Материалы доступны только для специалистов сферы здравоохранения.
Чтобы посмотреть материал полностью
Авторизуйтесь
или зарегистрируйтесь.
Потенциал использования онколитических вирусов при раке молочной железы: исторические аспекты и будущие перспективы (обзор литературы)
Потенциал использования онколитических вирусов при раке молочной железы: исторические аспекты и будущие перспективы (обзор литературы)
Морозов Д.А., Колядина И.В., Поддубная И.В. и др. Потенциал использования онколитических вирусов при раке молочной железы: исторические аспекты и будущие перспективы (обзор литературы). Современная Онкология. 2019; 21 (1): 31–35. DOI: 10.26442/18151434.2019.1.190299
________________________________________________
Материалы доступны только для специалистов сферы здравоохранения.
Чтобы посмотреть материал полностью
Авторизуйтесь
или зарегистрируйтесь.
Аннотация
Вирусный онколизис, подход к терапии онкологических заболеваний, возникший в XX в. и основанный на естественной способности вирусов убивать (лизировать) клетки, в которых он размножается, свое развитие получил в последние годы благодаря выявлению вирусов или их инженерных вариантов с избирательной опухолевой репликацией. За последние десятилетия описан ряд специфических взаимодействий онколитических вирусов – ОВ (как РНК-, так и ДНК-содержащих) с клетками злокачественных опухолей, выявлены отдельные вирусы-кандидаты и лизируемые ими типы опухолей. Терапевтическая эффективность ОВ достигается за счет комбинации селективного уничтожения опухолевых клеток посредством прямого цитотоксического эффекта и активации противоопухолевого иммунитета; кроме того, ОВ могут влиять на абберантные сигнальные пути с последующей блокадой апоптоза опухолевой клетки, что дает вирусу больше времени для завершения своего жизненного цикла. Ряд ОВ показали многообещающую терапевтическую эффективность в доклинических исследованиях при раке молочной железы; так, вирус простого герпеса обладает высокой селективностью к репликации в опухолевых клетках, что способствует гибели и образованию инфильтрации CD8+ и CD4+ Т-клеток вокруг опухолевых островков. Обнаружена способность реовирусов усиливать экспрессию в клетках белка PD-L1, а вирус кори, вооруженный геном проапоптоза BNiP3, более активен в клеточных линиях тройного негативного рака молочной железы. Улучшенные вирусы с точки зрения эффективности и селективности воздействия на опухоль, а также оптимизированные комбинации с другими «стандартными» видами системной терапии представляются весьма перспективными, особенно у больных с развившейся лекарственной резистентностью.
Ключевые слова: рак молочной железы, резистентность к лекарственной терапии, онколитические вирусы, механизмы онколизиса ДНК- и РНК-содержащих вирусов, тройной негативный рак.
Key words: breast cancer, resistance to systemic therapy therapy, oncolytic viruses, oncolysis mechanisms of DNA and RNA viruses, triple negative cancer.
Ключевые слова: рак молочной железы, резистентность к лекарственной терапии, онколитические вирусы, механизмы онколизиса ДНК- и РНК-содержащих вирусов, тройной негативный рак.
________________________________________________
Key words: breast cancer, resistance to systemic therapy therapy, oncolytic viruses, oncolysis mechanisms of DNA and RNA viruses, triple negative cancer.
Полный текст
Список литературы
1. Нетесов С.В., Кочнева Г.В., Локтев В.Б. и др. Онколитические вирусы: достижения и проблемы. Медицинский алфавит. Эпидемиология и санитария. 2011; 3: 26–33.
[Netesov S.V., Kochneva G.V., Loktev V.B. et al. Onkoliticheskie virusy: dostizheniia i problemy. Meditsinskii alfavit. Epidemiologiia i sanitariia. 2011; 3: 26–33 (in Russian).]
2. Lawler S, Speranza M, Cho Ch et al. Oncolytic Viruses in Cancer Treatment A Review JAMA Oncol 2017; 3 (6): 841–9.
3. Ворошилова М.К. Полезные для организма непатогенные штаммы энтеровирусов: профилактическое и лечебное их применение. М., 1988; с. 24–9.
[Voroshilova M.K. Poleznye dlia organizma nepatogennye shtammy enterovirusov: profilakticheskoe i lechebnoe ikh primenenie. Moscow, 1988; s. 24–9 (in Russian).]
4. Martuza RL et al. Experimental therapy of human glioma by means of a genetically engineered virus mutant. Science 1991; 252: 854–6.
5. Advances in the mechanisms of action of cancer targeting oncolytic viruses. Oncology Letters 2018; 15: 4053–60.
6. Takeda K, Akira S. Toll‐Like Receptors. Curr Protoc Immunol 2015; 109: 14.12.1– 14.12.10.
7. Moanaro Biswas, Sandeep R.P. Kumar, Adria Allen et al. Cell-Type-Specific Innate Immune Responseto Oncolytic Newcastle Disease Virus. Viral Immunology 2012; 25 (4): 268–76.
8. Inoue H, Tani K. Multimodal immunogenic cancer cell death as a consequence of anticancer cytotoxic treatments. Cell death and differentiation 2013; 21 (1): 39–49.
9. Pestka S, Langer JA, Zoon KC, Samuel CE. Interferons and their actions. Ann Rev Biochem 1987; 56: 727.
10. Pikor LA, Bell JC, Diallo J-S. Oncolytic Viruses: Exploiting Cancer's Deal with the Devil. Trends in Cancer 2015; 1 (4).
11. Yu W, Fang H. Clinical trials with oncolytic adenovirus in China. Curr Cancer Drug Targets 2007; 7 (2): 141–8.
12. Kuhn I, Harden P, Bauzon M et al. Directed evolution generates a novel oncolytic virus for the treatment of colon cancer. PLoS One 2008.
13. Ranki T, Kanerva, A, Ristimäki A et al. A heparan sulfate-targeted conditionally replicative adenovirus, Ad5.pk7-Delta24, for the treatment of advanced breast cancer. Gene Ther 2006; 14 (1): 58–67.
14. Murphy AM, Rabkin SD. Current status of gene therapy for brain tumors. Translational research. J Lab Clin Med 2012; 161 (4): 339–54.
15. Smakman N et al. KRAS (D13) Promotes apoptosis of human colorectal tumor cells by ReovirusT3D and oxaliplatin but not by tumor necrosis factor-related apoptosisinducing ligand. Cancer Res 2006; 66 (10): 5403–8.
16. Brown MC, Dobrikova EY, Dobrikov MI et al. Oncolytic polio virotherapy of cancer. Cancer 2014; 120 (21): 3277–86.
17. Brown MC, Gromeier M. Cytotoxic and immunogenic mechanisms of recombinant oncolytic poliovirus. Curr Opin Virol 2015; 13: 81–5.
18. Siegel RL, Miller KD, Jemal A. Cancer Statistics, 2016. CA Cancer J Clin 2016; 66: 7–30.
19. Колядина И.В., Андреева Ю.Ю., Франк Г.А., Поддубная И.В. Роль биологической гетерогенности при рецидивирующем и метастатическом раке молочной железы. Архив патологии. 2018; 80 (6): 62–7.
[Kolyadina I.V., Andreeva Iu.Iu., Frank G.A., Poddubnaia I.V. Rol' biologicheskoi geterogennosti pri retsidiviruiushchem i metastaticheskom rake molochnoi zhelezy. Arkhiv patologii. 2018; 80 (6): 62–7 (in Russian).]
20. Колядина И.В., Поддубная И.В. Роль капецитабина и эрибулина в лечении метастатического HER2-негативного распространенного рака молочной железы. Современная Онкология. 2018; 20 (3): 26–9. DOI: 10.26442/1815-1434_2018.3.26-29
[Kolyadina I.V., Poddubnaya I.V. The role of capecitabine and eribulin in the treatment of metastatic HER2-negative metastatic breast cancer. Journal of Modern Oncology. 2018; 20 (3): 26–29. DOI: 10.26442/1815-1434_2018.3.26-29 (in Russian).]
21. Eissa I, Bustos-Villalobos I, Ichinose T et al. The Current Status and Future Prospects of Oncolytic Viruses in Clinical Trials against Melanoma, Glioma, Pancreatic, and Breast Cancers. Cancers 2018; 10: 356. DOI: 10.3390/cancers10100356
22. Nakao A, Kimata H, Imai T et al. Intratumoral Injection of Herpes Simplex Virus HF10 in Recurrent Breast Cancer. Ann Oncol 2004; 15: 988–9.
23. Ahmed A. Mostafa, Meyers DE et al. Oncolytic Reovirus and Immune Checkpoint Inhibition as a Novel Immunotherapeutic Strategy for Breast Cancer. Cancers 2018; 10: 205.
24. Shashi Gujara, Jonathan G. Pol, Guido Kroemer. Heating it up: Oncolytic viruses make tumors ‘hot’ and suitable for checkpoint blockade immunotherapies. Oncoimmunology 2018; 7 (8).
25. Gollamudi R, Ghalib MH, Desai KK et al. Intravenous Administration of Reolysin®, a Live Replication Competent RNA Virus is Safe in Patients with Advanced Solid Tumors. Invest New Drugs 2010; 28: 641–9.
26. Bernstein V, Ellard SL, Dent SF et al. A Randomized Phase II Study of Weekly Paclitaxel with or without Pelareorep in Patients with Metastatic Breast Cancer: Final Analysis of Canadian Cancer Trials Group IND. 213. Breast Cancer Res Treat 2018; 167: 485–93.
27. Lal G, Rajala MS. Combination of Oncolytic Measles Virus Armed With BNiP3, a Pro-apoptotic Gene and Paclitaxel Induces Breast Cancer Cell Death. Front Oncol 2019; 8: 676.
28. Martin NT, Roy DG, Workenhe ST et al. Pre-surgical neoadjuvant oncolytic virotherapy confers protection against rechallenge in a murine model of breast cancer. Scientific Reports 2019; 9: 1865.
2. Lawler S, Speranza M, Cho Ch et al. Oncolytic Viruses in Cancer Treatment A Review JAMA Oncol 2017; 3 (6): 841–9.
3. Voroshilova M.K. Poleznye dlia organizma nepatogennye shtammy enterovirusov: profilakticheskoe i lechebnoe ikh primenenie. Moscow, 1988; s. 24–9 (in Russian).
4. Martuza RL et al. Experimental therapy of human glioma by means of a genetically engineered virus mutant. Science 1991; 252: 854–6.
5. Advances in the mechanisms of action of cancer targeting oncolytic viruses. Oncology Letters 2018; 15: 4053–60.
6. Takeda K, Akira S. Toll‐Like Receptors. Curr Protoc Immunol 2015; 109: 14.12.1– 14.12.10.
7. Moanaro Biswas, Sandeep R.P. Kumar, Adria Allen et al. Cell-Type-Specific Innate Immune Responseto Oncolytic Newcastle Disease Virus. Viral Immunology 2012; 25 (4): 268–76.
8. Inoue H, Tani K. Multimodal immunogenic cancer cell death as a consequence of anticancer cytotoxic treatments. Cell death and differentiation 2013; 21 (1): 39–49.
9. Pestka S, Langer JA, Zoon KC, Samuel CE. Interferons and their actions. Ann Rev Biochem 1987; 56: 727.
10. Pikor LA, Bell JC, Diallo J-S. Oncolytic Viruses: Exploiting Cancer's Deal with the Devil. Trends in Cancer 2015; 1 (4).
11. Yu W, Fang H. Clinical trials with oncolytic adenovirus in China. Curr Cancer Drug Targets 2007; 7 (2): 141–8.
12. Kuhn I, Harden P, Bauzon M et al. Directed evolution generates a novel oncolytic virus for the treatment of colon cancer. PLoS One 2008.
13. Ranki T, Kanerva, A, Ristimäki A et al. A heparan sulfate-targeted conditionally replicative adenovirus, Ad5.pk7-Delta24, for the treatment of advanced breast cancer. Gene Ther 2006; 14 (1): 58–67.
14. Murphy AM, Rabkin SD. Current status of gene therapy for brain tumors. Translational research. J Lab Clin Med 2012; 161 (4): 339–54.
15. Smakman N et al. KRAS (D13) Promotes apoptosis of human colorectal tumor cells by ReovirusT3D and oxaliplatin but not by tumor necrosis factor-related apoptosisinducing ligand. Cancer Res 2006; 66 (10): 5403–8.
16. Brown MC, Dobrikova EY, Dobrikov MI et al. Oncolytic polio virotherapy of cancer. Cancer 2014; 120 (21): 3277–86.
17. Brown MC, Gromeier M. Cytotoxic and immunogenic mechanisms of recombinant oncolytic poliovirus. Curr Opin Virol 2015; 13: 81–5.
18. Siegel RL, Miller KD, Jemal A. Cancer Statistics, 2016. CA Cancer J Clin 2016; 66: 7–30.
19. Kolyadina I.V., Andreeva Iu.Iu., Frank G.A., Poddubnaia I.V. Rol' biologicheskoi geterogennosti pri retsidiviruiushchem i metastaticheskom rake molochnoi zhelezy. Arkhiv patologii. 2018; 80 (6): 62–7 (in Russian).
20. Kolyadina I.V., Poddubnaya I.V. The role of capecitabine and eribulin in the treatment of metastatic HER2-negative metastatic breast cancer. Journal of Modern Oncology. 2018; 20 (3): 26–29. DOI: 10.26442/1815-1434_2018.3.26-29 (in Russian).
21. Eissa I, Bustos-Villalobos I, Ichinose T et al. The Current Status and Future Prospects of Oncolytic Viruses in Clinical Trials against Melanoma, Glioma, Pancreatic, and Breast Cancers. Cancers 2018; 10: 356. DOI: 10.3390/cancers10100356
22. Nakao A, Kimata H, Imai T et al. Intratumoral Injection of Herpes Simplex Virus HF10 in Recurrent Breast Cancer. Ann Oncol 2004; 15: 988–9.
23. Ahmed A. Mostafa, Meyers DE et al. Oncolytic Reovirus and Immune Checkpoint Inhibition as a Novel Immunotherapeutic Strategy for Breast Cancer. Cancers 2018; 10: 205.
24. Shashi Gujara, Jonathan G. Pol, Guido Kroemer. Heating it up: Oncolytic viruses make tumors ‘hot’ and suitable for checkpoint blockade immunotherapies. Oncoimmunology 2018; 7 (8).
25. Gollamudi R, Ghalib MH, Desai KK et al. Intravenous Administration of Reolysin®, a Live Replication Competent RNA Virus is Safe in Patients with Advanced Solid Tumors. Invest New Drugs 2010; 28: 641–9.
26. Bernstein V, Ellard SL, Dent SF et al. A Randomized Phase II Study of Weekly Paclitaxel with or without Pelareorep in Patients with Metastatic Breast Cancer: Final Analysis of Canadian Cancer Trials Group IND. 213. Breast Cancer Res Treat 2018; 167: 485–93.
27. Lal G, Rajala MS. Combination of Oncolytic Measles Virus Armed With BNiP3, a Pro-apoptotic Gene and Paclitaxel Induces Breast Cancer Cell Death. Front Oncol 2019; 8: 676.
28. Martin NT, Roy DG, Workenhe ST et al. Pre-surgical neoadjuvant oncolytic virotherapy confers protection against rechallenge in a murine model of breast cancer. Scientific Reports 2019; 9: 1865.
[Netesov S.V., Kochneva G.V., Loktev V.B. et al. Onkoliticheskie virusy: dostizheniia i problemy. Meditsinskii alfavit. Epidemiologiia i sanitariia. 2011; 3: 26–33 (in Russian).]
2. Lawler S, Speranza M, Cho Ch et al. Oncolytic Viruses in Cancer Treatment A Review JAMA Oncol 2017; 3 (6): 841–9.
3. Ворошилова М.К. Полезные для организма непатогенные штаммы энтеровирусов: профилактическое и лечебное их применение. М., 1988; с. 24–9.
[Voroshilova M.K. Poleznye dlia organizma nepatogennye shtammy enterovirusov: profilakticheskoe i lechebnoe ikh primenenie. Moscow, 1988; s. 24–9 (in Russian).]
4. Martuza RL et al. Experimental therapy of human glioma by means of a genetically engineered virus mutant. Science 1991; 252: 854–6.
5. Advances in the mechanisms of action of cancer targeting oncolytic viruses. Oncology Letters 2018; 15: 4053–60.
6. Takeda K, Akira S. Toll‐Like Receptors. Curr Protoc Immunol 2015; 109: 14.12.1– 14.12.10.
7. Moanaro Biswas, Sandeep R.P. Kumar, Adria Allen et al. Cell-Type-Specific Innate Immune Responseto Oncolytic Newcastle Disease Virus. Viral Immunology 2012; 25 (4): 268–76.
8. Inoue H, Tani K. Multimodal immunogenic cancer cell death as a consequence of anticancer cytotoxic treatments. Cell death and differentiation 2013; 21 (1): 39–49.
9. Pestka S, Langer JA, Zoon KC, Samuel CE. Interferons and their actions. Ann Rev Biochem 1987; 56: 727.
10. Pikor LA, Bell JC, Diallo J-S. Oncolytic Viruses: Exploiting Cancer's Deal with the Devil. Trends in Cancer 2015; 1 (4).
11. Yu W, Fang H. Clinical trials with oncolytic adenovirus in China. Curr Cancer Drug Targets 2007; 7 (2): 141–8.
12. Kuhn I, Harden P, Bauzon M et al. Directed evolution generates a novel oncolytic virus for the treatment of colon cancer. PLoS One 2008.
13. Ranki T, Kanerva, A, Ristimäki A et al. A heparan sulfate-targeted conditionally replicative adenovirus, Ad5.pk7-Delta24, for the treatment of advanced breast cancer. Gene Ther 2006; 14 (1): 58–67.
14. Murphy AM, Rabkin SD. Current status of gene therapy for brain tumors. Translational research. J Lab Clin Med 2012; 161 (4): 339–54.
15. Smakman N et al. KRAS (D13) Promotes apoptosis of human colorectal tumor cells by ReovirusT3D and oxaliplatin but not by tumor necrosis factor-related apoptosisinducing ligand. Cancer Res 2006; 66 (10): 5403–8.
16. Brown MC, Dobrikova EY, Dobrikov MI et al. Oncolytic polio virotherapy of cancer. Cancer 2014; 120 (21): 3277–86.
17. Brown MC, Gromeier M. Cytotoxic and immunogenic mechanisms of recombinant oncolytic poliovirus. Curr Opin Virol 2015; 13: 81–5.
18. Siegel RL, Miller KD, Jemal A. Cancer Statistics, 2016. CA Cancer J Clin 2016; 66: 7–30.
19. Колядина И.В., Андреева Ю.Ю., Франк Г.А., Поддубная И.В. Роль биологической гетерогенности при рецидивирующем и метастатическом раке молочной железы. Архив патологии. 2018; 80 (6): 62–7.
[Kolyadina I.V., Andreeva Iu.Iu., Frank G.A., Poddubnaia I.V. Rol' biologicheskoi geterogennosti pri retsidiviruiushchem i metastaticheskom rake molochnoi zhelezy. Arkhiv patologii. 2018; 80 (6): 62–7 (in Russian).]
20. Колядина И.В., Поддубная И.В. Роль капецитабина и эрибулина в лечении метастатического HER2-негативного распространенного рака молочной железы. Современная Онкология. 2018; 20 (3): 26–9. DOI: 10.26442/1815-1434_2018.3.26-29
[Kolyadina I.V., Poddubnaya I.V. The role of capecitabine and eribulin in the treatment of metastatic HER2-negative metastatic breast cancer. Journal of Modern Oncology. 2018; 20 (3): 26–29. DOI: 10.26442/1815-1434_2018.3.26-29 (in Russian).]
21. Eissa I, Bustos-Villalobos I, Ichinose T et al. The Current Status and Future Prospects of Oncolytic Viruses in Clinical Trials against Melanoma, Glioma, Pancreatic, and Breast Cancers. Cancers 2018; 10: 356. DOI: 10.3390/cancers10100356
22. Nakao A, Kimata H, Imai T et al. Intratumoral Injection of Herpes Simplex Virus HF10 in Recurrent Breast Cancer. Ann Oncol 2004; 15: 988–9.
23. Ahmed A. Mostafa, Meyers DE et al. Oncolytic Reovirus and Immune Checkpoint Inhibition as a Novel Immunotherapeutic Strategy for Breast Cancer. Cancers 2018; 10: 205.
24. Shashi Gujara, Jonathan G. Pol, Guido Kroemer. Heating it up: Oncolytic viruses make tumors ‘hot’ and suitable for checkpoint blockade immunotherapies. Oncoimmunology 2018; 7 (8).
25. Gollamudi R, Ghalib MH, Desai KK et al. Intravenous Administration of Reolysin®, a Live Replication Competent RNA Virus is Safe in Patients with Advanced Solid Tumors. Invest New Drugs 2010; 28: 641–9.
26. Bernstein V, Ellard SL, Dent SF et al. A Randomized Phase II Study of Weekly Paclitaxel with or without Pelareorep in Patients with Metastatic Breast Cancer: Final Analysis of Canadian Cancer Trials Group IND. 213. Breast Cancer Res Treat 2018; 167: 485–93.
27. Lal G, Rajala MS. Combination of Oncolytic Measles Virus Armed With BNiP3, a Pro-apoptotic Gene and Paclitaxel Induces Breast Cancer Cell Death. Front Oncol 2019; 8: 676.
28. Martin NT, Roy DG, Workenhe ST et al. Pre-surgical neoadjuvant oncolytic virotherapy confers protection against rechallenge in a murine model of breast cancer. Scientific Reports 2019; 9: 1865.
________________________________________________
2. Lawler S, Speranza M, Cho Ch et al. Oncolytic Viruses in Cancer Treatment A Review JAMA Oncol 2017; 3 (6): 841–9.
3. Voroshilova M.K. Poleznye dlia organizma nepatogennye shtammy enterovirusov: profilakticheskoe i lechebnoe ikh primenenie. Moscow, 1988; s. 24–9 (in Russian).
4. Martuza RL et al. Experimental therapy of human glioma by means of a genetically engineered virus mutant. Science 1991; 252: 854–6.
5. Advances in the mechanisms of action of cancer targeting oncolytic viruses. Oncology Letters 2018; 15: 4053–60.
6. Takeda K, Akira S. Toll‐Like Receptors. Curr Protoc Immunol 2015; 109: 14.12.1– 14.12.10.
7. Moanaro Biswas, Sandeep R.P. Kumar, Adria Allen et al. Cell-Type-Specific Innate Immune Responseto Oncolytic Newcastle Disease Virus. Viral Immunology 2012; 25 (4): 268–76.
8. Inoue H, Tani K. Multimodal immunogenic cancer cell death as a consequence of anticancer cytotoxic treatments. Cell death and differentiation 2013; 21 (1): 39–49.
9. Pestka S, Langer JA, Zoon KC, Samuel CE. Interferons and their actions. Ann Rev Biochem 1987; 56: 727.
10. Pikor LA, Bell JC, Diallo J-S. Oncolytic Viruses: Exploiting Cancer's Deal with the Devil. Trends in Cancer 2015; 1 (4).
11. Yu W, Fang H. Clinical trials with oncolytic adenovirus in China. Curr Cancer Drug Targets 2007; 7 (2): 141–8.
12. Kuhn I, Harden P, Bauzon M et al. Directed evolution generates a novel oncolytic virus for the treatment of colon cancer. PLoS One 2008.
13. Ranki T, Kanerva, A, Ristimäki A et al. A heparan sulfate-targeted conditionally replicative adenovirus, Ad5.pk7-Delta24, for the treatment of advanced breast cancer. Gene Ther 2006; 14 (1): 58–67.
14. Murphy AM, Rabkin SD. Current status of gene therapy for brain tumors. Translational research. J Lab Clin Med 2012; 161 (4): 339–54.
15. Smakman N et al. KRAS (D13) Promotes apoptosis of human colorectal tumor cells by ReovirusT3D and oxaliplatin but not by tumor necrosis factor-related apoptosisinducing ligand. Cancer Res 2006; 66 (10): 5403–8.
16. Brown MC, Dobrikova EY, Dobrikov MI et al. Oncolytic polio virotherapy of cancer. Cancer 2014; 120 (21): 3277–86.
17. Brown MC, Gromeier M. Cytotoxic and immunogenic mechanisms of recombinant oncolytic poliovirus. Curr Opin Virol 2015; 13: 81–5.
18. Siegel RL, Miller KD, Jemal A. Cancer Statistics, 2016. CA Cancer J Clin 2016; 66: 7–30.
19. Kolyadina I.V., Andreeva Iu.Iu., Frank G.A., Poddubnaia I.V. Rol' biologicheskoi geterogennosti pri retsidiviruiushchem i metastaticheskom rake molochnoi zhelezy. Arkhiv patologii. 2018; 80 (6): 62–7 (in Russian).
20. Kolyadina I.V., Poddubnaya I.V. The role of capecitabine and eribulin in the treatment of metastatic HER2-negative metastatic breast cancer. Journal of Modern Oncology. 2018; 20 (3): 26–29. DOI: 10.26442/1815-1434_2018.3.26-29 (in Russian).
21. Eissa I, Bustos-Villalobos I, Ichinose T et al. The Current Status and Future Prospects of Oncolytic Viruses in Clinical Trials against Melanoma, Glioma, Pancreatic, and Breast Cancers. Cancers 2018; 10: 356. DOI: 10.3390/cancers10100356
22. Nakao A, Kimata H, Imai T et al. Intratumoral Injection of Herpes Simplex Virus HF10 in Recurrent Breast Cancer. Ann Oncol 2004; 15: 988–9.
23. Ahmed A. Mostafa, Meyers DE et al. Oncolytic Reovirus and Immune Checkpoint Inhibition as a Novel Immunotherapeutic Strategy for Breast Cancer. Cancers 2018; 10: 205.
24. Shashi Gujara, Jonathan G. Pol, Guido Kroemer. Heating it up: Oncolytic viruses make tumors ‘hot’ and suitable for checkpoint blockade immunotherapies. Oncoimmunology 2018; 7 (8).
25. Gollamudi R, Ghalib MH, Desai KK et al. Intravenous Administration of Reolysin®, a Live Replication Competent RNA Virus is Safe in Patients with Advanced Solid Tumors. Invest New Drugs 2010; 28: 641–9.
26. Bernstein V, Ellard SL, Dent SF et al. A Randomized Phase II Study of Weekly Paclitaxel with or without Pelareorep in Patients with Metastatic Breast Cancer: Final Analysis of Canadian Cancer Trials Group IND. 213. Breast Cancer Res Treat 2018; 167: 485–93.
27. Lal G, Rajala MS. Combination of Oncolytic Measles Virus Armed With BNiP3, a Pro-apoptotic Gene and Paclitaxel Induces Breast Cancer Cell Death. Front Oncol 2019; 8: 676.
28. Martin NT, Roy DG, Workenhe ST et al. Pre-surgical neoadjuvant oncolytic virotherapy confers protection against rechallenge in a murine model of breast cancer. Scientific Reports 2019; 9: 1865.
Авторы
Д.А.Морозов1,2, И.В.Колядина*1,2, И.В.Поддубная1,2, П.М.Чумаков3, Г.В.Ильинская3, В.Ю.Бохян2, М.И.Сопова4
1 ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России. 125993, Россия, Москва, ул. Баррикадная, д. 2/1;
2 ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н.Н.Блохина» Минздрава России. 115478, Россия, Москва, Каширское ш., д. 23;
3 ФГБУ «Институт молекулярной биологии им. В.А.Энгельгардта» РАН. 119991, Россия, Москва, ул. Вавилова, д. 32;
4 ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М.Сеченова» Минздрава России. 119991, Россия, Москва, ул. Трубецкая, д. 8, стр. 2
*irinakolyadina@yandex.ru
1 Russian Medical Academy of Continuous Professional Education of the Ministry of Health of the Russian Federation. 2/1, Barrikadnaia st., Moscow, 125993, Russian Federation;
2 N.N.Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation. 23, Kashirskoe h., Moscow, 115478, Russian Federation;
3 V.A.Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences. 32, Vavilova st., Moscow, 119991, Russian Federation;
4 I.M.Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation. 8, bld. 2, Trubetskaia st., Moscow, 119991, Russian Federation
*irinakolyadina@yandex.ru
1 ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России. 125993, Россия, Москва, ул. Баррикадная, д. 2/1;
2 ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н.Н.Блохина» Минздрава России. 115478, Россия, Москва, Каширское ш., д. 23;
3 ФГБУ «Институт молекулярной биологии им. В.А.Энгельгардта» РАН. 119991, Россия, Москва, ул. Вавилова, д. 32;
4 ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М.Сеченова» Минздрава России. 119991, Россия, Москва, ул. Трубецкая, д. 8, стр. 2
*irinakolyadina@yandex.ru
________________________________________________
1 Russian Medical Academy of Continuous Professional Education of the Ministry of Health of the Russian Federation. 2/1, Barrikadnaia st., Moscow, 125993, Russian Federation;
2 N.N.Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation. 23, Kashirskoe h., Moscow, 115478, Russian Federation;
3 V.A.Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences. 32, Vavilova st., Moscow, 119991, Russian Federation;
4 I.M.Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation. 8, bld. 2, Trubetskaia st., Moscow, 119991, Russian Federation
*irinakolyadina@yandex.ru
Цель портала OmniDoctor – предоставление профессиональной информации врачам, провизорам и фармацевтам.
