Aliyeva G.S., Korzhenkova G.P., Kolyadina I.V. Complex radiologic imaging of early breast cancer (literature review). Journal of Modern Oncology. 2019; 21 (3): 26–32. DOI: 10.26442/18151434.2019.3.190469
Комплексная лучевая диагностика раннего рака молочной железы (обзор литературы)
Aliyeva G.S., Korzhenkova G.P., Kolyadina I.V. Complex radiologic imaging of early breast cancer (literature review). Journal of Modern Oncology. 2019; 21 (3): 26–32. DOI: 10.26442/18151434.2019.3.190469
Клинико-рентгенологическая диагностика раннего рака молочной железы – РМЖ (неинвазивных форм и инвазивных раков малых размеров) сложна ввиду отсутствия какой-либо характерной клинической симптоматики и скудности патогномоничных рентгенологических признаков злокачественного процесса. Скрининг РМЖ показал себя как один из самых успешных проектов по ранней диагностике злокачественных новообразований, однако вероятность получения ложноотрицательных результатов скрининговой маммографии достигает 12%, что, с одной стороны, обусловлено интервальными раками, а с другой – дефектами первичного обследования. Среди факторов, ассоциирующихся с вероятностью неэффективного обследования при подозрении на РМЖ, большинство авторов выделяют высокую плотность молочной железы, предшествующую биопсию молочной железы по поводу доброкачественного процесса, молодой возраст, а также применение заместительной гормонотерапии. К основным методам инструментальной диагностики РМЖ относят маммографию, ультразвуковое исследование (УЗИ), магнитно-резонансную (МРТ) и позитронно-эмиссионную томографию (ПЭТ). Маммография является «золотым стандартом» как для проведения скрининга, так и для уточняющей диагностики, но характеризуется высокой долей как ложноположительных, так и ложноотрицательных результатов, что может быть частично решено применением цифровой маммографии с томосинтезом (выполнением серии маммографических снимков подвижным аппаратом под разными углами и преобразованием данных в трехмерное изображение). Маммография с контрастным усилением позволяет оценить ангиогенез в зоне предполагаемого опухолевого очага, но характеризуется высокой лучевой нагрузкой. Ультразвуковое исследование молочных желез характеризуется низкой специфичностью метода и большой зависимостью результата интерпретации данных от квалификации врача. МРТ молочных желез с целью скрининга характеризуется высокой чувствительностью, но и высокой стоимостью и достаточно высокой долей ложноположительных результатов. Роль ПЭТ/компьютерной томографии в диагностике раннего РМЖ остается неясной, а информативность исследований у пациенток с непальпируемыми новообразованиями – крайне низкой. Рентгенологическая картина раннего РМЖ является широко вариабельной; к характерным признакам относят наличие кластеров кальцификатов, узлов с заостренными краями, многоузловых плотных образований. Однако у значительной доли пациенток единственное проявление раннего РМЖ – наличие микрокальцинатов. Тщательный анализ локализации микрокальцинатов, их формы и основных характеристик позволяет правильно трактовать рентгенологический диагноз и выбрать оптимальный лечебно-диагностический алгоритм.
Ключевые слова: скрининг рака молочной железы, микрокальцинаты, рентгенологические признаки раннего рака молочной железы, маммография, ультразвуковое исследование молочных желез, магнитно-резонансная томография молочных желез, позитронно-эмиссионная томография в диагностике рака молочной железы.
________________________________________________
Clinicoroentgenological diagnosis of early breast cancer – BC (non-invasive or invasive small-sized cancers) is difficult due to the absence of any characteristic clinical symptoms and pathognomonic roentgenological signs of the malignant process. Screening of BC has shown to be one of the most successful projects for early diagnosis of malignancies, but the probability to receive false negative results using screening mammography reaches 12%, and, on the one hand, this is due to interval cancers, and on the other hand – to defects in the primary screening. Among the factors associated with the likelihood of ineffective screening of BC, the most authors highlight such as high breast density, preceding the breast biopsy for a benign process, young age, as well as the use of hormone replacement therapy. The main methods of instrumental BC diagnostics are mammography, ultrasound (US), magnetic resonance imaging (MRI) and positron emission tomography (PET). Mammography is the "gold standard" for both screening and best diagnostics, but is characterized by a high proportion of both false positive and false negative results, and this can be partially solved by the use of digital mammography with tomosynthesis (performing a series of mammography images obtained at different angles and producing the focused 3-D images). Contrast enhanced mammography allows to identify angiogenesis in the area of the predicted malignancy, but is characterized by a high radiation exposure. Breast ultrasound is characterized by low specificity of the method and the high dependence of the result of data interpretation depending on physician qualifications. MRI of the breast for screening is characterized by high sensitivity, but also high cost and high proportion of false positive results. The role of PET/computer tomography in the diagnosis of early BC remains unclear, and the informative value of research in patients with nonpalpable tumors is extremely low. The roentgenological picture of early BC is widely variable; characteristic features include the presence of clustered calcifications, lumps with jagged edges, rough multinodular lumps. However, in a significant proportion of women the only manifestation of early BC is the presence of microcalcinates. Careful analysis of the localization and the shape of microcalcinates and basic characteristics allows correctly interpret the roentgenological diagnosis and helps to choose the optimal diagnostic and treatment algorithm.
Key words: breast cancer screening, microcalcinates, the roentgenologic early signs of breast cancer, mammography, breast ultrasound, magnetic resonance imaging of the breast, positron emission tomography in breast cancer.
1. GLOBOCAN 2018; IACR, WHO, 2018. http://gco.iarc.fr/today
2. Злокачественные новообразования в России в 2017 году (заболеваемость и смертность). Под ред. А.Д.Каприна, В.В.Старинского, Г.В.Петровой. М.: МНИОИ им. П.А. Герцена – филиал ФГБУ «НМИЦ радиологии» Минздрава России, 2018.
[Malignant neoplasms in Russia in 2017 (morbidity and mortality). Ed. A.D.Kaprin, V.V.Stalinskii, G.V.Petrov. Moscow, Herzen MNIOI – branch of NMHC, 2018 (in Russian).]
3. Gotzsche PC, Jorgensen KJ. Screening for breast cancer with mammography. Cochrane Database Syst Rev 2013; 6: CD001877.
4. Humphrey LL, Helfand M, Chan BK et al. Breast cancer screening: a summary of the evidence for the U.S. Preventive Services Task Force. Ann Intern Med 2002; 137 (5 Part 1): 347–60.
5. Slawson DC, Coates ML. Efficacy of screening mammography. J Fam Pract 1995; 40 (6): 602–3.
6. Nelson HD, O'Meara ES, Kerlikowske K et al. Factors Associated With Rates of False-Positive and False-Negative Results From Digital Mammography Screening: An Analysis of Registry Data. Ann Intern Med 2016; 164 (4): 226–35.
7. Chan CH, Coopey SB, Freer PE et al. False-negative rate of combined mammography and ultrasound for women with palpable breast masses. Breast Cancer Res Treat 2015; 153 (3): 699–702.
8. Christiansen CL, Wang F, Barton MB et al. Predicting the cumulative risk of false-positive mammograms. J Natl Cancer Ins 2000; 92 (20): 1657–66.
9. Lång K, Nergården M, Andersson I et al. False positives in breast cancer screening with one-view breast tomosynthesis: An analysis of findings leading to recall, work-up and biopsy rates in the Malmö Breast Tomosynthesis Screening Trial. Eur Radiol 2016; 26 (11): 3899–907.
10. Hofvind S, Skaane P, Vitak B et al. Influence of review design on percentages of missed interval breast cancers: retrospective study of interval cancers in a population-based screening program. Radiology 2005; 237 (2): 437–43.
11. Rosenberg K. Ten-year risk of false positive screening mammograms and clinical breast examinations. J Nurse Midwifery 1998; 43 (5): 394–5.
12. Колядина И.В., Поддубная И.В., Комов Д.В. Скрининг рака молочной железы: мировой опыт и перспективы. Рос. онкологический журн. 2015; 20 (1): 42–6.
[Kolyadina I.V., Poddubnaya I.V., Komov D.V. Skrining raka molochnoi zhelezy: mirovoi opyt i perspektivy. Ros. onkologicheskii zhurn. 2015; 20 (1): 42–6 (in Russian).]
13. Chiou SY, Chou YH, Chiou HJ et al. Sonographic features of nonpalpable breast cancer: a study based on ultrasound-guided wire-localized surgical biopsies. Ultrasound Med Biol 2006; 32 (9): 1299–306.
14. Hoff SR, Abrahamsen AL, Samset JH et al. Breast cancer: missed interval and screening-detected cancer at full-field digital mammography and screen-film mammography – results from a retrospective review. Radiology 2012; 264 (2): 378–86.
15. Mandelson MT, Oestreicher N, Porter PL et al. Breast density as a predictor of mammographic detection: comparison of interval- and screen-detected cancers. J Natl Cancer Inst 2000; 92 (13): 1081–7.
16. Holm J, Humphreys K, Li J et al. Risk factors and tumor characteristics of interval cancers by mammographic density. J Clin Oncol 2015; 33 (9): 1030–7.
17. Henderson LM, Hubbard RA, Sprague BL et al. Increased Risk of Developing Breast Cancer after a False-Positive Screening Mammogram. Cancer Epidemiol Biomarkers Prev 2015; 24 (12): 1882–9.
18. Wanders JOP, Holland K, Karssemeijer N et al. The effect of volumetric breast density on the risk of screen-detected and interval breast cancers: a cohort study. Breast Cancer Res 2017; 19 (1): 67.
19. Pettersson A, Graff RE, Ursin G et al. Mammographic density phenotypes and risk of breast cancer: a meta-analysis. J Natl Cancer Inst 2014; 106 (5).
20. Meeson S, Young KC, Wallis MG et al. Image features of true positive and false negative cancers in screening mammograms. Br J Radiol 2003; 76 (901): 13–21.
21. Boyd NF, Huszti E, Melnichouk O et al. Mammographic features associated with interval breast cancers in screening programs. Breast Cancer Res 2014; 16 (4): 417.
22. Boyd NF. Mammographic density and risk of breast cancer. Am Soc Clin Oncol Educ Book 2013.
23. Melnikow J, Fenton JJ, Whitlock EP et al. Supplemental Screening for Breast Cancer in Women With Dense Breasts: A Systematic Review for the U.S. Preventive Services Task Force. Ann Intern Med 2016; 164 (4): 268–78.
24. Sickles E, D'Orsi C, Bassett L et al. ACR BI-RADSR Atlas, Breast imaging reporting and data system. Reston, VA: American College of Radiology, 2013; p. 39–48.
25. Gubern-Merida A, Kallenberg M, Platel B et al. Volumetric breast density estimation from full-field digital mammograms: a validation study. PLoS One 2014; 9 (1): e85952.
26. Strand F, Humphreys K, Cheddad A et al. Novel mammographic image features differentiate between interval and screen-detected breast cancer: a case-case study. Breast Cancer Res 2016; 18 (1): 100.
27. Wang L. Early Diagnosis of Breast Cancer. Sensors (Basel) 2017; 17 (7).
28. Gilbert FJ, Tucker L, Gillan MG et al. The TOMMY trial: a comparison of TOMosynthesis with digital MammographY in the UK NHS Breast Screening Programme – a multicentre retrospective reading study comparing the diagnostic performance of digital breast tomosynthesis and digital mammography with digital mammography alone. Health Technol Assess 2015; 19 (4): 1–136.
29. Ciatto S, Houssami N, Bernardi D et al. Integration of 3D digital mammography with tomosynthesis for population breast-cancer screening (STORM): a prospective comparison study. Lancet Oncol 2013; 14 (7): 583–9.
30. Lalji UC, Houben IP, Prevos R et al. Contrast-enhanced spectral mammography in recalls from the Dutch breast cancer screening program: validation of results in a large multireader, multicase study. Eur Radiol 2016; 26 (12): 4371–9.
31. Lobbes MB, Smidt ML, Houwers J et al. Contrast enhanced mammography: techniques, current results, and potential indications. Clin Radiol 2013; 68 (9): 935–44.
32. Tagliafico AS, Bignotti B, Rossi F et al. Diagnostic performance of contrast-enhanced spectral mammography: Systematic review and meta-analysis. Breast 2016; 28: 13–9.
33. Ohuchi N, Suzuki A, Sobue T et al. Sensitivity and specificity of mammography and adjunctive ultrasonography to screen for breast cancer in the Japan Strategic Anti-cancer Randomized Trial (J-START): a randomised controlled trial. Lancet 2016; 387 (10016): 341–8.
34. Hooley RJ, Scoutt LM, Philpotts LE. Breast ultrasonography: state of the art. Radiology 2013; 268 (3): 642–59.
35. Gong X, Xu Q, Xu Z et al. Real-time elastography for the differentiation of benign and malignant breast lesions: a meta-analysis. Breast Cancer Res Treat 2011; 130 (1): 11–8.
36. Колядина И.В., Комов Д.В., Поддубная И.В. и др. Клиническая семиотика и предоперационная хирургическая диагностика рака молочной железы I стадии. Рос. онкологический журн. 2013; 4: 17–20.
[Kolyadina I.V., Komov D.V., Poddubnaya I.V. et al. Klinicheskaia semiotika i predoperatsionnaia khirurgicheskaia diagnostika raka molochnoi zhelezy I stadii. Ros. onkologicheskii zhurn. 2013; 4: 17–20 (in Russian).]
37. Ricci P, Maggini E, Mancuso E et al. Clinical application of breast elastography: state of the art. Eur J Radiol 2014; 83 (3): 429–37.
38. Itoh A, Ueno E, Tohno E et al. Breast disease: clinical application of US elastography for diagnosis. Radiology 2006; 239 (2): 341–50.
39. Fleury Ede F, Fleury JC, Piato S et al. New elastographic classification of breast lesions during and after compression. Diagn Interv Radiol 2009; 15 (2): 96–103.
40. Raza S, Odulate A, Ong E.M et al. Using real-time tissue elastography for breast lesion evaluation: our initial experience. J Ultrasound Med 2010; 29 (4): 551–63.
41. Ciurea AI, Bolboaca SD, Ciortea CA et al. The influence of technical factors on sonoelastographic assessment of solid breast nodules. Ultraschall Med 2011; 32 (Suppl. 1): S27–34.
42. Zhao QL, Ruan LT, Zhang H et al. Diagnosis of solid breast lesions by elastography 5-point score and strain ratio method. Eur J Radiol 2012; 81 (11): 3245–9.
43. Strigel RM, Rollenhagen JBurnside ES et al. Screening Breast MRI Outcomes in Routine Clinical Practice: Comparison to BI-RADS Benchmarks. Acad Radiol 2017; 24 (4): 411–7.
44. Ontario HQ. Cancer screening with digital mammography for women at average risk for breast cancer, magnetic resonance imaging (MRI) for women at high risk: an evidence-based analysis. Ont Health Technol Assess Ser 2010; 10 (3): 1.
45. Raikhlin A, Curpen B, Warner E et al. Breast MRI as an adjunct to mammography for breast cancer screening in high-risk patients: retrospective review. AJR Am J Roentgenol 2015; 204 (4): 889–97.
46. Warner E, Plewes DB, Hill KA et al. Surveillance of BRCA1 and BRCA2 mutation carriers with magnetic resonance imaging, ultrasound, mammography, and clinical breast examination. JAMA 2004; 292 (11): 1317–25.
47. Peng NJ, Chou CP, Pan HB et al. FDG‐PET/CT detection of very early breast cancer in women with breast microcalcification lesions found in mammography screening. J Med Imaging Radiat Oncol 2015; 59 (4): 445–52.
48. Groves AM, Shastry M, Ben-Haim S et al. Defining the role of PET-CT in staging early breast cancer. Oncologist 2012; 17 (5): 613–9.
49. Groheux D, Giacchetti S, Moretti JL et al. Correlation of high 18F-FDG uptake to clinical, pathological and biological prognostic factors in breast cancer. Eur J Nucl Med Mol Imaging 2011; 38 (3): 426–35.
50. Carkaci S, Macapinlac HA, Cristofanilli M et al. Retrospective study of 18F-FDG PET/CT in the diagnosis of inflammatory breast cancer: preliminary data. J Nucl Med 2009; 50 (2): 231–8.
51. Alberini JL, Lerebours F, Wartski M et al. 18F-fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) imaging in the staging and prognosis of inflammatory breast cancer. Cancer 2009; 115 (21): 5038–47.
52. Tchou J, Sonnad SS Bergey MR et al. Degree of tumor FDG uptake correlates with proliferation index in triple negative breast cancer. Mol Imaging Biol 2010; 12 (6): 657–62.
53. Straver ME, Aukema TS, Olmos RA et al. Feasibility of FDG PET/CT to monitor the response of axillary lymph node metastases to neoadjuvant chemotherapy in breast cancer patients. Eur J Nucl Med Mol Imaging 2010; 37 (6): 1069–76.
54. Hodgson NC, Gulenchyn KY. Is there a role for positron emission tomography in breast cancer staging? J Clin Oncol 2008; 26 (5): 712–20.
55. Vercher-Conejero JL, Pelegri-Martinez L, Lopez-Aznar D et al. Positron Emission Tomography in Breast Cancer. Diagnostics (Basel) 2015; 5 (1): 61–83.
56. Sickles EA. Mammographic features of "early" breast cancer. Am J Roentgenol 1984; 143 (3): 461–4.
57. Колядина И.В. Гетерогенность раннего рака молочной железы: биологическое, популяционное и прогностическое значение. Дис. … д-ра мед. наук. М., 2015.
[Kolyadina I.V. Geterogennost' rannego raka molochnoi zhelezy: biologicheskoe, populiatsionnoe i prognosticheskoe znachenie. Dis. … d-ra med. nauk. Moscow, 2015 (in Russian).]
58. Корженкова Г.П. Стандартизация интерпретации маммографического изображения. Кубан. науч. мед. вестн. 2013 (1).
[Korzhenkova G.P. Standartizatsiia interpretatsii mammograficheskogo izobrazheniia. Kuban. nauch. med. vestn. 2013 (1) (in Russian).]
59. Корженкова Г.П. Совершенствование диагностики рака молочной железы в условиях массового маммографического обследования женского населения. Автореф. дис. … д-ра мед. наук. М., 2013.
[Korzhenkova G.P. Sovershenstvovanie diagnostiki raka molochnoi zhelezy v usloviiakh massovogo mammograficheskogo obsledovaniia zhenskogo naseleniia. Avtoref. dis. … d-ra med. nauk. Moscow, 2013 (in Russian).]
60. Корженкова Г.П. Комплексная рентгено-сонографическая диагностика заболеваний молочной железы. М.: СТРОМ, 2004.
[Korzhenkova G.P. Complex x-ray sonographic diagnosis of breast diseases. Moscow: STROM, 2004 (in Russian).]
61. Villeirs G, Mortier M, De Potter C et al. Breast calcifications. J Belge Radiol 1995; 78 (1): 11–7.
62. Оксанчук Е.А., Меских Е.В., Колесник А.Ю. и др. Кальцинаты молочной железы: дифференциальная диагностика и прогностическое значение. Мед. визуализация. 2017; 5: 120–7.
[Oksanchuk E.A., Meskikh E.V., Kolesnik A.Iu. et al. Kal'tsinaty molochnoi zhelezy: differentsial'naia diagnostika i prognosticheskoe znachenie. Med. vizualizatsiia. 2017; 5: 120–7 (in Russian).]
63. Demetri-Lewis A, Slanetz PJ, Eisenberg RL. Breast calcifications: the focal group. AJR Am J Roentgenol 2012; 198 (4): W325–43.
64. Solomon A. Beitrage zur pathologie und klinik des mammakarzinoms. Arch F Kun Chir 1913; 101: 573.
65. Leborgne R. Diagnosis of tumors of the breast by simple roentgenography; calcifications in carcinomas. Am J Roentgenol Radium Ther 1951; 65 (1): 1–11.
66. Burnside ES, Ochsner JE, Fowler KJ et al. Use of microcalcification descriptors in BI-RADS 4th edition to stratify risk of malignancy. Radiology 2007; 242 (2): 388–95.
67. Понедельникова Н., Корженкова Г., Летягин В. и др. Возможности чрескожных методов биопсии в верификации микрокальцинатов молочной железы на дооперационном этапе. Опухоли женской репродуктивной системы. 2011; 2.
[Ponedel'nikova N., Korzhenkova G., Letiagin V. et al. Vozmozhnosti chreskozhnykh metodov biopsii v verifikatsii mikrokal'tsinatov molochnoi zhelezy na dooperatsionnom etape. Opukholi zhenskoi reproduktivnoi sistemy. 2011; 2 (in Russian).]
68. Бухарин Д.Г., Фролова И.Г. Возможности рентгеновской маммографии «малых» форм рака молочной железы на фоне фиброзно-кистозной болезни. Бюл. сиб. мед. 2014; 13 (1).
[Bukharin D.G., Frolova I.G. Vozmozhnosti rentgenovskoi mammografii "malykh" form raka molochnoi zhelezy na fone fibrozno-kistoznoi bolezni. Biul. sib. med. 2014; 13 (1) (in Russian).]
69. Бухарин Д., Величко С., Слонимская Е. и др. Особенности маммографической визуализации «малых» форм рака молочной железы, развившегося на фоне фиброзно-кистозной болезни. Вопр. онкологии. 2011; 57 (5): 664–7.
[Bukharin D., Velichko S., Slonimskaia E. et al. Osobennosti mammograficheskoi vizualizatsii "malykh" form raka molochnoi zhelezy, razvivshegosia na fone fibrozno-kistoznoi bolezni. Vopr. onkologii. 2011; 57 (5): 664–7 (in Russian).]
70. Корженкова Г. Диагностическое значение категорий BI-RADS в ведении пациенток с доброкачественной патологией молочных желез. Опухоли женской репродуктивной системы. 2016; 4.
[Korzhenkova G. Diagnosticheskoe znachenie kategorii BI-RADS v vedenii patsientok s dobrokachestvennoi patologiei molochnykh zhelez. Opukholi zhenskoi reproduktivnoi sistemy. 2016; 4 (in Russian).]
71. Пасынков Д.В., Клюшкин И.В., Бусыгина О.В. Контурный анализ маммографических изображений доброкачественной и злокачественной патологии молочной железы. Казан. мед. журн. 2015; 96 (3).
[Pasynkov D.V., Kliushkin I.V., Busygina O.V. Konturnyi analiz mammograficheskikh izobrazhenii dobrokachestvennoi i zlokachestvennoi patologii molochnoi zhelezy. Kazan. med. zhurn. 2015; 96 (3) (in Russian).]
72. Борисова М.С., Мартынова Н.В., Богданов С.Н. Рентгеновская маммография в диагностике рака молочной железы. Вестник Российского научного центра рентгенорадиологии Минздрава России. 2013; 3 (13).
[Borisova M.S., Martynova N.V., Bogdanov S.N. Rentgenovskaia mammografiia v diagnostike raka molochnoi zhelezy. Vestnik Rossiiskogo nauchnogo tsentra rentgenoradiologii Minzdrava Rossii. 2013; 3 (13) (in Russian).]
73. Bassett LW. Mammographic analysis of calcifications. Radiol Clin North Am 1992; 30 (1): 93–105.
74. Rao AA Feneis J, Lalonde C et al. A pictorial review of changes in the BI-RADS fifth edition. Radiographics 2016; 36 (3): 623–39.
________________________________________________
1. GLOBOCAN 2018; IACR, WHO, 2018. http://gco.iarc.fr/today
2. Malignant neoplasms in Russia in 2017 (morbidity and mortality). Ed. A.D.Kaprin, V.V.Stalinskii, G.V.Petrov. Moscow, Herzen MNIOI – branch of NMHC, 2018 (in Russian).
3. Gotzsche PC, Jorgensen KJ. Screening for breast cancer with mammography. Cochrane Database Syst Rev 2013; 6: CD001877.
4. Humphrey LL, Helfand M, Chan BK et al. Breast cancer screening: a summary of the evidence for the U.S. Preventive Services Task Force. Ann Intern Med 2002; 137 (5 Part 1): 347–60.
5. Slawson DC, Coates ML. Efficacy of screening mammography. J Fam Pract 1995; 40 (6): 602–3.
6. Nelson HD, O'Meara ES, Kerlikowske K et al. Factors Associated With Rates of False-Positive and False-Negative Results From Digital Mammography Screening: An Analysis of Registry Data. Ann Intern Med 2016; 164 (4): 226–35.
7. Chan CH, Coopey SB, Freer PE et al. False-negative rate of combined mammography and ultrasound for women with palpable breast masses. Breast Cancer Res Treat 2015; 153 (3): 699–702.
8. Christiansen CL, Wang F, Barton MB et al. Predicting the cumulative risk of false-positive mammograms. J Natl Cancer Ins 2000; 92 (20): 1657–66.
9. Lång K, Nergården M, Andersson I et al. False positives in breast cancer screening with one-view breast tomosynthesis: An analysis of findings leading to recall, work-up and biopsy rates in the Malmö Breast Tomosynthesis Screening Trial. Eur Radiol 2016; 26 (11): 3899–907.
10. Hofvind S, Skaane P, Vitak B et al. Influence of review design on percentages of missed interval breast cancers: retrospective study of interval cancers in a population-based screening program. Radiology 2005; 237 (2): 437–43.
11. Rosenberg K. Ten-year risk of false positive screening mammograms and clinical breast examinations. J Nurse Midwifery 1998; 43 (5): 394–5.
12. Kolyadina I.V., Poddubnaya I.V., Komov D.V. Skrining raka molochnoi zhelezy: mirovoi opyt i perspektivy. Ros. onkologicheskii zhurn. 2015; 20 (1): 42–6 (in Russian).
13. Chiou SY, Chou YH, Chiou HJ et al. Sonographic features of nonpalpable breast cancer: a study based on ultrasound-guided wire-localized surgical biopsies. Ultrasound Med Biol 2006; 32 (9): 1299–306.
14. Hoff SR, Abrahamsen AL, Samset JH et al. Breast cancer: missed interval and screening-detected cancer at full-field digital mammography and screen-film mammography – results from a retrospective review. Radiology 2012; 264 (2): 378–86.
15. Mandelson MT, Oestreicher N, Porter PL et al. Breast density as a predictor of mammographic detection: comparison of interval- and screen-detected cancers. J Natl Cancer Inst 2000; 92 (13): 1081–7.
16. Holm J, Humphreys K, Li J et al. Risk factors and tumor characteristics of interval cancers by mammographic density. J Clin Oncol 2015; 33 (9): 1030–7.
17. Henderson LM, Hubbard RA, Sprague BL et al. Increased Risk of Developing Breast Cancer after a False-Positive Screening Mammogram. Cancer Epidemiol Biomarkers Prev 2015; 24 (12): 1882–9.
18. Wanders JOP, Holland K, Karssemeijer N et al. The effect of volumetric breast density on the risk of screen-detected and interval breast cancers: a cohort study. Breast Cancer Res 2017; 19 (1): 67.
19. Pettersson A, Graff RE, Ursin G et al. Mammographic density phenotypes and risk of breast cancer: a meta-analysis. J Natl Cancer Inst 2014; 106 (5).
20. Meeson S, Young KC, Wallis MG et al. Image features of true positive and false negative cancers in screening mammograms. Br J Radiol 2003; 76 (901): 13–21.
21. Boyd NF, Huszti E, Melnichouk O et al. Mammographic features associated with interval breast cancers in screening programs. Breast Cancer Res 2014; 16 (4): 417.
22. Boyd NF. Mammographic density and risk of breast cancer. Am Soc Clin Oncol Educ Book 2013.
23. Melnikow J, Fenton JJ, Whitlock EP et al. Supplemental Screening for Breast Cancer in Women With Dense Breasts: A Systematic Review for the U.S. Preventive Services Task Force. Ann Intern Med 2016; 164 (4): 268–78.
24. Sickles E, D'Orsi C, Bassett L et al. ACR BI-RADSR Atlas, Breast imaging reporting and data system. Reston, VA: American College of Radiology, 2013; p. 39–48.
25. Gubern-Merida A, Kallenberg M, Platel B et al. Volumetric breast density estimation from full-field digital mammograms: a validation study. PLoS One 2014; 9 (1): e85952.
26. Strand F, Humphreys K, Cheddad A et al. Novel mammographic image features differentiate between interval and screen-detected breast cancer: a case-case study. Breast Cancer Res 2016; 18 (1): 100.
27. Wang L. Early Diagnosis of Breast Cancer. Sensors (Basel) 2017; 17 (7).
28. Gilbert FJ, Tucker L, Gillan MG et al. The TOMMY trial: a comparison of TOMosynthesis with digital MammographY in the UK NHS Breast Screening Programme – a multicentre retrospective reading study comparing the diagnostic performance of digital breast tomosynthesis and digital mammography with digital mammography alone. Health Technol Assess 2015; 19 (4): 1–136.
29. Ciatto S, Houssami N, Bernardi D et al. Integration of 3D digital mammography with tomosynthesis for population breast-cancer screening (STORM): a prospective comparison study. Lancet Oncol 2013; 14 (7): 583–9.
30. Lalji UC, Houben IP, Prevos R et al. Contrast-enhanced spectral mammography in recalls from the Dutch breast cancer screening program: validation of results in a large multireader, multicase study. Eur Radiol 2016; 26 (12): 4371–9.
31. Lobbes MB, Smidt ML, Houwers J et al. Contrast enhanced mammography: techniques, current results, and potential indications. Clin Radiol 2013; 68 (9): 935–44.
32. Tagliafico AS, Bignotti B, Rossi F et al. Diagnostic performance of contrast-enhanced spectral mammography: Systematic review and meta-analysis. Breast 2016; 28: 13–9.
33. Ohuchi N, Suzuki A, Sobue T et al. Sensitivity and specificity of mammography and adjunctive ultrasonography to screen for breast cancer in the Japan Strategic Anti-cancer Randomized Trial (J-START): a randomised controlled trial. Lancet 2016; 387 (10016): 341–8.
34. Hooley RJ, Scoutt LM, Philpotts LE. Breast ultrasonography: state of the art. Radiology 2013; 268 (3): 642–59.
35. Gong X, Xu Q, Xu Z et al. Real-time elastography for the differentiation of benign and malignant breast lesions: a meta-analysis. Breast Cancer Res Treat 2011; 130 (1): 11–8.
36. Kolyadina I.V., Komov D.V., Poddubnaya I.V. et al. Klinicheskaia semiotika i predoperatsionnaia khirurgicheskaia diagnostika raka molochnoi zhelezy I stadii. Ros. onkologicheskii zhurn. 2013; 4: 17–20 (in Russian).
37. Ricci P, Maggini E, Mancuso E et al. Clinical application of breast elastography: state of the art. Eur J Radiol 2014; 83 (3): 429–37.
38. Itoh A, Ueno E, Tohno E et al. Breast disease: clinical application of US elastography for diagnosis. Radiology 2006; 239 (2): 341–50.
39. Fleury Ede F, Fleury JC, Piato S et al. New elastographic classification of breast lesions during and after compression. Diagn Interv Radiol 2009; 15 (2): 96–103.
40. Raza S, Odulate A, Ong E.M et al. Using real-time tissue elastography for breast lesion evaluation: our initial experience. J Ultrasound Med 2010; 29 (4): 551–63.
41. Ciurea AI, Bolboaca SD, Ciortea CA et al. The influence of technical factors on sonoelastographic assessment of solid breast nodules. Ultraschall Med 2011; 32 (Suppl. 1): S27–34.
42. Zhao QL, Ruan LT, Zhang H et al. Diagnosis of solid breast lesions by elastography 5-point score and strain ratio method. Eur J Radiol 2012; 81 (11): 3245–9.
43. Strigel RM, Rollenhagen JBurnside ES et al. Screening Breast MRI Outcomes in Routine Clinical Practice: Comparison to BI-RADS Benchmarks. Acad Radiol 2017; 24 (4): 411–7.
44. Ontario HQ. Cancer screening with digital mammography for women at average risk for breast cancer, magnetic resonance imaging (MRI) for women at high risk: an evidence-based analysis. Ont Health Technol Assess Ser 2010; 10 (3): 1.
45. Raikhlin A, Curpen B, Warner E et al. Breast MRI as an adjunct to mammography for breast cancer screening in high-risk patients: retrospective review. AJR Am J Roentgenol 2015; 204 (4): 889–97.
46. Warner E, Plewes DB, Hill KA et al. Surveillance of BRCA1 and BRCA2 mutation carriers with magnetic resonance imaging, ultrasound, mammography, and clinical breast examination. JAMA 2004; 292 (11): 1317–25.
47. Peng NJ, Chou CP, Pan HB et al. FDG‐PET/CT detection of very early breast cancer in women with breast microcalcification lesions found in mammography screening. J Med Imaging Radiat Oncol 2015; 59 (4): 445–52.
48. Groves AM, Shastry M, Ben-Haim S et al. Defining the role of PET-CT in staging early breast cancer. Oncologist 2012; 17 (5): 613–9.
49. Groheux D, Giacchetti S, Moretti JL et al. Correlation of high 18F-FDG uptake to clinical, pathological and biological prognostic factors in breast cancer. Eur J Nucl Med Mol Imaging 2011; 38 (3): 426–35.
50. Carkaci S, Macapinlac HA, Cristofanilli M et al. Retrospective study of 18F-FDG PET/CT in the diagnosis of inflammatory breast cancer: preliminary data. J Nucl Med 2009; 50 (2): 231–8.
51. Alberini JL, Lerebours F, Wartski M et al. 18F-fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) imaging in the staging and prognosis of inflammatory breast cancer. Cancer 2009; 115 (21): 5038–47.
52. Tchou J, Sonnad SS Bergey MR et al. Degree of tumor FDG uptake correlates with proliferation index in triple negative breast cancer. Mol Imaging Biol 2010; 12 (6): 657–62.
53. Straver ME, Aukema TS, Olmos RA et al. Feasibility of FDG PET/CT to monitor the response of axillary lymph node metastases to neoadjuvant chemotherapy in breast cancer patients. Eur J Nucl Med Mol Imaging 2010; 37 (6): 1069–76.
54. Hodgson NC, Gulenchyn KY. Is there a role for positron emission tomography in breast cancer staging? J Clin Oncol 2008; 26 (5): 712–20.
55. Vercher-Conejero JL, Pelegri-Martinez L, Lopez-Aznar D et al. Positron Emission Tomography in Breast Cancer. Diagnostics (Basel) 2015; 5 (1): 61–83.
56. Sickles EA. Mammographic features of "early" breast cancer. Am J Roentgenol 1984; 143 (3): 461–4.
57.Kolyadina I.V. Geterogennost' rannego raka molochnoi zhelezy: biologicheskoe, populiatsionnoe i prognosticheskoe znachenie. Dis. … d-ra med. nauk. Moscow, 2015 (in Russian).
58. Korzhenkova G.P. Standartizatsiia interpretatsii mammograficheskogo izobrazheniia. Kuban. nauch. med. vestn. 2013 (1) (in Russian).
59. Korzhenkova G.P. Sovershenstvovanie diagnostiki raka molochnoi zhelezy v usloviiakh massovogo mammograficheskogo obsledovaniia zhenskogo naseleniia. Avtoref. dis. … d-ra med. nauk. Moscow, 2013 (in Russian).
60. Korzhenkova G.P. Complex x-ray sonographic diagnosis of breast diseases. Moscow: STROM, 2004 (in Russian).
61. Villeirs G, Mortier M, De Potter C et al. Breast calcifications. J Belge Radiol 1995; 78 (1): 11–7.
62. Oksanchuk E.A., Meskikh E.V., Kolesnik A.Iu. et al. Kal'tsinaty molochnoi zhelezy: differentsial'naia diagnostika i prognosticheskoe znachenie. Med. vizualizatsiia. 2017; 5: 120–7 (in Russian).
63. Demetri-Lewis A, Slanetz PJ, Eisenberg RL. Breast calcifications: the focal group. AJR Am J Roentgenol 2012; 198 (4): W325–43.
64. Solomon A. Beitrage zur pathologie und klinik des mammakarzinoms. Arch F Kun Chir 1913; 101: 573.
65. Leborgne R. Diagnosis of tumors of the breast by simple roentgenography; calcifications in carcinomas. Am J Roentgenol Radium Ther 1951; 65 (1): 1–11.
66. Burnside ES, Ochsner JE, Fowler KJ et al. Use of microcalcification descriptors in BI-RADS 4th edition to stratify risk of malignancy. Radiology 2007; 242 (2): 388–95.
67. Ponedel'nikova N., Korzhenkova G., Letiagin V. et al. Vozmozhnosti chreskozhnykh metodov biopsii v verifikatsii mikrokal'tsinatov molochnoi zhelezy na dooperatsionnom etape. Opukholi zhenskoi reproduktivnoi sistemy. 2011; 2 (in Russian).
68. Bukharin D.G., Frolova I.G. Vozmozhnosti rentgenovskoi mammografii "malykh" form raka molochnoi zhelezy na fone fibrozno-kistoznoi bolezni. Biul. sib. med. 2014; 13 (1) (in Russian).
69. Bukharin D., Velichko S., Slonimskaia E. et al. Osobennosti mammograficheskoi vizualizatsii "malykh" form raka molochnoi zhelezy, razvivshegosia na fone fibrozno-kistoznoi bolezni. Vopr. onkologii. 2011; 57 (5): 664–7 (in Russian).
70. Korzhenkova G. Diagnosticheskoe znachenie kategorii BI-RADS v vedenii patsientok s dobrokachestvennoi patologiei molochnykh zhelez. Opukholi zhenskoi reproduktivnoi sistemy. 2016; 4 (in Russian).
71. Pasynkov D.V., Kliushkin I.V., Busygina O.V. Konturnyi analiz mammograficheskikh izobrazhenii dobrokachestvennoi i zlokachestvennoi patologii molochnoi zhelezy. Kazan. med. zhurn. 2015; 96 (3) (in Russian).
72. Borisova M.S., Martynova N.V., Bogdanov S.N. Rentgenovskaia mammografiia v diagnostike raka molochnoi zhelezy. Vestnik Rossiiskogo nauchnogo tsentra rentgenoradiologii Minzdrava Rossii. 2013; 3 (13) (in Russian).
73. Bassett LW. Mammographic analysis of calcifications. Radiol Clin North Am 1992; 30 (1): 93–105.
74. Rao AA Feneis J, Lalonde C et al. A pictorial review of changes in the BI-RADS fifth edition. Radiographics 2016; 36 (3): 623–39.
Авторы
Г.С. Алиева*1, Г.П. Корженкова1, И.В. Колядина1,2
1 ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н.Н. Блохина» Минздрава России, Москва, Россия;
2 ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России, Москва, Россия
*gunel.s.alieva@gmail.com
________________________________________________
Giunel S. Aliyeva*1, Galina P. Korzhenkova1, Irina V. Kolyadina1,2
1 Blokhin National Medical Research Center of Oncology, Moscow, Russia;
2 Russian Medical Academy of Continuous Professional Education, Moscow, Russia
*gunel.s.alieva@gmail.com