients with lung adenocarcinoma and epidermal growth factor receptor mutations (LUX-Lung 2): a phase 2 trial. Lancet Oncol 2012; 13: 539–48.
31. Solca F, Baum A, Himmelsbach F et al. Efficacy of BIBW 2992, an irreversible dual EGFR/HER2 receptor tyrosine kinase inhibitor, in combination with cytotoxic agents. Eur J Cancer Suppl 2006; 4: 172.
32. Miller VA, Hirsh V, Cadranel J et al. Afatinib versus placebo for patients with advanced, metastatic non-small-cell lung cancer after failure of erlotinib, gefitinib, or both, and one or two lines of chemotherapy (LUX-Lung 1): a phase 2b/3 randomized trial. Lancet Oncol 2012; 13: 528–38.
33. Schuler M, Yang JC, Park K et al. Afatinib beyond progression in patients with advanced non-small-cell lung cancer following chemotherapy, erlotinib/gefitinib and afatinib: phase III randomized LUX-Lung 5 trial. Ann Oncol 2015; 27: 417–23.
34. Schuler M, Yang J, Park K et al. Afatinib beyond progression in patients with non-small-сell lung cancer following chemotherapy, erlotinib/gefitinib and afatinib: phase III randomized LUX Lung 5 trial. Ann Oncol 2016. 27 (3): 417–23. DOI: 10.1093/annonc/mdv597
35. Wu SG, Liu YN, Tsai MF et al. The mechanism of acquired resistance to irreversible EGFR tyrosine kinase inhibitor-afatinib in lung adenocarcinoma patients. Oncotarget 2016. DOI: 10.18632/ оncotarget.7189
36. Akito Hata et al. Afatinib (Afa) plus bevacizumab (Bev) combination after acquired resistance (AR) to EGFR-tyrosine kinase inhibitors (TKIs) in EGFR-mutant non-small cell lung cancer (NSCLC): Multicenter single arm phase II trial (ABC-study). ASCO 2017.
37. Scagliotti G et al. A randomized, controlled, open-label, phase 2 study of erlotinib with or without MET antibody emibetuzumab as first line treatment for EGFR-mutant NSCLC patients who have disease control after an 8-week lead-in treatment with erlotinib. ASCO 2017.
38. Regales L et al. Dual targeting of EGFR can overcome a major drug resistance mutation in mouse models of EGFR mutant lung cancer. J Clin Invest 2009, 119: 3000–10.
39. Janjigian YY, Smit EF, Groen HJM et al. Dual Inhibition of EGFR with Afatinib and Cetuximab in Kinase Inhibitor-Resistant EGFR-Mutant Lung Cancer with and without T790M Mutations. Cancer Dis 4 (9); 1–10. DOI: 10.1158/2159-8290.CD-14-0326
40. Horn L et al. Continued afatinib (A) with the Addition of Cetuximab (C) After Progression on Afatinib in Patients with Acquired Resistance (AR) to Gefitinib (G) or Erlotinib (E). Int J Radiat Oncol Biol Phy 2014; 90 (Suppl.).
41. Altavilla GA et al. Occurrence of HER2 amplification in EGFR-mutant lung adenocarcinoma with acquired resistance to EGFR-TKis. J Clin Oncol 2013 (Suppl.).
42. Kris GM et al. Using multiplexed assays of oncogenic drivers in lung cancers to sel ect targeted drugs. JAMA 2014; 311 (19): 1998–2006.
43. Li BT et al. HER2 amplification and HER2 mutation are distinct molecular targets in lung cancers. J Thorac Oncol 2016; 11 (3): 414–9.
44. De Langen A et al. Trastuzumab and paclitaxel in patients with EGFR mutated NSCLC that express HER2 after progression on EGFR TKI treatment. ASCO 2017.
45. Janjigian YY, Smit EF, Groen HJ et al. Dual inhibition of EGFR with afatinib and cetuximab in kinase inhibitor-resistant EGFR-mutant lung cancer with and without T790M mutations. Cancer Dis 2014; 4 (9): 1036–45.
46. Rosell R, Dafni U, Felip E et al. Erlotinib and bevacizumab in patients with advanced non-small-cell lung cancer and activating EGFR mutations (BELIEF): an international, multicentre, single-arm, Phase II trial. Lancet Respir Med 2017; 5 (5): 435–44.
47. Seto T, Kato T, Nishio M et al. Erlotinib alone or with bevacizumab as first-line therapy in patients with advanced non-small-cell lung cancer harbouring EGFR-mutations (JO25567): an open-label, randomised, multicentre, Phase II study. Lancet Oncol 2014; 15 (11): 1236–44.
48. Girard N. Optimizing outcomes in EGFR mutation-positive NSCLC: which tyrosine kinase inhibitor and when? Future oncology. Review. www.futuremedicine.com /doi/suppl/10/2217/fon-2017-0636
49. Corallo S, Argento E, Strippoli A et al. Treatment options for EGFR T790M-negative EGFR tyrosine kinase inhibitor-resistant non-small-cell lung cancer. Target Oncol 2017; 12: 153–61.
50. Pang-Dian Fan et al. YES1 amplification as a mechanism of acquired resistance (AR) to EGFR tyrosine kinase inhibitors (TKIs) identified by a transposon mutagenesis screen and clinical genomic testing. ASCO 2017.
51. Majem M, Remon J. Tumor heterogeneity: evolution through space and time in EGFR mutant non small cell lung cancer patients. Lung Cancer Res 2013; p. 226–37.
52. Yang JC, Ahn MJ, Kim DW et al. Osimertinib in pretreated T790M-positive advanced non-small-cell lung cancer: AURA study Phase II extension component. J Clin Oncol 2017; 35 (12): 1288–96.
53. Lovly CM. ASCO Educational Book 2015: e165–173.
54. Ercan D, Xu C, Yanagita M et al. Reactivation of ERK signaling causes resistance to EGFR kinase inhibitors. Cancer Dis 2012; 2: 934–47.
55. Takezawa K, Pirazzoli V, Arcila ME et al. HER2 amplification: a potential mechanism of acquired resistance to EGFR inhibition in EGFR-mutant lung cancers that lack the second-site EGFRT790M mutation. Cancer Dis 2012; 2: 922–33.
56. Sharma SV, Lee DY, Li B et al. A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell 2010; 141: 69–80.
57. Engelman JA, Mukohara T, Zejnullahu K et al. Allelic dilution obscures detection of a biologically significant resistance mutation in EGFR-amplified lung cancer. J Clin Invest 2006; 116: 2695–706.
58. Zang Z, Lee JC, Lin L et al. Activation of the AXL kinase causes resistance to EGFR-targeted therapy in lung cancer. Nat Genet 2012; 44: 852–60.
59. Byers LA, Diao L, Wang J et al. An epithelial-mesenchymal transition gene signature predicts resistance to EGFR and PI3K inhibitors and identifies Axl as a therapeutic target for overcoming EGFR inhibitor resistance. Clin Cancer Res 2013; 19: 279–90.
60. Bivona TG, Heironymus H, Parker J et al. FAS and NF-кВ signaling modulate dependence of lung cancers on mutant EGFR. Nature 2011; 471: 523–8.
61. Xu L, Kikucbi E, Xu C et al. Combined EGFR/MET or EGFR/HSP90 inhibition is effective in the treatment of lung cancers codriven by mutant EGFR containing T790M and MET. Cancer Res 2012; 72 (13): 3302–11.
62. Cben G, Noor A, Kronenberger P et al. Synergistic effect of afatinib with su11274 in non-small-cell lung cancer cells resistant to gefitinib or erlotinib. PLoS 2013; 8 (3): e59708.
63. Thiery JP. Epithelial-mesenchymal transitions in tumor progression. Nat Rev Cancer 2002, 2: 442–54.
64. Thomson S, Buck E, Petti F et al. Epithelial to mesenchymal transition is a determinant of sensitivity of non-small-cell lung carcinoma cell lines and xenografts to epidermal growth factor receptor inhibition. Cancer Res 2005; 65: 9455–62.
65. Rho JK, Choi YJ, Lee JK et al. Epithelial to mesenchymal transition derived from repeated exposure to gefitinib determines the sensitivity to EGFR inhibitors in A549, a non-small-cell lung carcinoma cell line. Lung Cancer 2009; 63: 210–26.
66. Suda K, Tomizawa K, Fujii M et al. Epithelial to mesenchymal transition in an epidermal growth factor receptor-mutant lung cancer cell line with acquired resistance to erlotinib. J Thorac Oncol 2011; 6: 1152–61.
67. Buonato JM, Lazzara MJ. ERK1/2 blockade prevents epithelial-mesenchymal transition in lung cancer cells and promotes their sensitivity to EGFR inhibition. Cancer Res 2014; 74: 309–19.
68. Soria JC, Wu YL, Nakagawa K et al. Gefitinib plus chemotherapy versus placebo plus chemotherapy in EGFR-mutation-positive non-small-cell lung cancer after progression on first-line gefitinib (IMPRESS): a phase 3 randomised trial. Lancet Oncol 2015; 16 (8): 990–8.
69. Herbst RS, Prager D, Hermann R et al. TRIBUTE: a Phase III trial of erlotinib hydrochloride (OSI-774) combined with carboplatin and paclitaxel chemotherapy in advanced non-small-cell lung cancer. J Clin Oncol 2005; 23 (25): 5892–5.
70. Giaccone G, Herbst RS, Manegold C et al. Gefitinib in combination with gemcitabine and cisplatine in advanced non-small-cell lung cancer: a Phase III trial – INTACT 1. J Clin Oncol 2004; 22 (5): 777–84.
71. Herbst RS, Giaccone G, Scbiller JH et al. Gefitinib in combination with paclitaxel and carboplatin in advanced non-small-cell lung cancer: a Phase III trial – INTACT 2. J Clin Oncol 2004; 22 (5): 785–94.
72. Gatzemeier U, Pluzanska A, Szczesna A et al. Phase III study of erlotinib in combination with cisplatine and gemcitabine in advanced non-small-cell lung cancer: the Tarceva Lung Cancer Investigation Trial. J Clin Oncol 2007; 25 (12): 1545–52.
73. Brock A, Chang H, Huang S. Non-genetic heterogeneity a mutation-independent driving force for the somatic evolution of tumours. Nat Rev Genet 2009; 10: 336–42.
74. Gupta PB, Fillmore CM, Jiang G et al. Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell 2011; 146: 633–44.
75. Giovanetti E, Lemos C, Tekle C et al. Molecular mechanisms underlying the synergistic interaction of erlotinib, en EGFR TKI, with multitargeted antufolate pemetrexed in NSCLC cells. Mol Pharmacol 2008; 73: 1290–300.
76. Wu SG, Yang CH, Yu CJ et al. Good response to pemetrexed in patients of lung adenocarcinoma with EGFR mutations. Lung Cancer 2011; 72: 333–43.
77. Sequist LV, Yang JC, Yamamoto N et al. Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations. J Clin Oncol 2013; 31: 3327–34.
78. Mok T, Cheng Y, Zhou X et al. Dacomitinib versus gefitinib for the first-line treatment of advanced EGFR mutation positive non-small-cell lung cancer (ARCHER 1050): a randomized, open-label phase III trial. In: American Society of Clinical Oncology 2017.
79. Zhou C, Wu YL, Сhen G et al. Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer (OPTIMAL, CTONG-0802): a multicenter, open-label, randomized, phase 3 study. Lancet Oncol 2011; 12: 735–42.
80. Wu YL, Zhou C, Hu CP et al. Afatinib versus cisplatin plus gemcitabine for first-line treatment of Asian patients with advanced non-small-cell lung cancer harboring EGFR mutations (LUX-lung 6): an open-label, randomized phase 3 trial. Lancet Oncol 2014; 15 (2): 213–22.
81. Rosell R, Carcereny E, Gervais R et al. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutations-positive non-small-cell lung cancer (EURTAC): a multicenter, open-label, randomized phase 3 trial. Lancet Oncol 2012; 13: 239–46.
82. Park K, Ton E, O'Byrne K et al. Afatinib vs gefitinib as first-line treatment for patients with EGFR mutation-positive non-small-cell lung cancer (LUX-Lung 7): a phase 2B, open-label, randomized controlled trial. Lancet Oncol 2016; 17 (5): 577–89.
83. Della Corte CM, Bellevicine C, Vicidomini G et al. SMO gene amplification and activation of the henghog pathway as novel mechanisms of resistance to anti-epidermal growth factor receptor drugs in human lung cancer. Clin Cancer Res 2015; 21 (20): 4686–97.
84. Niederst MJ, Sequist LV, Poirier JT et al. RB loss in resistant EGFR mutant lung adenocarcinomas that transform to small-cell lung cancer. Nat Commun 2015; 6.
85. Lee J-K, Lee J, Kim A et al. Clonal history and genetic predictors of transformation into small-cell carcinomas from lung adenocarcinomas. J Clin Oncol 2017; 35 (26): 3065–74.
86. Gandara DR, Li T, Lara PN et al. Acquired resistance to targeted therapies against oncogene-driven non-small-cell lung cancer: approach to subtyping progressive disease and clinical implications. Clin Lung Cancer 2014; 15 (1): 1–6.
87. Yang J-J, Chen H-J, Yan H-H et al. Clinical models of EGFR tyrosine kinase inhibitor failure and subsequent management in advanced non small cell lung cancer. Lung Cancer 2013; 79 (1): 33–9.
88. Asami K, Okuma T, Hirashima T et al. Continued treatment with gefitinib beyond progressive disease benefits patients with activating EGFR mutations. Lung Cancer 2013; 79 (3): 276–82.
89. Yoshida T, Yoh K, Niho S et al. RECIST progression patterns during EGFR tyrosine kinase inhibitor treatment of advanced non-small cell lung cancer patients harboring an EGFR mutation. Lung Cancer 2015; 90 (3): 477–83.
90. Lo PC, Dahlberg SE, Nishino M et al. Delay of treatment change after objective progression on first-line erlotinib in epidermal growth factor receptor-mutant lung cancer. Cancer 2015; 121 (15): 2570–7.
91. Al-Halabi H, Sayegh K, Digamurthy SR et al. Pattern of failure analysis in metastatic EGFR-mutant lung cancer treated with tyrosine kinase inhibitors to identify candidates for consolidation stereotactic body radiation therapy. J Thorac Oncol 2015; 10 (11): 1601–7.
92. Lee YJ, Choi HJ, Kim SK et al. Frequent central nervous system failure after clinical benefit with epidermal growth factor receptor tyrosine kinase inhibitors in Korean patients with non-small-cell lung cancer. Cancer 2010; 116 (5): 1336–43.
93. Shukuya T, Takahashi T, Naito T et al. Continuous EGFR-TKI administration following radiotherapy for non-small cell lung cancer patients with isolated CNS failure. Lung Cancer 2011; 74 (3): 457–61.
94. Riely GJ et al. Prospective assessment of discontinuation and reinitiation of erlotinib or gefitinib in patients with acquired resistance to erlotinib or gefitinib followed by the addition of everolimus. Clin Cancer Res 2007; 13: 5150–5.
95. Park K, Yu C-J, Kim S-W et al. First-line erlotinib therapy until and beyond response evaluation criteria in solid tumors progression in Asian patients with epidermal growth factor receptor mutation-positive non-small cell lung cancer: the ASPIRATION study. JAMA Oncol 2016; 2 (3): 305–12.
96. Park K et al. Oral presentation at the European Society of Medical Oncology 2014 Congress.
97. Liu SY, Wu YL. Lung Cancer Manag 2015; 4: 51–3.
98. Nishie K, Kawaguchi T, Tamiya A et al. Epidermal growth factor receptor tyrosine kinase inhibitors beyond progressive disease: a retrospective analysis for Japanese patients with activating EGFR mutations. J Thorac Oncol 2012; 7 (11): 1722–7.
99. Westover D, Zugazagoitia J, Cho BC et al. Mechanisms of acquired resistance to first- and second-generation EGFR tyrosine kinase inhibitors. Ann of Oncol 29 (Suppl. 1): i10–i19 2018. DOI: 10.1093/annonc/mdx703
100. Maruyama К et al. Anticancer Res 2009; 29: 4217–21.
101. Моисеенко В.М. и др. Вопр. онкологии. 2015; 61 (2): 259–64. / Moiseenko V.M. i dr. Vopr. onkologii. 2015; 61 (2): 259–64. [in Russian]
102. Weickhardt AJ, Scheier B, Burke JM et al. Local ablative therapy of oligoprogressive disease prolongs disease control by tyrosine kinase inhibitors in oncogene-addicted non-small-cell lung cancer. J Thorac Oncol 2012; 7 (12): 1807–14.
103. Helena AY, Sima CS, Huang J et al. Local therapy with continued EGFR tyrosine kinase inhibitor therapy as a treatment strategy in EGFR-mutant advanced lung cancers that have developed acquired resistance to EGFR tyrosine kinase inhibitors. J Thorac Oncol 2013; 8 (3): 346–51.
104. Conforti F, Catania C, Toffalorio F et al. EGFR tyrosine kinase inhibitors beyond focal progression obtain a prolonged disease control in patients with advanced adenocarcinoma of the lung. Lung Cancer 2013; 81 (3): 440–4.
105. Novello S, Barlesi F, Califano R et al. Metastatic non-small-cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2016; 27 (Suppl. 5): v1–v27.
106. Ettinger DS, Wood DE, Aisner DL et al. NCCN Clinical Practice Guidelines in Oncology (NCCN guidelines). Non small Cell Lung. Cancer 2017; 9. http: //www.nccn.org
107. Grommes C, Oxnard GR, Kris MG et al. "Pulsatile" high-dose weekly erlotinib for CNS metastases fr om EGFR mutant non-small cell lung cancer. Neuro-Oncology 2011; 13 (12): 1364–9.
108. Hata A, Kaji R, Fujita S et al. High-dose erlotinib for refractory brain metastases in a patient with relapsed non-small cell lung cancer. J Thorac Oncol 2011; 6 (3): 653–4.
109. Jackman DM, Holmes AJ, Lindeman N et al. Response and resistance in a non-small-cell lung cancer patient with an epidermal growth factor receptor mutation and leptomeningeal metastases treated with high-dose gefitinib. J Clin Oncol 2006; 24 (27): 4517–20.
________________________________________________
1. Lynch TJ, Bell DW, Sordella R et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 2004; 350: 1229–39.
2. Paez JG, Janne PA, Lee JC et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 2004; 304: 1497–500.
3. Sharma SV, Bell DW, Settleman J et al. Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer 2007; 7: 169–81.
4. Inoue A et al. Prospective phase II study of gefitinib for chemotherapy-naive patients with advanced non-small-cell lung cancer with epidermal growth factor receptor gene mutations. J Clin Oncol 2006; 24: 3340–6.
5. Rosell R et al. Screening for epidermal growth factor receptor mutations in lung cancer. N Engl J Med 2009; 361 (10): 958–67.
6. Yonesaka K, Kudo K, Nishida S et al. The pan-HER family tyrosine kinase inhibitor afatinib overcomes HER3 ligand heregulin-mediated resistance to EGFR inhibitors in non-small cell lung cancer. Oncotarget 2015; 6: 33602–11.
7. Yu HA, Arcila ME, Rekhtman N et al. Analysis of tumor specimens at the time of acquired resistance to EGFR-TKI therapy in 155 patients with EGFR-mutant lung cancer. Clin Cancer Res 2013; 19: 2240–7.
8. Engelman JA, Zejnullahu K, Mitsudomi T et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 2007; 316: 1039–43.
9. Fukuoka M et al. Biomarker analyses and final overall survival results from a phase III, randomized, open-label, first-line study of gefitinib versus carboplatin/paclitaxel in clinically selected patients with advanced non-small-cell lung cancer in Asia (IPASS). J Clin Oncol 2011; 29: 2866–74.
10. Mok TS et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med 2009; 361: 947–57.
11. Cortot AB, Jänne PA. Molecular mechanisms of resistance in epidermal growth factor receptor-mutant lung adenocarcinomas. Eur Respir Rev 2014; 23 (133): 356–66.
12. Jackman D et al. Clinical definition of acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in non-small-cell lung cancer. J Clin Oncol 2010; 28 (2): 357–60.
13. Oxnard GR, Arcila ME, Sima CS et al. Acquired resistance to EGFR tyrosine kinase inhibitors in EGFR-mutant lung cancer: distinct natural history of patients with tumors harboring the T790M mutation. Clin Cancer Res 2011; 17:1616–22.
14. Sun JM, Ahn MJ, Choi YL et al. Clinical implications of T790M mutation in patients with acquired resistance to EGFR tyrosine kinase inhibitors. Lung Cancer 2013; 82 (2): 294–8.
15. Kuiper JL, Heideman DA, Thunnissen E et al. Incidence of T790M mutation in (sequential) rebiopsies in EGFR-mutated NSCLC-patients. Lung Cancer 2014; 85 (1): 19–24.
16. Li W, Ren S, Li J et al. T790M mutation is associated with better efficacy of treatment beyond progression with EGFR-TKI in advanced NSCLC patients. Lung Cancer 2014; 84 (3): 295–300.
17. Sequist LV, Waltman BA, Dias-Santagata D et al. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci Transl Med 2011; 3 (75): 75ra26–75ra26.
18. Inoue A, Kobayashi K, Maemondo M et al. Updated overall survival results from a randomized phase III trial comparing gefitinib with carboplatin-paclitaxel for chemo-naïve non-small cell lung cancer with sensitive EGFR gene mutations (NEJ002). Ann Oncol 2013; 24: 54–9.
19. Maemondo M, Inoue A, Kobayashi K et al. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N Engl J Med 2010; 362: 2380–8.
20. Mitsudomi T, Morita S, Yatabe Y et al. Gefitinib versus cisplatin plus docetaxel in patients with non-small-cell lung cancer harboring mutations of the epidermal growth factor receptor (WJTOG3405): an open label, randomized phase 3 trial. Lancet Oncol 2010; 11: 121–8.
21. Yun CH et al. The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. Proc Natl Acad Sci USA 2008; 105: 2070–5.
22. Kobayashi S et al. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N Engl J Med 2005; 352: 786–92.
23. Cross DA et al. AZD9291, an irreversible EGFR TKI, overcomes T790M-mediated resistance to EGFR inhibitors in lung cancer. Cancer Discov 2014; 4: 1046–61.
24. Sakaeva D.D., Gordiev M.G. Osnovnye mekhanizmy rezistentnosti k ingibitoram tirozinkinazy EGFR. Farmateka. 2017; 8 (341): 59–65. [in Russian]
25. Solca F, Dahl G, Zoephel A et al. Target binding properties and cellular activity of afatinib (BIBW 2992), an irreversible ErbB family blocker. J Pharmacol Exp Ther 2012; irreversible 343: 342–50.
26. Helmout Modjtahedi et al. A comprehensive review of the preclinical efficacy profile of the ErbB family blocker afatinib in cancer. Naunyn-Schmiedeberg's Arch Pharmacol 2014, 387: 505–21.
27. Li D, Ambrogio L, Shimamura T et al. BIBW 2992, an irreversible EGFR/HER2 inhibitor highly effective in preclinical lung cancer models. Oncogene 2008; 27: 4702–11.
28. Katakami N, Atagi S, Goto K et al. lUX-lung 4: a phase II trial of afatinib in patients with advanced non-small-cell lung cancer who progressed during prior treatment with erlotinib, gefitinib, or both. J Clin Oncol 2013; 31 (27): 3335–41.
29. Miller VA. Phase IIb/III double-blind randomized trial of afatinib (BIBW 2992, an irreversible inhibitor of egfr/her1 and her2) + best supportive care (bsc) versus placebo + bsc in patients with nsclc failing 1–2 lines of chemotherapy and erlotinib or gefitinib (LUX-Lung 1) [abstract LBAI]. Ann Oncol 2010; 21 (Suppl. 8).
30. Yang JC, Shih JY, Su WC et al. Afatinib for patients with lung adenocarcinoma and epidermal growth factor receptor mutations (LUX-Lung 2): a phase 2 trial. Lancet Oncol 2012; 13: 539–48.
31. Solca F, Baum A, Himmelsbach F et al. Efficacy of BIBW 2992, an irreversible dual EGFR/HER2 receptor tyrosine kinase inhibitor, in combination with cytotoxic agents. Eur J Cancer Suppl 2006; 4: 172.
32. Miller VA, Hirsh V, Cadranel J et al. Afatinib versus placebo for patients with advanced, metastatic non-small-cell lung cancer after failure of erlotinib, gefitinib, or both, and one or two lines of chemotherapy (LUX-Lung 1): a phase 2b/3 randomized trial. Lancet Oncol 2012; 13: 528–38.
33. Schuler M, Yang JC, Park K et al. Afatinib beyond progression in patients with advanced non-small-cell lung cancer following chemotherapy, erlotinib/gefitinib and afatinib: phase III randomized LUX-Lung 5 trial. Ann Oncol 2015; 27: 417–23.
34. Schuler M, Yang J, Park K et al. Afatinib beyond progression in patients with non-small-сell lung cancer following chemotherapy, erlotinib/gefitinib and afatinib: phase III randomized LUX Lung 5 trial. Ann Oncol 2016. 27 (3): 417–23. DOI: 10.1093/annonc/mdv597
35. Wu SG, Liu YN, Tsai MF et al. The mechanism of acquired resistance to irreversible EGFR tyrosine kinase inhibitor-afatinib in lung adenocarcinoma patients. Oncotarget 2016. DOI: 10.18632/ оncotarget.7189
36. Akito Hata et al. Afatinib (Afa) plus bevacizumab (Bev) combination after acquired resistance (AR) to EGFR-tyrosine kinase inhibitors (TKIs) in EGFR-mutant non-small cell lung cancer (NSCLC): Multicenter single arm phase II trial (ABC-study). ASCO 2017.
37. Scagliotti G et al. A randomized, controlled, open-label, phase 2 study of erlotinib with or without MET antibody emibetuzumab as first line treatment for EGFR-mutant NSCLC patients who have disease control after an 8-week lead-in treatment with erlotinib. ASCO 2017.
38. Regales L et al. Dual targeting of EGFR can overcome a major drug resistance mutation in mouse models of EGFR mutant lung cancer. J Clin Invest 2009, 119: 3000–10.
39. Janjigian YY, Smit EF, Groen HJM et al. Dual Inhibition of EGFR with Afatinib and Cetuximab in Kinase Inhibitor-Resistant EGFR-Mutant Lung Cancer with and without T790M Mutations. Cancer Dis 4 (9); 1–10. DOI: 10.1158/2159-8290.CD-14-0326
40. Horn L et al. Continued afatinib (A) with the Addition of Cetuximab (C) After Progression on Afatinib in Patients with Acquired Resistance (AR) to Gefitinib (G) or Erlotinib (E). Int J Radiat Oncol Biol Phy 2014; 90 (Suppl.).
41. Altavilla GA et al. Occurrence of HER2 amplification in EGFR-mutant lung adenocarcinoma with acquired resistance to EGFR-TKis. J Clin Oncol 2013 (Suppl.).
42. Kris GM et al. Using multiplexed assays of oncogenic drivers in lung cancers to sel ect targeted drugs. JAMA 2014; 311 (19): 1998–2006.
43. Li BT et al. HER2 amplification and HER2 mutation are distinct molecular targets in lung cancers. J Thorac Oncol 2016; 11 (3): 414–9.
44. De Langen A et al. Trastuzumab and paclitaxel in patients with EGFR mutated NSCLC that express HER2 after progression on EGFR TKI treatment. ASCO 2017.
45. Janjigian YY, Smit EF, Groen HJ et al. Dual inhibition of EGFR with afatinib and cetuximab in kinase inhibitor-resistant EGFR-mutant lung cancer with and without T790M mutations. Cancer Dis 2014; 4 (9): 1036–45.
46. Rosell R, Dafni U, Felip E et al. Erlotinib and bevacizumab in patients with advanced non-small-cell lung cancer and activating EGFR mutations (BELIEF): an international, multicentre, single-arm, Phase II trial. Lancet Respir Med 2017; 5 (5): 435–44.
47. Seto T, Kato T, Nishio M et al. Erlotinib alone or with bevacizumab as first-line therapy in patients with advanced non-small-cell lung cancer harbouring EGFR-mutations (JO25567): an open-label, randomised, multicentre, Phase II study. Lancet Oncol 2014; 15 (11): 1236–44.
48. Girard N. Optimizing outcomes in EGFR mutation-positive NSCLC: which tyrosine kinase inhibitor and when? Future oncology. Review. www.futuremedicine.com /doi/suppl/10/2217/fon-2017-0636
49. Corallo S, Argento E, Strippoli A et al. Treatment options for EGFR T790M-negative EGFR tyrosine kinase inhibitor-resistant non-small-cell lung cancer. Target Oncol 2017; 12: 153–61.
50. Pang-Dian Fan et al. YES1 amplification as a mechanism of acquired resistance (AR) to EGFR tyrosine kinase inhibitors (TKIs) identified by a transposon mutagenesis screen and clinical genomic testing. ASCO 2017.
51. Majem M, Remon J. Tumor heterogeneity: evolution through space and time in EGFR mutant non small cell lung cancer patients. Lung Cancer Res 2013; p. 226–37.
52. Yang JC, Ahn MJ, Kim DW et al. Osimertinib in pretreated T790M-positive advanced non-small-cell lung cancer: AURA study Phase II extension component. J Clin Oncol 2017; 35 (12): 1288–96.
53. Lovly CM. ASCO Educational Book 2015: e165–173.
54. Ercan D, Xu C, Yanagita M et al. Reactivation of ERK signaling causes resistance to EGFR kinase inhibitors. Cancer Dis 2012; 2: 934–47.
55. Takezawa K, Pirazzoli V, Arcila ME et al. HER2 amplification: a potential mechanism of acquired resistance to EGFR inhibition in EGFR-mutant lung cancers that lack the second-site EGFRT790M mutation. Cancer Dis 2012; 2: 922–33.
56. Sharma SV, Lee DY, Li B et al. A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell 2010; 141: 69–80.
57. Engelman JA, Mukohara T, Zejnullahu K et al. Allelic dilution obscures detection of a biologically significant resistance mutation in EGFR-amplified lung cancer. J Clin Invest 2006; 116: 2695–706.
58. Zang Z, Lee JC, Lin L et al. Activation of the AXL kinase causes resistance to EGFR-targeted therapy in lung cancer. Nat Genet 2012; 44: 852–60.
59. Byers LA, Diao L, Wang J et al. An epithelial-mesenchymal transition gene signature predicts resistance to EGFR and PI3K inhibitors and identifies Axl as a therapeutic target for overcoming EGFR inhibitor resistance. Clin Cancer Res 2013; 19: 279–90.
60. Bivona TG, Heironymus H, Parker J et al. FAS and NF-кВ signaling modulate dependence of lung cancers on mutant EGFR. Nature 2011; 471: 523–8.
61. Xu L, Kikucbi E, Xu C et al. Combined EGFR/MET or EGFR/HSP90 inhibition is effective in the treatment of lung cancers codriven by mutant EGFR containing T790M and MET. Cancer Res 2012; 72 (13): 3302–11.
62. Cben G, Noor A, Kronenberger P et al. Synergistic effect of afatinib with su11274 in non-small-cell lung cancer cells resistant to gefitinib or erlotinib. PLoS 2013; 8 (3): e59708.
63. Thiery JP. Epithelial-mesenchymal transitions in tumor progression. Nat Rev Cancer 2002, 2: 442–54.
64. Thomson S, Buck E, Petti F et al. Epithelial to mesenchymal transition is a determinant of sensitivity of non-small-cell lung carcinoma cell lines and xenografts to epidermal growth factor receptor inhibition. Cancer Res 2005; 65: 9455–62.
65. Rho JK, Choi YJ, Lee JK et al. Epithelial to mesenchymal transition derived from repeated exposure to gefitinib determines the sensitivity to EGFR inhibitors in A549, a non-small-cell lung carcinoma cell line. Lung Cancer 2009; 63: 210–26.
66. Suda K, Tomizawa K, Fujii M et al. Epithelial to mesenchymal transition in an epidermal growth factor receptor-mutant lung cancer cell line with acquired resistance to erlotinib. J Thorac Oncol 2011; 6: 1152–61.
67. Buonato JM, Lazzara MJ. ERK1/2 blockade prevents epithelial-mesenchymal transition in lung cancer cells and promotes their sensitivity to EGFR inhibition. Cancer Res 2014; 74: 309–19.
68. Soria JC, Wu YL, Nakagawa K et al. Gefitinib plus chemotherapy versus placebo plus chemotherapy in EGFR-mutation-positive non-small-cell lung cancer after progression on first-line gefitinib (IMPRESS): a phase 3 randomised trial. Lancet Oncol 2015; 16 (8): 990–8.
69. Herbst RS, Prager D, Hermann R et al. TRIBUTE: a Phase III trial of erlotinib hydrochloride (OSI-774) combined with carboplatin and paclitaxel chemotherapy in advanced non-small-cell lung cancer. J Clin Oncol 2005; 23 (25): 5892–5.
70. Giaccone G, Herbst RS, Manegold C et al. Gefitinib in combination with gemcitabine and cisplatine in advanced non-small-cell lung cancer: a Phase III trial – INTACT 1. J Clin Oncol 2004; 22 (5): 777–84.
71. Herbst RS, Giaccone G, Scbiller JH et al. Gefitinib in combination with paclitaxel and carboplatin in advanced non-small-cell lung cancer: a Phase III trial – INTACT 2. J Clin Oncol 2004; 22 (5): 785–94.
72. Gatzemeier U, Pluzanska A, Szczesna A et al. Phase III study of erlotinib in combination with cisplatine and gemcitabine in advanced non-small-cell lung cancer: the Tarceva Lung Cancer Investigation Trial. J Clin Oncol 2007; 25 (12): 1545–52.
73. Brock A, Chang H, Huang S. Non-genetic heterogeneity a mutation-independent driving force for the somatic evolution of tumours. Nat Rev Genet 2009; 10: 336–42.
74. Gupta PB, Fillmore CM, Jiang G et al. Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell 2011; 146: 633–44.
75. Giovanetti E, Lemos C, Tekle C et al. Molecular mechanisms underlying the synergistic interaction of erlotinib, en EGFR TKI, with multitargeted antufolate pemetrexed in NSCLC cells. Mol Pharmacol 2008; 73: 1290–300.
76. Wu SG, Yang CH, Yu CJ et al. Good response to pemetrexed in patients of lung adenocarcinoma with EGFR mutations. Lung Cancer 2011; 72: 333–43.
77. Sequist LV, Yang JC, Yamamoto N et al. Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations. J Clin Oncol 2013; 31: 3327–34.
78. Mok T, Cheng Y, Zhou X et al. Dacomitinib versus gefitinib for the first-line treatment of advanced EGFR mutation positive non-small-cell lung cancer (ARCHER 1050): a randomized, open-label phase III trial. In: American Society of Clinical Oncology 2017.
79. Zhou C, Wu YL, Сhen G et al. Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer (OPTIMAL, CTONG-0802): a multicenter, open-label, randomized, phase 3 study. Lancet Oncol 2011; 12: 735–42.
80. Wu YL, Zhou C, Hu CP et al. Afatinib versus cisplatin plus gemcitabine for first-line treatment of Asian patients with advanced non-small-cell lung cancer harboring EGFR mutations (LUX-lung 6): an open-label, randomized phase 3 trial. Lancet Oncol 2014; 15 (2): 213–22.
81. Rosell R, Carcereny E, Gervais R et al. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutations-positive non-small-cell lung cancer (EURTAC): a multicenter, open-label, randomized phase 3 trial. Lancet Oncol 2012; 13: 239–46.
82. Park K, Ton E, O'Byrne K et al. Afatinib vs gefitinib as first-line treatment for patients with EGFR mutation-positive non-small-cell lung cancer (LUX-Lung 7): a phase 2B, open-label, randomized controlled trial. Lancet Oncol 2016; 17 (5): 577–89.
83. Della Corte CM, Bellevicine C, Vicidomini G et al. SMO gene amplification and activation of the henghog pathway as novel mechanisms of resistance to anti-epidermal growth factor receptor drugs in human lung cancer. Clin Cancer Res 2015; 21 (20): 4686–97.
84. Niederst MJ, Sequist LV, Poirier JT et al. RB loss in resistant EGFR mutant lung adenocarcinomas that transform to small-cell lung cancer. Nat Commun 2015; 6.
85. Lee J-K, Lee J, Kim A et al. Clonal history and genetic predictors of transformation into small-cell carcinomas from lung adenocarcinomas. J Clin Oncol 2017; 35 (26): 3065–74.
86. Gandara DR, Li T, Lara PN et al. Acquired resistance to targeted therapies against oncogene-driven non-small-cell lung cancer: approach to subtyping progressive disease and clinical implications. Clin Lung Cancer 2014; 15 (1): 1–6.
87. Yang J-J, Chen H-J, Yan H-H et al. Clinical models of EGFR tyrosine kinase inhibitor failure and subsequent management in advanced non small cell lung cancer. Lung Cancer 2013; 79 (1): 33–9.
88. Asami K, Okuma T, Hirashima T et al. Continued treatment with gefitinib beyond progressive disease benefits patients with activating EGFR mutations. Lung Cancer 2013; 79 (3): 276–82.
89. Yoshida T, Yoh K, Niho S et al. RECIST progression patterns during EGFR tyrosine kinase inhibitor treatment of advanced non-small cell lung cancer patients harboring an EGFR mutation. Lung Cancer 2015; 90 (3): 477–83.
90. Lo PC, Dahlberg SE, Nishino M et al. Delay of treatment change after objective progression on first-line erlotinib in epidermal growth factor receptor-mutant lung cancer. Cancer 2015; 121 (15): 2570–7.
91. Al-Halabi H, Sayegh K, Digamurthy SR et al. Pattern of failure analysis in metastatic EGFR-mutant lung cancer treated with tyrosine kinase inhibitors to identify candidates for consolidation stereotactic body radiation therapy. J Thorac Oncol 2015; 10 (11): 1601–7.
92. Lee YJ, Choi HJ, Kim SK et al. Frequent central nervous system failure after clinical benefit with epidermal growth factor receptor tyrosine kinase inhibitors in Korean patients with non-small-cell lung cancer. Cancer 2010; 116 (5): 1336–43.
93. Shukuya T, Takahashi T, Naito T et al. Continuous EGFR-TKI administration following radiotherapy for non-small cell lung cancer patients with isolated CNS failure. Lung Cancer 2011; 74 (3): 457–61.
94. Riely GJ et al. Prospective assessment of discontinuation and reinitiation of erlotinib or gefitinib in patients with acquired resistance to erlotinib or gefitinib followed by the addition of everolimus. Clin Cancer Res 2007; 13: 5150–5.
95. Park K, Yu C-J, Kim S-W et al. First-line erlotinib therapy until and beyond response evaluation criteria in solid tumors progression in Asian patients with epidermal growth factor receptor mutation-positive non-small cell lung cancer: the ASPIRATION study. JAMA Oncol 2016; 2 (3): 305–12.
96. Park K et al. Oral presentation at the European Society of Medical Oncology 2014 Congress.
97. Liu SY, Wu YL. Lung Cancer Manag 2015; 4: 51–3.
98. Nishie K, Kawaguchi T, Tamiya A et al. Epidermal growth factor receptor tyrosine kinase inhibitors beyond progressive disease: a retrospective analysis for Japanese patients with activating EGFR mutations. J Thorac Oncol 2012; 7 (11): 1722–7.
99. Westover D, Zugazagoitia J, Cho BC et al. Mechanisms of acquired resistance to first- and second-generation EGFR tyrosine kinase inhibitors. Ann of Oncol 29 (Suppl. 1): i10–i19 2018. DOI: 10.1093/annonc/mdx703
100. Maruyama К et al. Anticancer Res 2009; 29: 4217–21.
101. Moiseenko V.M. i dr. Vopr. onkologii. 2015; 61 (2): 259–64. [in Russian]
102. Weickhardt AJ, Scheier B, Burke JM et al. Local ablative therapy of oligoprogressive disease prolongs disease control by tyrosine kinase inhibitors in oncogene-addicted non-small-cell lung cancer. J Thorac Oncol 2012; 7 (12): 1807–14.
103. Helena AY, Sima CS, Huang J et al. Local therapy with continued EGFR tyrosine kinase inhibitor therapy as a treatment strategy in EGFR-mutant advanced lung cancers that have developed acquired resistance to EGFR tyrosine kinase inhibitors. J Thorac Oncol 2013; 8 (3): 346–51.
104. Conforti F, Catania C, Toffalorio F et al. EGFR tyrosine kinase inhibitors beyond focal progression obtain a prolonged disease control in patients with advanced adenocarcinoma of the lung. Lung Cancer 2013; 81 (3): 440–4.
105. Novello S, Barlesi F, Califano R et al. Metastatic non-small-cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2016; 27 (Suppl. 5): v1–v27.
106. Ettinger DS, Wood DE, Aisner DL et al. NCCN Clinical Practice Guidelines in Oncology (NCCN guidelines). Non small Cell Lung. Cancer 2017; 9. http: //www.nccn.org
107. Grommes C, Oxnard GR, Kris MG et al. "Pulsatile" high-dose weekly erlotinib for CNS metastases fr om EGFR mutant non-small cell lung cancer. Neuro-Oncology 2011; 13 (12): 1364–9.
108. Hata A, Kaji R, Fujita S et al. High-dose erlotinib for refractory brain metastases in a patient with relapsed non-small cell lung cancer. J Thorac Oncol 2011; 6 (3): 653–4.
109. Jackman DM, Holmes AJ, Lindeman N et al. Response and resistance in a non-small-cell lung cancer patient with an epidermal growth factor receptor mutation and leptomeningeal metastases treated with high-dose gefitinib. J Clin Oncol 2006; 24 (27): 4517–20.
Авторы
Е.В.Карабина*1, Л.Н.Любченко2,3, А.Н.Гарунов1
1 ГУЗ «Тульский областной онкологический диспансер». 300053, Россия, Тула, ул. Яблочкова, д. 1Б;
2 ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н.Н.Блохина» Минздрава России. 115478, Россия, Москва, Каширское ш., д. 23;
3 ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М.Сеченова» Минздрава России. 119991, Россия, Москва, ул. Трубецкая, д. 8, стр. 2
*kev-251@yandex.ru
________________________________________________
E.V.Karabina*1, L.N.Lubchenko2,3, A.N.Garunov1
1 Tula Regional Oncology Center. 300053, Russian Federation, Tula, ul. Yablochkova, d. 1B;
2 N.N.Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation. 115478, Russian Federation, Moscow, Kashirskoe sh., d. 23;
3 I.M.Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation. 119991, Russian Federation, Moscow, ul. Trubetskaia, d. 8, str. 2
*kev-251@yandex.ru