1. Румянцев П.О., Ильин А.А., Румянцева У.В., Саенко В.А. Рак щитовидной железы: современные подходы к диагностике и лечению. М.: ГЭОТАР-Медиа, 2009.
[Rumyantsev P.O., Ilyin A.A., Rumyantseva U.V., Saenko V.A. Thyroid cancer: modern approaches to diagnosis and treatment. Moscow: GEOTAR-Media, 2009 (in Russian).]
2. Каприн А.Д., Старинский В.В. Злокачественные новообразования в России в 2015 году (заболеваемость и смертность). М.: МНИОИ им. П.А. Герцена – филиал ФГБУ НМИРЦ Минздрава России, 2017; c. 33, 151.
[Kaprin A.D., Starinskiy V.V. Malignant neoplasms in Russia in 2015 (morbidity and mortality). Moscow: MNIOI im. P.A. Gertsena – filial FGBU NMIRTs Minzdrava Rossii, 2017; c. 33, 151 (in Russian).]
3. Allelein S, Ehlers M, Morneau C et al. Measurement of Basal Serum Calcitonin for the Diagnosis of Medullary Thyroid Cancer. Hormone Metab Res 2017; 50 (1): 23–8.
4. Матякин Е.Г., Подвязников С.О. Опухоли щитовидной железы. Онкология: справочник практикующего врача. Под ред. И.В. Поддубной. М.: МЕДпресс-информ, 2009; c. 177–85.
[Matyakin E.G., Podvyaznikov S.O. Tumors of the thyroid gland. Oncology: a handbook of a practicing physician. Ed. I.V. Poddubnaya. Moscow: MEDpress-inform, 2009; p. 177–85 (in Russian).]
5. Бржезовский В.Ж. Опухоли щитовидной железы. Опухоли головы и шеи. 5-е изд., доп. и перераб. М.: Практическая медицина, 2013; с. 339–59.
[Brzhezovsky V.Zh. Tumors of the thyroid gland. Tumors of the head and neck. 5th ed., Add. and revised Moscow: Prakticheskaia meditsina, 2013; p. 339–59 (in Russian).]
6. Бельцевич Д.Г., Ванушко В.Э., Румянцев П.О. и др. Российские клинические рекомендации по диагностике и лечению высокодифференцированного рака щитовидной железы у взрослых. Эндокринная хирургия. 2017; 1 (11): 6–27.
[Bel'tsevich D.G., Vanushko V.E., Rumiantsev P.O. et al. Rossiiskie klinicheskie rekomendatsii po diagnostike i lecheniiu vysokodifferentsirovannogo raka shchitovidnoi zhelezy u vzroslykh. Endokrinnaia khirurgiia. 2017; 1 (11): 6–27 (in Russian).]
7. Алиева С.Б., Алымов Ю.В., Кропотов М.А. и др. Рак щитовидной железы. Онкология. Клинические рекомендации. Под ред. М.И. Давыдова. М.: Издательская группа РОНЦ, 2015; c. 538–47.
[Alieva S.B., Alymov Yu.V., Kropotov M.A. and other Thyroid cancer. Oncology. Clinical guidelines. Ed. M.I. Davydov. Moscow: Publishing group RONTs, 2015; p. 538–47 (in Russian).]
8. Злокачественные опухоли головы и шеи. Под ред. С.О. Подвязникова, А.М. Мудунова, М.В. Болотина и др. Клинические рекомендации по лечению опухолей головы и шеи Общенациональной онкологической сети (США). М.: АБВ-пресс, 2019.
[Malignant tumors of the head and neck. Ed. S.O. Podvyaznikova, A.M. Mudunova, M.V. Bolotina et al. Clinical guidelines for the treatment of head and neck tumors from the National Cancer Network (USA). Moscow: ABV-press, 2019 (in Russian).]
9. Онкология. Клинические рекомендации. Под ред. В.И. Чиссова. М.: ГЭОТАР-Медиа, 2006; c. 125–39.
[Oncology. Clinical guidelines. Ed. IN AND. Chissova. Moscow: GEOTAR-Media, 2006; p. 125–39 (in Russian).]
10. Cooper DS, Doherty GM, Haugen BR et al. Management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid 2006; 16: 109–42.
11. McLeod DS, Watters KF, Carpenter AD et al. Thyrotropin and thyroid cancer diagnosis: a systematic review and dose-response meta-analysis. J Clin Endocrinol Metab 2012; 97: 2682–92. http://www.ncbi.nlm.nih.gov/pubmed/22622023
12. Rinaldi S, Plummer M, Biessy C et al. Thyroid-stimulating hormone, thyroglobulin, and thyroid hormones and risk of differentiated thyroid carcinoma: the EPIC study. J Natl Cancer Inst 2014; 106: dju097. http://www.ncbi.nlm.nih.gov/pubmed/24824312
13. Bonavita JA, Mayo J, Babb J et al. Pattern recognition of benign nodules at ultrasound of the thyroid: which nodules can be left alone? AJR Am J Roentgenol 2009; 193: 207–13. http://www.ncbi.nlm.nih.gov/pubmed/24824312
14. Alexander EK, Cooper D. The importance, and important limitations, of ultrasound imaging for evaluating thyroid nodules. JAMA Intern Med 2013; 173: 1796–7. http://www.ncbi.nlm.nih.gov/pubmed/23979653
15. Friedrich-Rust M, Meyer G, Dauth N et al. Interobserver agreement of Thyroid Imaging Reporting and Data System (TIRADS) and strain elastography for the assessment of thyroid nodules. PLoS One 2013; 8: e77927. http://www.ncbi.nlm.nih.gov/pubmed/24205031
16. Kamran SC, Marqusee E, Kim MI et al. Thyroid nodule size and prediction of cancer. J Clin Endocrinol Metab 2013; 98: 564–70. http://www.ncbi.nlm.nih.gov/pubmed/23275525
17. Yang J, Schnadig V, Logrono R, Wasserman PG. Fine-needle aspiration of thyroid nodules: a study of 4703 patients with histologic and clinical correlations. Cancer 2007; 111: 306–15. http://www.ncbi.nlm.nih.gov/pubmed/17680588
18. Danese D, Sciacchitano S, Farsetti A et al. Diagnostic Accuracy of Conventional Versus Sonography-Guided Fine-Needle Aspiration Biopsy of Thyroid Nodules. Thyroid 1998; 8 (1): 15–21. http://www.ncbi.nlm.nih.gov/pubmed/24205031
19. Trimboli P, D’Aurizio F, Tozzoli R, Giovanella L. Measurement of thyroglobulin, calcitonin, and PTH in FNA washout fluids. Clin Chem Lab Med 2017; 55 (7). http://www.ncbi.nlm.nih.gov/pubmed/24205031
20. Cibas ES, Ali SZ. The 2017 Bethesda System For Reporting Thyroid Cytopathology. Thyroid 2017; 27: 1341–6. http://www.ncbi.nlm.nih.gov/pubmed/29091573
21. Pacini F, Capezzone M, Elisei R et al. Diagnostic 131-iodine whole-body scan may be avoided in thyroid cancer patients who have undetectable stimulated serum Tg levels after initial treatment. J Clin Endocrinol Metab 2002; 87: 1499–501. https://www.ncbi.nlm.nih.gov/pubmed/27581851
22. Giordano TJ, Beaudenon-Huibregtse S, Shinde R et al. Molecular testing for oncogenic gene mutations in thyroid lesions: a case-control validation study in 413 postsurgical specimens. Hum Pathol 2014; 45: 1339–47. http://www.ncbi.nlm.nih.gov/pubmed/24830619
23. Nikiforov YE, Ohori NP, Hodak SP et al. Impact of mutational testing on the diagnosis and management of patients with cytologically indeterminate thyroid nodules: a prospective analysis of 1056 FNA samples. J Clin Endocrinol Metab 2011; 96: 3390–7. http://www.ncbi.nlm.nih.gov/pubmed/21880806
24. Musholt TJ, Fottner C, Weber MM et al. Detection of papillary thyroid carcinoma by analysis of BRAF and RET/PTC1 mutations in fine-needle aspiration biopsies of thyroid nodules. World J Surg 2010; 34: 2595–603. http://www.ncbi.nlm.nih.gov/pubmed/20652698
25. Liu R, Bishop J, Zhu G et al. Mortality Risk Stratification by Combining BRAF V600E and TERT Promoter Mutations in Papillary Thyroid Cancer: Genetic Duet of BRAF and TERT Promoter Mutations in Thyroid Cancer Mortality. JAMA Oncol 2017; 3 (2): 202–8. https://www.ncbi.nlm.nih.gov/pubmed/27581851
26. Vuong HG, Altibi AMA, Duong UNP, Hassell L. Prognostic implication of BRAF and TERT promoter mutation combination in papillary thyroid carcinoma-A meta-analysis. Clin Endocrinol (Oxf) 2017; 87: 411–7. https://www.ncbi.nlm.nih.gov/pubmed/28666074
27. Bilimoria KY, Zanocco K, Sturgeon C. Impact of surgical treatment on outcomes for papillary thyroid cancer. Adv Surg 2008; 42: 1–12. http://www.ncbi.nlm.nih.gov/pubmed/18953806
28. Hay ID, Grant CS, Bergstralh EJ et al. Unilateral total lobectomy: is it sufficient surgical treatment for patients with AMES low-risk papillary thyroid carcinoma? Surgery 1998; 124: 958–64; discussion 964–56. http://www.ncbi.nlm.nih.gov/pubmed/9854569
29. Dackiw AP, Zeiger M. Extent of surgery for differentiated thyroid cancer. Surg Clin North Am 2004; 84: 817–32. http://www.ncbi.nlm.nih.gov/pubmed/15145237
30. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®). Thyroid Carcinoma. Version 3.2019. https://www.ncbi.nlm.nih.gov/pubmed/27581851
31. Cady B. Hayes Martin Lecture. Our AMES is true: how an old concept still hits the mark: or, risk group assignment points the arrow to rational therapy selection in differentiated thyroid cancer. Am J Surg 1997; 174: 462–8. http://www.ncbi.nlm.nih.gov/pubmed/9374215
32. Matsuzu K, Sugino K, Masudo K et al. Thyroid lobectomy for papillary thyroid cancer: long-term follow-up study of 1,088 cases. World J Surg 2014; 38: 68–79. http://www.ncbi.nlm.nih.gov/pubmed/24081532
33. Udelsman R, Lakatos E, Ladenson P. Optimal surgery for papillary thyroid carcinoma. World J Surg 1996; 20: 88–93. http://www.ncbi.nlm.nih.gov/pubmed/8588420
34. Sacks W, Fung CH, Chang JT et al. The Effectiveness of Radioactive Iodine for Treatment of Low-Risk Thyroid Cancer: A Systematic Analysis of the Peer-Reviewed Literature from 1966 to April 2008. Thyroid 2010; 20 (11): 1235–45. http://www.ncbi.nlm.nih.gov/pubmed/24081532
35. Iyer NG, Morris LG, Tuttle RM et al. Rising incidence of second cancers in patients with low-risk (T1N0) thyroid cancer who receive radioactive iodine therapy. Cancer 2011; 117: 4439–46. http://www.ncbi.nlm.nih.gov/pubmed/21432843
36. Shaha AR. Implications of prognostic factors and risk groups in the management of differentiated thyroid cancer. Laryngoscope 2004; 114: 393–402. http://www.ncbi.nlm.nih.gov/pubmed/15091208
37. Scheumann GF, Seeliger H, Musholt TJ et al. Completion thyroidectomy in 131 patients with differentiated thyroid carcinoma. Eur J Surg 1996; 162: 677–84. http://www.ncbi.nlm.nih.gov/pubmed/8908447
38. Mazzaferri EL. Thyroid remnant 131I ablation for papillary and follicular thyroid carcinoma. Thyroid 1997; 7: 265–71. http://www.ncbi.nlm.nih.gov/pubmed/9133698
39. Buffet C, Ghander C, le Marois E, Leenhardt L. Indications for radioiodine administration in follicular-derived thyroid cancer. Annales d’Endocrinologie 2015; 76 (1): 1S2–1S7. DOI: 10.1016/s0003-4266(16)30008-7
40. Castagna MG, Cantara S, Pacini F. Reappraisal of the indication for radioiodine thyroid ablation in differentiated thyroid cancer patients. J Endocrinol Investig 2016; 39 (10): 1087–94. http://www.ncbi.nlm.nih.gov/pubmed/8908447
41. Biondi B, Cooper DS. Benefits of thyrotropin suppression versus the risks of adverse effects in differentiated thyroid cancer. Thyroid 2010; 20: 135–46. http://www.ncbi.nlm.nih.gov/pubmed/20151821
42. Chiu AC, Delpassand ES, Sherman SI. Prognosis and treatment of brain metastases in thyroid carcinoma. J Clin Endocrinol Metab 1997; 82: 3637–42. http://www.ncbi.nlm.nih.gov/pubmed/9360519
43. Lo SS, Lutz ST et al. Expert Panel on Radiation Oncology-Bone Metastases. ACR Appropriateness Criteria (R) spinal bone metastases. J Palliat Med 2013; 16: 9–19. http://www.ncbi.nlm.nih.gov/pubmed/23167547
44. Kebebew E, Greenspan FS, Clark OH et al. Anaplastic thyroid carcinoma. Treatment outcome and prognostic factors. Cancer 2005; 103: 1330–5. http://www.ncbi.nlm.nih.gov/pubmed/15739211
45. Shaha AR. Airway management in anaplastic thyroid carcinoma. Laryngoscope 2008; 118: 1195–8. http://www.ncbi.nlm.nih.gov/pubmed/18438260
46. Junor EJ, Paul J, Reed NS. Anaplastic thyroid carcinoma: 91 patients treated by surgery and radiotherapy. Eur J Surg Oncol 1992; 18: 83–8. http://www.ncbi.nlm.nih.gov/pubmed/1582515
47. Smallridge RC, Ain KB, Asa SL et al. American Thyroid Association guidelines for management of patients with anaplastic thyroid cancer. Thyroid 2012; 22: 1104–39. http://www.ncbi.nlm.nih.gov/pubmed/23130564
48. Ernaga-Lorea A, Hernández-Morhain MC, Anda-Apiñániz E et al. Prognostic value of change in anti-thyroglobulin antibodies after thyroidectomy in patients with papillary thyroid carcinoma. Clin Translational Oncol 2017; 20 (6): 740–4. http://www.ncbi.nlm.nih.gov/pubmed/23130564
49. Pacini F, Lari R, Mazzeo S et al. Diagnostic value of a single serum thyroglobulin determination on and off thyroid suppressive therapy in the follow-up of patients with differentiated thyroid cancer. Clin Endocrinol (Oxf) 1985; 23: 405–11. http://www.ncbi.nlm.nih.gov/pubmed/4064348
50. Kloos RT, Mazzaferri EL. A single recombinant human thyrotropin-stimulated serum thyroglobulin measurement predicts differentiated thyroid carcinoma metastases three to five years later. J Clin Endocrinol Metab 2005; 90: 5047–57. http://www.ncbi.nlm.nih.gov/pubmed/15972576
51. Sherman SI, Tielens ET, Sostre S et al. Clinical utility of posttreatment radioiodine scans in the management of patients with thyroid carcinoma. J Clin Endocrinol Metab 1994; 78: 629–34. http://www.ncbi.nlm.nih.gov/pubmed/8126134
52. OʼConnell TB, OʼDoherty MJ. Differentiated thyroid cancer and pregnancy. Nuclear Med Commun 2000; 21 (2): 127–8. http://www.ncbi.nlm.nih.gov/pubmed/8126134
53. Gibelli B, Zamperini P, Proh M, Giugliano G. Management and follow-up of thyroid cancer in pregnant women. Acta Otorhinolaryngol Ital 2011; 31 (6): 358–65. https://www.ncbi.nlm.nih.gov/pubmed/22323846
54. McDougall IR, Weigel RJ. Recombinant human thyrotropin in the management of thyroid cancer. Cur Opin Oncol 2001; 13 (1): 39–43. http://www.ncbi.nlm.nih.gov/pubmed/8908447
________________________________________________
1. Rumyantsev P.O., Ilyin A.A., Rumyantseva U.V., Saenko V.A. Thyroid cancer: modern approaches to diagnosis and treatment. Moscow: GEOTAR-Media, 2009 (in Russian).
2. Kaprin A.D., Starinskiy V.V. Malignant neoplasms in Russia in 2015 (morbidity and mortality). Moscow: MNIOI im. P.A. Gertsena – filial FGBU NMIRTs Minzdrava Rossii, 2017; c. 33, 151 (in Russian).
3. Allelein S, Ehlers M, Morneau C et al. Measurement of Basal Serum Calcitonin for the Diagnosis of Medullary Thyroid Cancer. Hormone Metab Res 2017; 50 (1): 23–8.
4. Matyakin E.G., Podvyaznikov S.O. Tumors of the thyroid gland. Oncology: a handbook of a practicing physician. Ed. I.V. Poddubnaya. Moscow: MEDpress-inform, 2009; p. 177–85 (in Russian).
5. Brzhezovsky V.Zh. Tumors of the thyroid gland. Tumors of the head and neck. 5th ed., Add. and revised Moscow: Prakticheskaia meditsina, 2013; p. 339–59 (in Russian).
6. Bel'tsevich D.G., Vanushko V.E., Rumiantsev P.O. et al. Rossiiskie klinicheskie rekomendatsii po diagnostike i lecheniiu vysokodifferentsirovannogo raka shchitovidnoi zhelezy u vzroslykh. Endokrinnaia khirurgiia. 2017; 1 (11): 6–27 (in Russian).
7. АAlieva S.B., Alymov Yu.V., Kropotov M.A. and other Thyroid cancer. Oncology. Clinical guidelines. Ed. M.I. Davydov. Moscow: Publishing group RONTs, 2015; p. 538–47 (in Russian).
8. Malignant tumors of the head and neck. Ed. S.O. Podvyaznikova, A.M. Mudunova, M.V. Bolotina et al. Clinical guidelines for the treatment of head and neck tumors from the National Cancer Network (USA). Moscow: ABV-press, 2019 (in Russian).
9. Oncology. Clinical guidelines. Ed. IN AND. Chissova. Moscow: GEOTAR-Media, 2006; p. 125–39 (in Russian).
10. Cooper DS, Doherty GM, Haugen BR et al. Management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid 2006; 16: 109–42.
11. McLeod DS, Watters KF, Carpenter AD et al. Thyrotropin and thyroid cancer diagnosis: a systematic review and dose-response meta-analysis. J Clin Endocrinol Metab 2012; 97: 2682–92. http://www.ncbi.nlm.nih.gov/pubmed/22622023
12. Rinaldi S, Plummer M, Biessy C et al. Thyroid-stimulating hormone, thyroglobulin, and thyroid hormones and risk of differentiated thyroid carcinoma: the EPIC study. J Natl Cancer Inst 2014; 106: dju097. http://www.ncbi.nlm.nih.gov/pubmed/24824312
13. Bonavita JA, Mayo J, Babb J et al. Pattern recognition of benign nodules at ultrasound of the thyroid: which nodules can be left alone? AJR Am J Roentgenol 2009; 193: 207–13. http://www.ncbi.nlm.nih.gov/pubmed/24824312
14. Alexander EK, Cooper D. The importance, and important limitations, of ultrasound imaging for evaluating thyroid nodules. JAMA Intern Med 2013; 173: 1796–7. http://www.ncbi.nlm.nih.gov/pubmed/23979653
15. Friedrich-Rust M, Meyer G, Dauth N et al. Interobserver agreement of Thyroid Imaging Reporting and Data System (TIRADS) and strain elastography for the assessment of thyroid nodules. PLoS One 2013; 8: e77927. http://www.ncbi.nlm.nih.gov/pubmed/24205031
16. Kamran SC, Marqusee E, Kim MI et al. Thyroid nodule size and prediction of cancer. J Clin Endocrinol Metab 2013; 98: 564–70. http://www.ncbi.nlm.nih.gov/pubmed/23275525
17. Yang J, Schnadig V, Logrono R, Wasserman PG. Fine-needle aspiration of thyroid nodules: a study of 4703 patients with histologic and clinical correlations. Cancer 2007; 111: 306–15. http://www.ncbi.nlm.nih.gov/pubmed/17680588
18. Danese D, Sciacchitano S, Farsetti A et al. Diagnostic Accuracy of Conventional Versus Sonography-Guided Fine-Needle Aspiration Biopsy of Thyroid Nodules. Thyroid 1998; 8 (1): 15–21. http://www.ncbi.nlm.nih.gov/pubmed/24205031
19. Trimboli P, D’Aurizio F, Tozzoli R, Giovanella L. Measurement of thyroglobulin, calcitonin, and PTH in FNA washout fluids. Clin Chem Lab Med 2017; 55 (7). http://www.ncbi.nlm.nih.gov/pubmed/24205031
20. Cibas ES, Ali SZ. The 2017 Bethesda System For Reporting Thyroid Cytopathology. Thyroid 2017; 27: 1341–6. http://www.ncbi.nlm.nih.gov/pubmed/29091573
21. Pacini F, Capezzone M, Elisei R et al. Diagnostic 131-iodine whole-body scan may be avoided in thyroid cancer patients who have undetectable stimulated serum Tg levels after initial treatment. J Clin Endocrinol Metab 2002; 87: 1499–501. https://www.ncbi.nlm.nih.gov/pubmed/27581851
22. Giordano TJ, Beaudenon-Huibregtse S, Shinde R et al. Molecular testing for oncogenic gene mutations in thyroid lesions: a case-control validation study in 413 postsurgical specimens. Hum Pathol 2014; 45: 1339–47. http://www.ncbi.nlm.nih.gov/pubmed/24830619
23. Nikiforov YE, Ohori NP, Hodak SP et al. Impact of mutational testing on the diagnosis and management of patients with cytologically indeterminate thyroid nodules: a prospective analysis of 1056 FNA samples. J Clin Endocrinol Metab 2011; 96: 3390–7. http://www.ncbi.nlm.nih.gov/pubmed/21880806
24. Musholt TJ, Fottner C, Weber MM et al. Detection of papillary thyroid carcinoma by analysis of BRAF and RET/PTC1 mutations in fine-needle aspiration biopsies of thyroid nodules. World J Surg 2010; 34: 2595–603. http://www.ncbi.nlm.nih.gov/pubmed/20652698
25. Liu R, Bishop J, Zhu G et al. Mortality Risk Stratification by Combining BRAF V600E and TERT Promoter Mutations in Papillary Thyroid Cancer: Genetic Duet of BRAF and TERT Promoter Mutations in Thyroid Cancer Mortality. JAMA Oncol 2017; 3 (2): 202–8. https://www.ncbi.nlm.nih.gov/pubmed/27581851
26. Vuong HG, Altibi AMA, Duong UNP, Hassell L. Prognostic implication of BRAF and TERT promoter mutation combination in papillary thyroid carcinoma-A meta-analysis. Clin Endocrinol (Oxf) 2017; 87: 411–7. https://www.ncbi.nlm.nih.gov/pubmed/28666074
27. Bilimoria KY, Zanocco K, Sturgeon C. Impact of surgical treatment on outcomes for papillary thyroid cancer. Adv Surg 2008; 42: 1–12. http://www.ncbi.nlm.nih.gov/pubmed/18953806
28. Hay ID, Grant CS, Bergstralh EJ et al. Unilateral total lobectomy: is it sufficient surgical treatment for patients with AMES low-risk papillary thyroid carcinoma? Surgery 1998; 124: 958–64; discussion 964–56. http://www.ncbi.nlm.nih.gov/pubmed/9854569
29. Dackiw AP, Zeiger M. Extent of surgery for differentiated thyroid cancer. Surg Clin North Am 2004; 84: 817–32. http://www.ncbi.nlm.nih.gov/pubmed/15145237
30. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®). Thyroid Carcinoma. Version 3.2019. https://www.ncbi.nlm.nih.gov/pubmed/27581851
31. Cady B. Hayes Martin Lecture. Our AMES is true: how an old concept still hits the mark: or, risk group assignment points the arrow to rational therapy selection in differentiated thyroid cancer. Am J Surg 1997; 174: 462–8. http://www.ncbi.nlm.nih.gov/pubmed/9374215
32. Matsuzu K, Sugino K, Masudo K et al. Thyroid lobectomy for papillary thyroid cancer: long-term follow-up study of 1,088 cases. World J Surg 2014; 38: 68–79. http://www.ncbi.nlm.nih.gov/pubmed/24081532
33. Udelsman R, Lakatos E, Ladenson P. Optimal surgery for papillary thyroid carcinoma. World J Surg 1996; 20: 88–93. http://www.ncbi.nlm.nih.gov/pubmed/8588420
34. Sacks W, Fung CH, Chang JT et al. The Effectiveness of Radioactive Iodine for Treatment of Low-Risk Thyroid Cancer: A Systematic Analysis of the Peer-Reviewed Literature from 1966 to April 2008. Thyroid 2010; 20 (11): 1235–45. http://www.ncbi.nlm.nih.gov/pubmed/24081532
35. Iyer NG, Morris LG, Tuttle RM et al. Rising incidence of second cancers in patients with low-risk (T1N0) thyroid cancer who receive radioactive iodine therapy. Cancer 2011; 117: 4439–46. http://www.ncbi.nlm.nih.gov/pubmed/21432843
36. Shaha AR. Implications of prognostic factors and risk groups in the management of differentiated thyroid cancer. Laryngoscope 2004; 114: 393–402. http://www.ncbi.nlm.nih.gov/pubmed/15091208
37. Scheumann GF, Seeliger H, Musholt TJ et al. Completion thyroidectomy in 131 patients with differentiated thyroid carcinoma. Eur J Surg 1996; 162: 677–84. http://www.ncbi.nlm.nih.gov/pubmed/8908447
38. Mazzaferri EL. Thyroid remnant 131I ablation for papillary and follicular thyroid carcinoma. Thyroid 1997; 7: 265–71. http://www.ncbi.nlm.nih.gov/pubmed/9133698
39. Buffet C, Ghander C, le Marois E, Leenhardt L. Indications for radioiodine administration in follicular-derived thyroid cancer. Annales d’Endocrinologie 2015; 76 (1): 1S2–1S7. DOI: 10.1016/s0003-4266(16)30008-7
40. Castagna MG, Cantara S, Pacini F. Reappraisal of the indication for radioiodine thyroid ablation in differentiated thyroid cancer patients. J Endocrinol Investig 2016; 39 (10): 1087–94. http://www.ncbi.nlm.nih.gov/pubmed/8908447
41. Biondi B, Cooper DS. Benefits of thyrotropin suppression versus the risks of adverse effects in differentiated thyroid cancer. Thyroid 2010; 20: 135–46. http://www.ncbi.nlm.nih.gov/pubmed/20151821
42. Chiu AC, Delpassand ES, Sherman SI. Prognosis and treatment of brain metastases in thyroid carcinoma. J Clin Endocrinol Metab 1997; 82: 3637–42. http://www.ncbi.nlm.nih.gov/pubmed/9360519
43. Lo SS, Lutz ST et al. Expert Panel on Radiation Oncology-Bone Metastases. ACR Appropriateness Criteria (R) spinal bone metastases. J Palliat Med 2013; 16: 9–19. http://www.ncbi.nlm.nih.gov/pubmed/23167547
44. Kebebew E, Greenspan FS, Clark OH et al. Anaplastic thyroid carcinoma. Treatment outcome and prognostic factors. Cancer 2005; 103: 1330–5. http://www.ncbi.nlm.nih.gov/pubmed/15739211
45. Shaha AR. Airway management in anaplastic thyroid carcinoma. Laryngoscope 2008; 118: 1195–8. http://www.ncbi.nlm.nih.gov/pubmed/18438260
46. Junor EJ, Paul J, Reed NS. Anaplastic thyroid carcinoma: 91 patients treated by surgery and radiotherapy. Eur J Surg Oncol 1992; 18: 83–8. http://www.ncbi.nlm.nih.gov/pubmed/1582515
47. Smallridge RC, Ain KB, Asa SL et al. American Thyroid Association guidelines for management of patients with anaplastic thyroid cancer. Thyroid 2012; 22: 1104–39. http://www.ncbi.nlm.nih.gov/pubmed/23130564
48. Ernaga-Lorea A, Hernández-Morhain MC, Anda-Apiñániz E et al. Prognostic value of change in anti-thyroglobulin antibodies after thyroidectomy in patients with papillary thyroid carcinoma. Clin Translational Oncol 2017; 20 (6): 740–4. http://www.ncbi.nlm.nih.gov/pubmed/23130564
49. Pacini F, Lari R, Mazzeo S et al. Diagnostic value of a single serum thyroglobulin determination on and off thyroid suppressive therapy in the follow-up of patients with differentiated thyroid cancer. Clin Endocrinol (Oxf) 1985; 23: 405–11. http://www.ncbi.nlm.nih.gov/pubmed/4064348
50. Kloos RT, Mazzaferri EL. A single recombinant human thyrotropin-stimulated serum thyroglobulin measurement predicts differentiated thyroid carcinoma metastases three to five years later. J Clin Endocrinol Metab 2005; 90: 5047–57. http://www.ncbi.nlm.nih.gov/pubmed/15972576
51. Sherman SI, Tielens ET, Sostre S et al. Clinical utility of posttreatment radioiodine scans in the management of patients with thyroid carcinoma. J Clin Endocrinol Metab 1994; 78: 629–34. http://www.ncbi.nlm.nih.gov/pubmed/8126134
52. OʼConnell TB, OʼDoherty MJ. Differentiated thyroid cancer and pregnancy. Nuclear Med Commun 2000; 21 (2): 127–8. http://www.ncbi.nlm.nih.gov/pubmed/8126134
53. Gibelli B, Zamperini P, Proh M, Giugliano G. Management and follow-up of thyroid cancer in pregnant women. Acta Otorhinolaryngol Ital 2011; 31 (6): 358–65. https://www.ncbi.nlm.nih.gov/pubmed/22323846
54. McDougall IR, Weigel RJ. Recombinant human thyrotropin in the management of thyroid cancer. Cur Opin Oncol 2001; 13 (1): 39–43. http://www.ncbi.nlm.nih.gov/pubmed/8908447
1 ФГБУ «Национальный медицинский исследовательский центр эндокринологии» Минздрава России, Москва, Россия;
2 Клинический госпиталь «Лапино», Москва, Россия;
3 ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России;
4 ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н.Н. Блохина» Минздрава России, Москва, Россия;
5 Московский научно-исследовательский онкологический институт им. П.А. Герцена – филиал ФГБУ «Национальный медицинский исследовательский центр радиологии» Минздрава России, Москва, Россия;
6 ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова» Минздрава России (Сеченовский Университет), Москва, Россия;
7 Медицинский радиологический научный центр им. А.Ф. Цыба – филиал ФГБУ «Национальный медицинский исследовательский центр радиологии» Минздрава России, Обнинск, Россия
________________________________________________
Dmitrii G. Bel'tsevich1, Ali M. Mudunov2, Vladimir E. Vanushko1, Pavel O. Rumiantsev1, Galina A. Mel'nichenko1, Nikolai S. Kuznetsov1, Sergei O. Podvyaznikov3, Iurii V. Alymov4, Andrei P. Poliakov5, Valentin V. Fadeev6, Mikhail V. Bolotin4, Feliks E. Sevriukov7, Valerii V. Krylov7, Aleksandr A. Fedenko5, Larisa V. Bolotina5, Andrei A. Zharov4, Natalia A. Falaleeva7, Elena V. Filonenko5, Aleksei A. Nevol'skikh7, Sergei A. Ivanov7, Zhanna V. Khailova7, Tigran G. Gevorkian4
1 National Medical Research Center of Endocrinology, Moscow, Russia;
2 Clinical Hospital "Lapino", Moscow, Russia;
3 Russian Medical Academy of Continuous Professional Education, Moscow, Russia;
4 Blokhin National Medical Research Center of Oncology, Moscow, Russia;
5 Herzen Moscow Research Institute of Oncology – branch of the National Medical Research Center for Radiology, Moscow, Russia;
6 Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia;
7 Tsyb Medical Radiological Scientific Center – branch of the National Medical Research Center for Radiology, Obninsk, Russia