Материалы доступны только для специалистов сферы здравоохранения.
Чтобы посмотреть материал полностью
Авторизуйтесь
или зарегистрируйтесь.
Иммунотерапия в комбинации с химиотерапией при раке молочной железы с тройным негативным фенотипом – первая «таргетная» терапия, но только для «таргетной» популяции
Иммунотерапия в комбинации с химиотерапией при раке молочной железы с тройным негативным фенотипом – первая «таргетная» терапия, но только для «таргетной» популяции
Гречухина К.С., Жукова Л.Г. Иммунотерапия в комбинации с химиотерапией при раке молочной железы с тройным негативным фенотипом – первая «таргетная» терапия, но только для «таргетной» популяции. Современная Онкология. 2019; 21 (3): 33–37. DOI: 10.26442/18151434.2019.3.190655
________________________________________________
Материалы доступны только для специалистов сферы здравоохранения.
Чтобы посмотреть материал полностью
Авторизуйтесь
или зарегистрируйтесь.
Аннотация
До последнего времени единственным вариантом системной терапии при раке молочной железы (РМЖ) с тройным негативным фенотипом (тройной негативный РМЖ – ТНРМЖ) являлась химиотерапия, причем единый стандарт лечения метастатических форм так и не определен, поэтому подход к лечению остается на усмотрение врача и является эмпирическим, заключаясь в искусном подборе различных комбинаций препаратов. ТНРМЖ печально известен как наименее прогностически благоприятный подтип. Отсутствие при данном виде опухоли экспрессии рецепторов эстрогенов, прогестерона и амплификации гена HER2 делало невозможным применение таргетной терапии, определяющей успехи в лечении люминальных и HER2-позитивного подтипов РМЖ. Полученные данные о потенциальной иммуногенности опухоли при ТНРМЖ позволили начать изучение эффективности иммунотерапии и при этом виде рака. Международное клиническое исследование IMpassion130 не только положило основу развития этого направления в лечении ТНРМЖ, но и позволило определить выигрывающую («таргетную») популяцию больных в отношении одной из самых главных целей нашей терапии – общей выживаемости, увеличение которой так важно для пациенток с этим подтипом РМЖ.
Ключевые слова: рак молочной железы, тройной негативный фенотип, иммунотерапия, PD-L1.
Key words: breast cancer, triple-negative, immunotherapy, PD-L1.
Ключевые слова: рак молочной железы, тройной негативный фенотип, иммунотерапия, PD-L1.
________________________________________________
Key words: breast cancer, triple-negative, immunotherapy, PD-L1.
Полный текст
Список литературы
1. Garrido-Castro AС, Lin NU, Polyak K. Insights into molecular classifications of triple-negative breast cancer: improving patient selection for treatment. Cancer Discov 2019; 9 (2): 176–98.
2. Carey L, Dees E, Sawyer L et al. The triple-negative paradox: primary tumor chemosensitivity of breast cancer subtypes. Clin Cancer Res 2007; 13: 2329–334.
3. Patel SP, Kurzrock R. PD-L1 expression as a predictive biomarker in cancer immunotherapy. Mol Cancer Ther 2015; 14: 847–56.
4. Gibney GT, Weiner LM, Atkins MB. Predictive biomarkers for checkpoint inhibitor-based immunotherapy. Lancet Oncol 2016; 17: e542–51.
5. Reck M, Rodriguez-Abreu D, Robinson A et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med 2016; 375: 1823–3.
6. Criscitiello C, Esposito A, Trapani D et al. Prognostic and predictive value of tumor infiltrating lymphocytes in early breast cancer. Cancer Treat Rev 2016; 50: 205–7.
7. Loi S, Drubay D, Adams S et al. Tumor-infiltrating lymphocytes and prognosis: a pooled individual patient analysis of early-stage triple-negative breast cancers. J Clin Oncol 2019; 37 (7): 559–69.
8. Gu-Trantien C, Loi S, Garaud S et al. CD4⁺ follicular helper T cell infiltration predicts breast cancer survival. J Clin Invest 2013; 123 (7): 2873–92.
9. Melichar B, Studentova H, Kalabova H et al. Predictive and Prognostic Significance of Tumor-infiltrating Lymphocytes in Patients with Breast Cancer Treated with Neoadjuvant Systemic Therapy Anticancer Res March 2014; 34 (3): 1115–25.
10. Ali H, Provenzano E, Dawson S et al. Association between CD8+ T-cell infiltration and breast cancer survival in 12 439 patients. Ann Oncol 2014; 25 (8): 1536–43.
11. Miyashita M, Sasano H, Tamaki K et al. Prognostic significance of tumor-infiltrating CD8+ and FOXP3+ lymphocytes in residual tumors and alterations in these parameters after neoadjuvant chemotherapy in triple- negative breast cancer: a retrospective multicenter study. Breast Cancer Res 2015; 17: 124.
12. Adams S, Gray R, Demaria S et al. Prognostic value of tumor-infiltrating lymphocytes in triple-negative breast cancers fr om two phase III randomized adjuvant breast cancer trials: ECOG 2197 and ECOG 1199. J Clin Oncol 2014; 32 (27): 2959–66.
13. Loi S, Drubay D, Adams S et al. Tumor-Infiltrating Lymphocytes and Prognosis: A Pooled Individual Patient Analysis of Early-Stage Triple-Negative Breast Cancers. J Clin Oncol 2019; 37: 559–69.
14. Ruffel B, Au A, Rugo H et al. Leukocyte composition of human breast cancer. Proc Natl Acad Sci USA 2012; 109: 2796–801.
15. Andre F, Dieci M, Dubsky P et al. Molecular pathways: involvement of immune pathways in the therapeutic response and outcome in breast cancer. Clin Cancer Res 2013; 19 (1): 28–33.
16. Beckers RK, Selinger CI, Vilain R et al. Programmed death ligand 1 expression in triple-negative breast cancer is associated with tumour-infiltrating lymphocytes and improved outcome. Histopathology 2016; 69: 25–34.
17. Mittendorf EA, Philips AV, Meric-Bernstam F et al. PD-L1 expression in triple- negative breast cancer. Cancer Immunol Res 2014; 2: 361–70.
18. Cimino-Mathews А, Thompson E, Taube JM et al. PD-L1 (B7-H1) expression and the immune tumor microenvironment in primary and metastatic breast carcinomas. Hum Pathol 2016; 47: 52–63.
19. Kwa MJ, Adams S. Checkpoint inhibitors in triple-negative breast cancer (TNBC): wh ere to go from here. Cancer 2018; 124: 2086–103.
20. Marra A, Viale G, Curigliano G. Recent advances in triple negative breast cancer: the immunotherapy era. BMC Med 2019; 17 (1): 90.
21. Emens L, Braiteh F, Cassier P et al. Inhibition of PD-L1 by MPDL3280A leads to clinical activity in patients with metastatic triple-negative breast cancer. Presented at San Antonio Breast Cancer Symposium. December 9–13, 2014. San Antonio, TX.
22. Loi S. Host Antitumor Immunity Plays a Role in the Survival of Patients With Newly Diagnosed Triple-Negative Breast Cancer. J Clin Oncol 2014; 32 (27): 2935–7.
23. Nanda R, Chow L, Dees E et al. A phase Ib study of pembrolizumab (MK-3475) in patients with advanced triple-negative breast cancer. 2014; San Antonio, TX: 2014 San Antonio Breast Cancer Symposium.
24. Emens L, Braiteh F, Cassier P et al. Inhibition of PD-L1 by MPDL3280A leads to clinical activity in patients with metastatic triple-negative breast cancer. Cancer Res 2015; 75 (Suppl. 9): abstr PD1–6.
25. Emens L. Breast Cancer Immunotherapy: Facts and Hopes. Clin Cancer Res 2018; 24 (3): 511–20.
26. Schmid P, Adams S, Rugo HS et al. Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer. N Engl J Med 2018; 379: 2108–21.
27. Schmid P, Adams S, Rugo H et al. IMpassion130: updated overall survival (OS) from a global, randomized, double-blind, placebo-controlled, Phase III study of atezolizumab (atezo) + nab-paclitaxel (nP) in previously untreated locally advanced or metastatic triple-negative breast cancer (mTNBC). J Clin Oncol 2019; 27 (suppl; abstr 1003).
28. Emens L, Loi S, Rugo H et al. Abstract GS1-04: IMpassion130: efficacy in immune biomarker subgroups from the global, randomized, double-blind, placebo-controlled, phase III study of atezolizumab + nab-paclitaxel in patients with treatment-naïve, locally advanced or metastatic triple-negative breast cancer. Cancer Res 2019; 79: GS1–04.
29. Ribas A, Hu-Lieskovan S. What does PD-L1 positive or negative mean? J Exp Med 2016; 213: 2835–40.
30. Schmidt P, Cruz C, Braiteh F et al. Abstract 2986: Atezolizumab in metastatic TNBC (mTNBC): Long-term clinical outcomes and biomarker analyses. Cancer Res 2017 (77; 13 Suppl.): 2986.
2. Carey L, Dees E, Sawyer L et al. The triple-negative paradox: primary tumor chemosensitivity of breast cancer subtypes. Clin Cancer Res 2007; 13: 2329–334.
3. Patel SP, Kurzrock R. PD-L1 expression as a predictive biomarker in cancer immunotherapy. Mol Cancer Ther 2015; 14: 847–56.
4. Gibney GT, Weiner LM, Atkins MB. Predictive biomarkers for checkpoint inhibitor-based immunotherapy. Lancet Oncol 2016; 17: e542–51.
5. Reck M, Rodriguez-Abreu D, Robinson A et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med 2016; 375: 1823–3.
6. Criscitiello C, Esposito A, Trapani D et al. Prognostic and predictive value of tumor infiltrating lymphocytes in early breast cancer. Cancer Treat Rev 2016; 50: 205–7.
7. Loi S, Drubay D, Adams S et al. Tumor-infiltrating lymphocytes and prognosis: a pooled individual patient analysis of early-stage triple-negative breast cancers. J Clin Oncol 2019; 37 (7): 559–69.
8. Gu-Trantien C, Loi S, Garaud S et al. CD4⁺ follicular helper T cell infiltration predicts breast cancer survival. J Clin Invest 2013; 123 (7): 2873–92.
9. Melichar B, Studentova H, Kalabova H et al. Predictive and Prognostic Significance of Tumor-infiltrating Lymphocytes in Patients with Breast Cancer Treated with Neoadjuvant Systemic Therapy Anticancer Res March 2014; 34 (3): 1115–25.
10. Ali H, Provenzano E, Dawson S et al. Association between CD8+ T-cell infiltration and breast cancer survival in 12 439 patients. Ann Oncol 2014; 25 (8): 1536–43.
11. Miyashita M, Sasano H, Tamaki K et al. Prognostic significance of tumor-infiltrating CD8+ and FOXP3+ lymphocytes in residual tumors and alterations in these parameters after neoadjuvant chemotherapy in triple- negative breast cancer: a retrospective multicenter study. Breast Cancer Res 2015; 17: 124.
12. Adams S, Gray R, Demaria S et al. Prognostic value of tumor-infiltrating lymphocytes in triple-negative breast cancers fr om two phase III randomized adjuvant breast cancer trials: ECOG 2197 and ECOG 1199. J Clin Oncol 2014; 32 (27): 2959–66.
13. Loi S, Drubay D, Adams S et al. Tumor-Infiltrating Lymphocytes and Prognosis: A Pooled Individual Patient Analysis of Early-Stage Triple-Negative Breast Cancers. J Clin Oncol 2019; 37: 559–69.
14. Ruffel B, Au A, Rugo H et al. Leukocyte composition of human breast cancer. Proc Natl Acad Sci USA 2012; 109: 2796–801.
15. Andre F, Dieci M, Dubsky P et al. Molecular pathways: involvement of immune pathways in the therapeutic response and outcome in breast cancer. Clin Cancer Res 2013; 19 (1): 28–33.
16. Beckers RK, Selinger CI, Vilain R et al. Programmed death ligand 1 expression in triple-negative breast cancer is associated with tumour-infiltrating lymphocytes and improved outcome. Histopathology 2016; 69: 25–34.
17. Mittendorf EA, Philips AV, Meric-Bernstam F et al. PD-L1 expression in triple- negative breast cancer. Cancer Immunol Res 2014; 2: 361–70.
18. Cimino-Mathews А, Thompson E, Taube JM et al. PD-L1 (B7-H1) expression and the immune tumor microenvironment in primary and metastatic breast carcinomas. Hum Pathol 2016; 47: 52–63.
19. Kwa MJ, Adams S. Checkpoint inhibitors in triple-negative breast cancer (TNBC): wh ere to go from here. Cancer 2018; 124: 2086–103.
20. Marra A, Viale G, Curigliano G. Recent advances in triple negative breast cancer: the immunotherapy era. BMC Med 2019; 17 (1): 90.
21. Emens L, Braiteh F, Cassier P et al. Inhibition of PD-L1 by MPDL3280A leads to clinical activity in patients with metastatic triple-negative breast cancer. Presented at San Antonio Breast Cancer Symposium. December 9–13, 2014. San Antonio, TX.
22. Loi S. Host Antitumor Immunity Plays a Role in the Survival of Patients With Newly Diagnosed Triple-Negative Breast Cancer. J Clin Oncol 2014; 32 (27): 2935–7.
23. Nanda R, Chow L, Dees E et al. A phase Ib study of pembrolizumab (MK-3475) in patients with advanced triple-negative breast cancer. 2014; San Antonio, TX: 2014 San Antonio Breast Cancer Symposium.
24. Emens L, Braiteh F, Cassier P et al. Inhibition of PD-L1 by MPDL3280A leads to clinical activity in patients with metastatic triple-negative breast cancer. Cancer Res 2015; 75 (Suppl. 9): abstr PD1–6.
25. Emens L. Breast Cancer Immunotherapy: Facts and Hopes. Clin Cancer Res 2018; 24 (3): 511–20.
26. Schmid P, Adams S, Rugo HS et al. Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer. N Engl J Med 2018; 379: 2108–21.
27. Schmid P, Adams S, Rugo H et al. IMpassion130: updated overall survival (OS) from a global, randomized, double-blind, placebo-controlled, Phase III study of atezolizumab (atezo) + nab-paclitaxel (nP) in previously untreated locally advanced or metastatic triple-negative breast cancer (mTNBC). J Clin Oncol 2019; 27 (suppl; abstr 1003).
28. Emens L, Loi S, Rugo H et al. Abstract GS1-04: IMpassion130: efficacy in immune biomarker subgroups from the global, randomized, double-blind, placebo-controlled, phase III study of atezolizumab + nab-paclitaxel in patients with treatment-naïve, locally advanced or metastatic triple-negative breast cancer. Cancer Res 2019; 79: GS1–04.
29. Ribas A, Hu-Lieskovan S. What does PD-L1 positive or negative mean? J Exp Med 2016; 213: 2835–40.
30. Schmidt P, Cruz C, Braiteh F et al. Abstract 2986: Atezolizumab in metastatic TNBC (mTNBC): Long-term clinical outcomes and biomarker analyses. Cancer Res 2017 (77; 13 Suppl.): 2986.
2. Carey L, Dees E, Sawyer L et al. The triple-negative paradox: primary tumor chemosensitivity of breast cancer subtypes. Clin Cancer Res 2007; 13: 2329–334.
3. Patel SP, Kurzrock R. PD-L1 expression as a predictive biomarker in cancer immunotherapy. Mol Cancer Ther 2015; 14: 847–56.
4. Gibney GT, Weiner LM, Atkins MB. Predictive biomarkers for checkpoint inhibitor-based immunotherapy. Lancet Oncol 2016; 17: e542–51.
5. Reck M, Rodriguez-Abreu D, Robinson A et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med 2016; 375: 1823–3.
6. Criscitiello C, Esposito A, Trapani D et al. Prognostic and predictive value of tumor infiltrating lymphocytes in early breast cancer. Cancer Treat Rev 2016; 50: 205–7.
7. Loi S, Drubay D, Adams S et al. Tumor-infiltrating lymphocytes and prognosis: a pooled individual patient analysis of early-stage triple-negative breast cancers. J Clin Oncol 2019; 37 (7): 559–69.
8. Gu-Trantien C, Loi S, Garaud S et al. CD4⁺ follicular helper T cell infiltration predicts breast cancer survival. J Clin Invest 2013; 123 (7): 2873–92.
9. Melichar B, Studentova H, Kalabova H et al. Predictive and Prognostic Significance of Tumor-infiltrating Lymphocytes in Patients with Breast Cancer Treated with Neoadjuvant Systemic Therapy Anticancer Res March 2014; 34 (3): 1115–25.
10. Ali H, Provenzano E, Dawson S et al. Association between CD8+ T-cell infiltration and breast cancer survival in 12 439 patients. Ann Oncol 2014; 25 (8): 1536–43.
11. Miyashita M, Sasano H, Tamaki K et al. Prognostic significance of tumor-infiltrating CD8+ and FOXP3+ lymphocytes in residual tumors and alterations in these parameters after neoadjuvant chemotherapy in triple- negative breast cancer: a retrospective multicenter study. Breast Cancer Res 2015; 17: 124.
12. Adams S, Gray R, Demaria S et al. Prognostic value of tumor-infiltrating lymphocytes in triple-negative breast cancers fr om two phase III randomized adjuvant breast cancer trials: ECOG 2197 and ECOG 1199. J Clin Oncol 2014; 32 (27): 2959–66.
13. Loi S, Drubay D, Adams S et al. Tumor-Infiltrating Lymphocytes and Prognosis: A Pooled Individual Patient Analysis of Early-Stage Triple-Negative Breast Cancers. J Clin Oncol 2019; 37: 559–69.
14. Ruffel B, Au A, Rugo H et al. Leukocyte composition of human breast cancer. Proc Natl Acad Sci USA 2012; 109: 2796–801.
15. Andre F, Dieci M, Dubsky P et al. Molecular pathways: involvement of immune pathways in the therapeutic response and outcome in breast cancer. Clin Cancer Res 2013; 19 (1): 28–33.
16. Beckers RK, Selinger CI, Vilain R et al. Programmed death ligand 1 expression in triple-negative breast cancer is associated with tumour-infiltrating lymphocytes and improved outcome. Histopathology 2016; 69: 25–34.
17. Mittendorf EA, Philips AV, Meric-Bernstam F et al. PD-L1 expression in triple- negative breast cancer. Cancer Immunol Res 2014; 2: 361–70.
18. Cimino-Mathews А, Thompson E, Taube JM et al. PD-L1 (B7-H1) expression and the immune tumor microenvironment in primary and metastatic breast carcinomas. Hum Pathol 2016; 47: 52–63.
19. Kwa MJ, Adams S. Checkpoint inhibitors in triple-negative breast cancer (TNBC): wh ere to go from here. Cancer 2018; 124: 2086–103.
20. Marra A, Viale G, Curigliano G. Recent advances in triple negative breast cancer: the immunotherapy era. BMC Med 2019; 17 (1): 90.
21. Emens L, Braiteh F, Cassier P et al. Inhibition of PD-L1 by MPDL3280A leads to clinical activity in patients with metastatic triple-negative breast cancer. Presented at San Antonio Breast Cancer Symposium. December 9–13, 2014. San Antonio, TX.
22. Loi S. Host Antitumor Immunity Plays a Role in the Survival of Patients With Newly Diagnosed Triple-Negative Breast Cancer. J Clin Oncol 2014; 32 (27): 2935–7.
23. Nanda R, Chow L, Dees E et al. A phase Ib study of pembrolizumab (MK-3475) in patients with advanced triple-negative breast cancer. 2014; San Antonio, TX: 2014 San Antonio Breast Cancer Symposium.
24. Emens L, Braiteh F, Cassier P et al. Inhibition of PD-L1 by MPDL3280A leads to clinical activity in patients with metastatic triple-negative breast cancer. Cancer Res 2015; 75 (Suppl. 9): abstr PD1–6.
25. Emens L. Breast Cancer Immunotherapy: Facts and Hopes. Clin Cancer Res 2018; 24 (3): 511–20.
26. Schmid P, Adams S, Rugo HS et al. Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer. N Engl J Med 2018; 379: 2108–21.
27. Schmid P, Adams S, Rugo H et al. IMpassion130: updated overall survival (OS) from a global, randomized, double-blind, placebo-controlled, Phase III study of atezolizumab (atezo) + nab-paclitaxel (nP) in previously untreated locally advanced or metastatic triple-negative breast cancer (mTNBC). J Clin Oncol 2019; 27 (suppl; abstr 1003).
28. Emens L, Loi S, Rugo H et al. Abstract GS1-04: IMpassion130: efficacy in immune biomarker subgroups from the global, randomized, double-blind, placebo-controlled, phase III study of atezolizumab + nab-paclitaxel in patients with treatment-naïve, locally advanced or metastatic triple-negative breast cancer. Cancer Res 2019; 79: GS1–04.
29. Ribas A, Hu-Lieskovan S. What does PD-L1 positive or negative mean? J Exp Med 2016; 213: 2835–40.
30. Schmidt P, Cruz C, Braiteh F et al. Abstract 2986: Atezolizumab in metastatic TNBC (mTNBC): Long-term clinical outcomes and biomarker analyses. Cancer Res 2017 (77; 13 Suppl.): 2986.
________________________________________________
2. Carey L, Dees E, Sawyer L et al. The triple-negative paradox: primary tumor chemosensitivity of breast cancer subtypes. Clin Cancer Res 2007; 13: 2329–334.
3. Patel SP, Kurzrock R. PD-L1 expression as a predictive biomarker in cancer immunotherapy. Mol Cancer Ther 2015; 14: 847–56.
4. Gibney GT, Weiner LM, Atkins MB. Predictive biomarkers for checkpoint inhibitor-based immunotherapy. Lancet Oncol 2016; 17: e542–51.
5. Reck M, Rodriguez-Abreu D, Robinson A et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med 2016; 375: 1823–3.
6. Criscitiello C, Esposito A, Trapani D et al. Prognostic and predictive value of tumor infiltrating lymphocytes in early breast cancer. Cancer Treat Rev 2016; 50: 205–7.
7. Loi S, Drubay D, Adams S et al. Tumor-infiltrating lymphocytes and prognosis: a pooled individual patient analysis of early-stage triple-negative breast cancers. J Clin Oncol 2019; 37 (7): 559–69.
8. Gu-Trantien C, Loi S, Garaud S et al. CD4⁺ follicular helper T cell infiltration predicts breast cancer survival. J Clin Invest 2013; 123 (7): 2873–92.
9. Melichar B, Studentova H, Kalabova H et al. Predictive and Prognostic Significance of Tumor-infiltrating Lymphocytes in Patients with Breast Cancer Treated with Neoadjuvant Systemic Therapy Anticancer Res March 2014; 34 (3): 1115–25.
10. Ali H, Provenzano E, Dawson S et al. Association between CD8+ T-cell infiltration and breast cancer survival in 12 439 patients. Ann Oncol 2014; 25 (8): 1536–43.
11. Miyashita M, Sasano H, Tamaki K et al. Prognostic significance of tumor-infiltrating CD8+ and FOXP3+ lymphocytes in residual tumors and alterations in these parameters after neoadjuvant chemotherapy in triple- negative breast cancer: a retrospective multicenter study. Breast Cancer Res 2015; 17: 124.
12. Adams S, Gray R, Demaria S et al. Prognostic value of tumor-infiltrating lymphocytes in triple-negative breast cancers fr om two phase III randomized adjuvant breast cancer trials: ECOG 2197 and ECOG 1199. J Clin Oncol 2014; 32 (27): 2959–66.
13. Loi S, Drubay D, Adams S et al. Tumor-Infiltrating Lymphocytes and Prognosis: A Pooled Individual Patient Analysis of Early-Stage Triple-Negative Breast Cancers. J Clin Oncol 2019; 37: 559–69.
14. Ruffel B, Au A, Rugo H et al. Leukocyte composition of human breast cancer. Proc Natl Acad Sci USA 2012; 109: 2796–801.
15. Andre F, Dieci M, Dubsky P et al. Molecular pathways: involvement of immune pathways in the therapeutic response and outcome in breast cancer. Clin Cancer Res 2013; 19 (1): 28–33.
16. Beckers RK, Selinger CI, Vilain R et al. Programmed death ligand 1 expression in triple-negative breast cancer is associated with tumour-infiltrating lymphocytes and improved outcome. Histopathology 2016; 69: 25–34.
17. Mittendorf EA, Philips AV, Meric-Bernstam F et al. PD-L1 expression in triple- negative breast cancer. Cancer Immunol Res 2014; 2: 361–70.
18. Cimino-Mathews А, Thompson E, Taube JM et al. PD-L1 (B7-H1) expression and the immune tumor microenvironment in primary and metastatic breast carcinomas. Hum Pathol 2016; 47: 52–63.
19. Kwa MJ, Adams S. Checkpoint inhibitors in triple-negative breast cancer (TNBC): wh ere to go from here. Cancer 2018; 124: 2086–103.
20. Marra A, Viale G, Curigliano G. Recent advances in triple negative breast cancer: the immunotherapy era. BMC Med 2019; 17 (1): 90.
21. Emens L, Braiteh F, Cassier P et al. Inhibition of PD-L1 by MPDL3280A leads to clinical activity in patients with metastatic triple-negative breast cancer. Presented at San Antonio Breast Cancer Symposium. December 9–13, 2014. San Antonio, TX.
22. Loi S. Host Antitumor Immunity Plays a Role in the Survival of Patients With Newly Diagnosed Triple-Negative Breast Cancer. J Clin Oncol 2014; 32 (27): 2935–7.
23. Nanda R, Chow L, Dees E et al. A phase Ib study of pembrolizumab (MK-3475) in patients with advanced triple-negative breast cancer. 2014; San Antonio, TX: 2014 San Antonio Breast Cancer Symposium.
24. Emens L, Braiteh F, Cassier P et al. Inhibition of PD-L1 by MPDL3280A leads to clinical activity in patients with metastatic triple-negative breast cancer. Cancer Res 2015; 75 (Suppl. 9): abstr PD1–6.
25. Emens L. Breast Cancer Immunotherapy: Facts and Hopes. Clin Cancer Res 2018; 24 (3): 511–20.
26. Schmid P, Adams S, Rugo HS et al. Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer. N Engl J Med 2018; 379: 2108–21.
27. Schmid P, Adams S, Rugo H et al. IMpassion130: updated overall survival (OS) from a global, randomized, double-blind, placebo-controlled, Phase III study of atezolizumab (atezo) + nab-paclitaxel (nP) in previously untreated locally advanced or metastatic triple-negative breast cancer (mTNBC). J Clin Oncol 2019; 27 (suppl; abstr 1003).
28. Emens L, Loi S, Rugo H et al. Abstract GS1-04: IMpassion130: efficacy in immune biomarker subgroups from the global, randomized, double-blind, placebo-controlled, phase III study of atezolizumab + nab-paclitaxel in patients with treatment-naïve, locally advanced or metastatic triple-negative breast cancer. Cancer Res 2019; 79: GS1–04.
29. Ribas A, Hu-Lieskovan S. What does PD-L1 positive or negative mean? J Exp Med 2016; 213: 2835–40.
30. Schmidt P, Cruz C, Braiteh F et al. Abstract 2986: Atezolizumab in metastatic TNBC (mTNBC): Long-term clinical outcomes and biomarker analyses. Cancer Res 2017 (77; 13 Suppl.): 2986.
Авторы
К.С. Гречухина*, Л.Г. Жукова
ГБУЗ «Московский клинический научный центр им. А.С. Логинова», Москва, Россия
*dr.grechukhina@gmail.com
Loginov Moscow Clinical Scientific Center, Moscow, Russia
*dr.grechukhina@gmail.com
ГБУЗ «Московский клинический научный центр им. А.С. Логинова», Москва, Россия
*dr.grechukhina@gmail.com
________________________________________________
Loginov Moscow Clinical Scientific Center, Moscow, Russia
*dr.grechukhina@gmail.com
Цель портала OmniDoctor – предоставление профессиональной информации врачам, провизорам и фармацевтам.
