Трижды негативный рак молочной железы (ТНРМЖ) остается наиболее агрессивным подтипом рака молочной железы. При наличии отдаленных метастазов медиана общей выживаемости не превышает 14 мес. ТНРМЖ – чрезвычайно гетерогенная группа опухолей, она включает в себя как высокочувствительные к химиотерапии опухоли, так и те, что требуют назначения таргетной или иммунотерапии для достижения наилучших результатов лечения. Такие особенности подтипа обусловливают трудности разработки единой стратегии лечения для всех пациентов. Существующие на данный момент представления о механизмах резистентности и молекулярных драйверах прогрессии позволили расширить терапевтические возможности для метастатического ТНРМЖ (мТНРМЖ). Так, за последние несколько лет в клиническую практику в Российской Федерации вошли ингибиторы контрольных точек и PARP-ингибиторы. В настоящем обзоре представлены данные клинических исследований, а также алгоритм выбора терапии для пациентов с мТНРМЖ, основанный на результатах последних клинических исследований. Обзор посвящен препаратам, зарегистрированным на территории РФ, что позволяет применить перечисленные опции в повседневной клинической практике. Перспективные направления в терапии мТНРМЖ, еще не зарегистрированные в РФ, будут рассмотрены в отдельном обзоре в следующем номере журнала «Современная онкология».
Triple-negative breast cancer (TNBC) remains the most aggressive subtype of breast cancer. In the presence of distant metastases, the median overall survival does not exceed 14 months. TNBC is an extremely heterogeneous group of tumors, it includes both tumors extremely sensitive to chemotherapy and tumors that require targeted or immunotherapy for the best treatment outcomes. Such subtype features make it difficult to develop a single treatment strategy for all patients. Current perceptions of resistance mechanisms and molecular drivers’ progression have increased therapeutic opportunities for metastatic TNBC (mTNBC). For example, in the last few years, checkpoint inhibitors and PARP inhibitors have entered into clinical practice in the Russian Federation. This review presents clinical trial data, as well as an algorithm for choosing therapy for patients with TNBC, based on the results of recent clinical studies. The review focuses mainly on drugs registered at the territory of the Russian Federation, that allows to apply these options in everyday clinical practice. Promising directions therapy of mTNBC not registered at the territory of the Russian Federation yet will be showed in a separate review in the next issue in the Journal of Modern Oncology.
Key words: triple negative breast cancer, chemotherapy, antiangiogenic therapy, immunotherapy, PARP inhibitors, drug therapy.
1. Sørlie T, Perou CM, Tibshirani R et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 2001; 98 (19): 10869–74.
2. Lehmann BD, Bauer JA, Chen X et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest 2011; 121 (7): 2750–67.
3. Jézéquel P, Loussouarn D, Guérin-Charbonnel C et al. Gene-expression molecular subtyping of triple-negative breast cancer tumours: importance of immune response. Breast Cancer Res 2015; 17: 43.
4. Burstein MD, Tsimelzon A, Poage GM et al. Comprehensive Genomic Analysis Identifies Novel Subtypes and Targets of Triple-negative Breast Cancer. Clin Cancer Res 2015; 21 (7): 1688–98.
5. Masuda H, Baggerly KA. Wang Y et al. Differential response to neoadjuvant chemotherapy among 7 triple-negative breast cancer molecular subtypes. Clin Cancer Res 2013; 19: 5533–40.
6. Gucalp A, Tolaney S, Isakoff SJ et al. Phase II trial of bicalutamide in patients with androgen receptor-positive, estrogen receptor-negative metastatic breast cancer. Clin Cancer Res 2013; 19: 5505–12.
7. Gradishar WJ, Anderson BO, Abraham J et al. Breast Cancer, Version 3.2020, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw 2020; 18 (4): 452–78. DOI: 10.6004/jnccn.2020.0016; PMID: 32259783.
8. Cardoso F, Paluch-Shimon S, Senkus E et al. 5th ESO-ESMO international consensus guidelines for advanced breast cancer (ABC 5). Ann Oncol 2020; 31 (12): 1623–49. DOI: 10.1016/j.annonc.2020.09.010
9. Стенина М.Б., Жукова Л.Г., Королева И.А. и др. Практические рекомендации по лекарственному лечению инвазивного рака молочной железы. Злокачественные опухоли. Практические рекомендации RUSSCO #3s2 2019; 9: 128–63.
[Stenina M.B., Zhukova L.G., Koroleva I.A. et al. Prakticheskie rekomendatsii po lekarstvennomu lecheniiu invazivnogo raka molochnoi zhelezy. Zlokachestvennye opukholi. Prakticheskie rekomendatsii RUSSCO #3s2 2019; 9: 128–63 (in Russian)]
10. André F, Zielinski CC. Optimal strategies for the treatment of metastatic triple-negative breast cancer with currently approved agents. Ann Oncol 2012; 23 (Suppl. 6): vi46–51.
11. Kassam F, Enright K, Dent R et al. Survival outcomes for patients with metastatic triple-negative breast cancer: Implications for clinical practice and trial design. Clin Breast Cancer 2009; 9: 29–33.
12. Dent R, Trudeau M, Pritchard KI et al. Triple-negative breast cancer: Clinical features and patterns of recurrence. Clin Cancer Res 2007; 13: 4429–34.
13. Zeichner SB, Terawaki H, Gogineni K. A Review of Systemic Treatment in Metastatic Triple-Negative Breast Cancer. Breast Cancer: Basic and Clinical Research, 2016.
14. Vaupel P. Hypoxia and Aggressive Tumor Phenotype: Implications for Therapy and Prognosis. Oncologist 2008; 13: 21–6.
15. Gerweck LE, Vijayappa S, Kozin S. Tumor pH controls the in vivo efficacy of weak acid and base chemotherapeutics. Mol Cancer Ther 2006; 5: 1275–79.
16. Kim H, Lin Q, Glazer PM, Yun Z. The hypoxic tumor microenvironment in vivo selects the cancer stem cell fate of breast cancer cells. Breast Cancer Res 2018; 20: 1–15.
17. Chouaib S, Noman MZ, Kosmatopoulos K, Curran MA. Hypoxic stress: Obstacles and opportunities for innovative immunotherapy of cancer. Oncogene 2017; 36: 439–45.
18. Sissung TM, Baum CE, Kirkland CT et al. Pharmacogenetics of membrane transporters: An update on current approaches. Mol Biotechnol 2010; 44: 152–67.
19. Guille A, Chaffanet M, Birnbaum D. Signaling pathway switch in breast cancer. Cancer Cell Int 2013; 13 (1): 66.
20. Nagamatsu I, Onishi H, Matsushita S et al. NOTCH4 is a potential therapeutic target for triple-negative breast cancer. Anticancer Res 2014; 34: 69–80.
21. Zang S, Chen F, Dai J et al. RNAi-mediated knockdown of Notch-1 leads to cell growth inhibition and enhanced chemosensitivity in human breast cancer. Oncol Rep 2010; 23.
22. Prosperi JR, Choudhury N, Olopade OI, Goss KH. b-Catenin is required for the tumorigenic behavior of triple-negative breast cancer cells. PLoS ONE 2015; 10: e0117097.
23. Kwon Y-J, Hurst DR, Steg AD et al. Gli1 enhances migration and invasion via up-regulation of MMP-11 and promotes metastasis in ERa negative breast cancer cell lines. Clin Exp Metastasis 2011; 28: 437–49.
24. Begalli F, Bennett J, Capece D et al. Unlocking the NF-κB Conundrum: Embracing Complexity to Achieve Specificity. Biomedicines 2017; 5.
25. Guanizo AC, Fernando CD, Garama DJ, Gough DJ. STAT3: A multifaceted oncoprotein. Growth Factors 2018; 36: 1–14.
26. Qin JJ, Yan L, Zhang J, Zhang WD. STAT3 as a potential therapeutic target in triple negative breast cancer: A systematic review. J Exp Clin Cancer Res 2019; 38: 1–16.
27. Li L, Ross AH. Why is PTEN an important tumor suppressor? J Cell Biochem 2007; 102: 1368–74.
28. Steelman LS, Navolanic PM, Sokolosky ML et al. Suppression of PTEN function increases breast cancer chemotherapeutic drug resistance while conferring sensitivity to mTOR inhibitors. Oncogene 2008; 27: 4086–95.
29. Fabrice A et al. Alpelisib for PIK3CA-Mutated, Hormone Receptor-Positive Advanced Breast Cancer. New Eng J Med 2019; 380: 1929–40. DOI: 10.1056/NEJMoa1813904
30. Schmid P, Cortes J, Robson Met al. Abstract OT2-08-02: Capivasertib and paclitaxel in first-line treatment of patients with metastatic triple-negative breast cancer: A phase III trial (CAPItello-290). Cancer Res 2020; 80 (Suppl. 4). DOI: 10.1158/1538-7445.SABCS19-OT2-08-02
31. Dent R, Kim S-B, Oliveira M et al. IPATunity130: A pivotal randomized phase III trial evaluating ipatasertib (IPAT) paclitaxel (PAC) for PIK3CA/AKT1/PTEN-altered advanced triple-negative (TN) or hormone receptor-positive HER2-negative (HR/HER2–) breast cancer (BC). J ClinOncol 36 (Suppl. 15). DOI: 10.1200/JCO.2018.36.15_suppl.TPS1117
32. Gray R, Bhattacharya S, Bowden C et al. Independent review of E2100: a phase III trial of bevacizumab plus paclitaxel versus paclitaxel in women with metastatic breast cancer. J Clin Oncol 2009; 27 (30): 4966–72.
33. Pivot X, Schneeweiss A, Verma S et al. Efficacy and safety of bevacizumab in combination with docetaxel for the first-line treatment of elderly patients with locally recurrent or metastatic breast cancer: results from AVADO. Eur J Cancer 2011; 47 (16): 2387–95.
34. Robert NJ, Diéras V, Glaspy J et al. RIBBON-1: randomized, double-blind, placebo-controlled, phase III trial of chemotherapy with or without bevacizumab for first-line treatment of human epidermal growth factor receptor 2-negative, locally recurrent or metastatic breast cancer. J Clin Oncol 2011; 29 (10): 1252–60.
35. O'Shaughnessy J, Miles D, Gray RJ et al. A meta-analysis of overall survival data from three randomized trials of bevacizumab (BV) and first-line chemotherapy as treatment for patients with metastatic breast cancer (MBC). J Clin Oncol 2010; 28 (Suppl. 15): 1005.
36. Gligorov J, Doval D, Bines J et al. Maintenance capecitabine and bevacizumab versus bevacizumab alone after initial first-line bevacizumab and docetaxel for patients with HER2-negative metastatic breast cancer. Lancet Oncol 2014; 15 (12): 1351–60.
37. Denkert C, von Minckwitz G, Darb-Esfahani S et al. Tumour-infiltrating lymphocytes and prognosis in different subtypes of breast cancer: a pooled analysis of 3771 patients treated with neoadjuvant therapy. Lancet Oncol 2018; 19: 40–50.
38. Fehrenbacher L, Spira A, Ballinger M et al. Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): a multicentre, open-label, phase 2 randomised controlled trial. Lancet 2016; 387: 1837–46.
39. Emens LA et al. ESMO 2020. Abstract LBA16.
40. Luen S, Virassamy B, Savas P et al. The genomic landscape of breast cancer and its interaction with host immunity. Breast 2016; 29: 241–50.
41. Schmid P, Rugo HS, Adams S et al. Atezolizumab plus nab-paclitaxel as first-line treatment for unresectable, locally advanced or metastatic triple-negative breast cancer (IMpassion 130): updated efficacy results from a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol 2020; 21 (1): 44–59. DOI: 10.1016/S1470-2045(19)30689-8; PMID: 31786121.
42. Miles DW, Gligorov J, André F et al. Primary results from IMpassion 131, a double-blind placebo-controlled randomised phase III trial of first-line paclitaxel (PAC)± atezolizumab (atezo) for unresectable locally advanced/metastatic triple-negative breast cancer (mTNBC). Ann Oncol 2020; 31 (Suppl. 4): S1142–215.
43. Drugs@FDA [database on the Internet]. Silver Spring (MD): U.S. Food and Drug Administration. BLA 125514/S-14 Approval Letter. https://www.accessdata.fda.gov/drugsatfda_docs/appletter/2017/125514Orig1s014ltr.pdf
44. Le DT, Durham JN, Smith KN et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 2017; 357 (6349): 409–13. DOI: 10.1126/science.aan6733
45. Cortes J, Cescon DW, Rugo S et al. KEYNOTE-355: Randomized, double-blind, phase III study of pembrolizumab + chemotherapy versus placebo + chemotherapy for previously untreated locally recurrent inoperable or metastatic triple-negative breast cancer. J Clin Oncol 2020; 38 (Suppl. 15): 1000.
46. Malone KE, Daling JR, Doody DR et al. Prevalence and predictors of BRCA1 and BRCA2 mutations in a population-based study of breast cancer in white and black American women ages 35 to 64 years. Cancer Res 2006; 66 (16): 8297–308.
47. Engel C, Rhiem K, Hahnen E et al. Prevalence of pathogenic BRCA1/2 germline mutations among 802 women with unilateral triple-negative breast cancer without family cancer history. BMC Cancer 2018; 18 (265).
48. NCCN Clinical Practice Guidelines. Genetic/Familial High Risk Assessment: Breast, Ovaria, Pancreatic. Version 1.2021 – September 8, 2020.
49. Tutt A, Tovey H, Cheang MCU et al. Carboplatin in BRCA1/2-mutated and triple-negative breast cancer BRCAness subgroups: the TNT Trial. Nat Med 2018; 24 (5): 628–37. DOI: 10.1038/s41591-018-0009-7;. PMID: 29713086; PMCID: PMC6372067.
50. Robson M, Ruddy KJ, Im SA et al. Patient-reported outcomes in patients with a germline BRCA mutation and HER2-negative metastatic breast cancer receiving olaparib versus chemotherapy in the OlympiAD trial. Eur J Cancer 2019; 120: 20–30.
51. Ettl J, Quek RGW, Lee KH et al. Quality of life with talazoparib versus physician’s choice of chemotherapy in patients with advanced breast cancer and germline BRCA1/2 mutation: Patient-reported outcomes from the EMBRACA phase III trial. Ann Oncol 2018; 29: 1939–47.
52. Pantelidou C, Sonzogni O, De Oliveria Taveira M et al. PARP Inhibitor Efficacy Depends on CD8+ T-cell Recruitment via Intratumoral STING Pathway Activation in BRCA-Deficient Models of Triple-Negative Breast Cancer. Cancer Discov 2019; 9 (6): 722–37. DOI: 10.1158/2159-8290.CD-18-1218; PMID: 31015319; PMCID: PMC6548644.
53. Domchek S, Postel-Vinay S, Im S et al. Phase II study of olaparib (O) and durvalumab (D) (MEDIOLA): updated results in patients (pts) with germline BRCA-mutated (gBRCAm) metastatic breast cancer (MBC). Ann Oncol 2019; 30 (Suppl. 5): v475–532.
54. Vinayak S, Tolaney SM, Schwartzberg LS et al. TOPACIO/Keynote-162: Niraparib + pembrolizumab in patients (pts) with metastatic triple-negative breast cancer (TNBC), a phase 2 trial. J Clin Oncol 2018; 36 (Suppl. 15): 1011.
55. Amiri-Kordestani L et al. FDA approval: ado-trastuzumab emtansine for the treatment of patients with HER2-positive metastatic breast cancer. Clin Cancer Res: 2014; 20 (17): 4436–41. DOI: 10.1158/1078-0432.CCR-14-0012
56. Keam SJ. Trastuzumab Deruxtecan: First Approval. Drugs 2020; 80 (5): 501–8. DOI: 10.1007/s40265-020-01281-4; PMID: 32144719.
57. Zhao W, Kuai X, Zhou X et al. Trop2 is a potential biomarker for the promotion of EMT in human breast cancer. Oncol Rep 2018; 40 (2): 759–66.
58. Bardia A, Mayer IA, Vahdat LT et al: Sacituzumab govitecan-hziy in refractory metastatic triple-negative breast cancer. N Engl J Med 2019; 380: 741–51.
59. U.S. Food and Drug Administration: FDA grants accelerated approval to sacituzumab govitecan-hziy for metastatic triple negative breast cancer. https://www.fda.gov/drugs/drug-approvals-and-databases/fda-grants-accelerated-approval-sacituzumab-g...
60. Bardia A et al. ASCENT: A randomized phase 3 study of sacituzumab govitecan (SG) vs treatment of physician’s choice (TPC) in patients (pts) with previously treated metastatic triple-negative breast cancer (mTNBC). ESMO Virtual Congress 2020, LBA17. Presented September 19, 2020.
61. Dent R, Antunes De Melo e Oliveira M, Isakoff SJ et al: Final results of the double-blind placebo-controlled randomized phase II LOTUS trial of first-line ipatasertib plus paclitaxel for inoperable locally advanced/metastatic triple-negative breast cancer 2020 ESMO Breast Cancer Virtual Meeting. Abstract 139O. Presented May 23, 2020.
62. Schmid P et al. Capivasertib Plus Paclitaxel Versus Placebo Plus Paclitaxel As First-Line Therapy for Metastatic Triple-Negative Breast Cancer: The PAKT Trial. J Clin Oncol 2020; 38 (5): 423–33. DOI: 10.1200/JCO.19.00368
63. Lyons TG. Targeted Therapies for Triple-Negative Breast Cancer. Curr Treat Options Oncol 2019; 20 (11): 82. DOI: 10.1007/s11864-019-0682-x; PMID: 31754897.
________________________________________________
1. Sørlie T, Perou CM, Tibshirani R et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 2001; 98 (19): 10869–74.
2. Lehmann BD, Bauer JA, Chen X et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest 2011; 121 (7): 2750–67.
3. Jézéquel P, Loussouarn D, Guérin-Charbonnel C et al. Gene-expression molecular subtyping of triple-negative breast cancer tumours: importance of immune response. Breast Cancer Res 2015; 17: 43.
4. Burstein MD, Tsimelzon A, Poage GM et al. Comprehensive Genomic Analysis Identifies Novel Subtypes and Targets of Triple-negative Breast Cancer. Clin Cancer Res 2015; 21 (7): 1688–98.
5. Masuda H, Baggerly KA. Wang Y et al. Differential response to neoadjuvant chemotherapy among 7 triple-negative breast cancer molecular subtypes. Clin Cancer Res 2013; 19: 5533–40.
6. Gucalp A, Tolaney S, Isakoff SJ et al. Phase II trial of bicalutamide in patients with androgen receptor-positive, estrogen receptor-negative metastatic breast cancer. Clin Cancer Res 2013; 19: 5505–12.
7. Gradishar WJ, Anderson BO, Abraham J et al. Breast Cancer, Version 3.2020, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw 2020; 18 (4): 452–78. DOI: 10.6004/jnccn.2020.0016; PMID: 32259783.
8. Cardoso F, Paluch-Shimon S, Senkus E et al. 5th ESO-ESMO international consensus guidelines for advanced breast cancer (ABC 5). Ann Oncol 2020; 31 (12): 1623–49. DOI: 10.1016/j.annonc.2020.09.010
9. Stenina M.B., Zhukova L.G., Koroleva I.A. et al. Prakticheskie rekomendatsii po lekarstvennomu lecheniiu invazivnogo raka molochnoi zhelezy. Zlokachestvennye opukholi. Prakticheskie rekomendatsii RUSSCO #3s2 2019; 9: 128–63 (in Russian)
10. André F, Zielinski CC. Optimal strategies for the treatment of metastatic triple-negative breast cancer with currently approved agents. Ann Oncol 2012; 23 (Suppl. 6): vi46–51.
11. Kassam F, Enright K, Dent R et al. Survival outcomes for patients with metastatic triple-negative breast cancer: Implications for clinical practice and trial design. Clin Breast Cancer 2009; 9: 29–33.
12. Dent R, Trudeau M, Pritchard KI et al. Triple-negative breast cancer: Clinical features and patterns of recurrence. Clin Cancer Res 2007; 13: 4429–34.
13. Zeichner SB, Terawaki H, Gogineni K. A Review of Systemic Treatment in Metastatic Triple-Negative Breast Cancer. Breast Cancer: Basic and Clinical Research, 2016.
14. Vaupel P. Hypoxia and Aggressive Tumor Phenotype: Implications for Therapy and Prognosis. Oncologist 2008; 13: 21–6.
15. Gerweck LE, Vijayappa S, Kozin S. Tumor pH controls the in vivo efficacy of weak acid and base chemotherapeutics. Mol Cancer Ther 2006; 5: 1275–79.
16. Kim H, Lin Q, Glazer PM, Yun Z. The hypoxic tumor microenvironment in vivo selects the cancer stem cell fate of breast cancer cells. Breast Cancer Res 2018; 20: 1–15.
17. Chouaib S, Noman MZ, Kosmatopoulos K, Curran MA. Hypoxic stress: Obstacles and opportunities for innovative immunotherapy of cancer. Oncogene 2017; 36: 439–45.
18. Sissung TM, Baum CE, Kirkland CT et al. Pharmacogenetics of membrane transporters: An update on current approaches. Mol Biotechnol 2010; 44: 152–67.
19. Guille A, Chaffanet M, Birnbaum D. Signaling pathway switch in breast cancer. Cancer Cell Int 2013; 13 (1): 66.
20. Nagamatsu I, Onishi H, Matsushita S et al. NOTCH4 is a potential therapeutic target for triple-negative breast cancer. Anticancer Res 2014; 34: 69–80.
21. Zang S, Chen F, Dai J et al. RNAi-mediated knockdown of Notch-1 leads to cell growth inhibition and enhanced chemosensitivity in human breast cancer. Oncol Rep 2010; 23.
22. Prosperi JR, Choudhury N, Olopade OI, Goss KH. b-Catenin is required for the tumorigenic behavior of triple-negative breast cancer cells. PLoS ONE 2015; 10: e0117097.
23. Kwon Y-J, Hurst DR, Steg AD et al. Gli1 enhances migration and invasion via up-regulation of MMP-11 and promotes metastasis in ERa negative breast cancer cell lines. Clin Exp Metastasis 2011; 28: 437–49.
24. Begalli F, Bennett J, Capece D et al. Unlocking the NF-κB Conundrum: Embracing Complexity to Achieve Specificity. Biomedicines 2017; 5.
25. Guanizo AC, Fernando CD, Garama DJ, Gough DJ. STAT3: A multifaceted oncoprotein. Growth Factors 2018; 36: 1–14.
26. Qin JJ, Yan L, Zhang J, Zhang WD. STAT3 as a potential therapeutic target in triple negative breast cancer: A systematic review. J Exp Clin Cancer Res 2019; 38: 1–16.
27. Li L, Ross AH. Why is PTEN an important tumor suppressor? J Cell Biochem 2007; 102: 1368–74.
28. Steelman LS, Navolanic PM, Sokolosky ML et al. Suppression of PTEN function increases breast cancer chemotherapeutic drug resistance while conferring sensitivity to mTOR inhibitors. Oncogene 2008; 27: 4086–95.
29. Fabrice A et al. Alpelisib for PIK3CA-Mutated, Hormone Receptor-Positive Advanced Breast Cancer. New Eng J Med 2019; 380: 1929–40. DOI: 10.1056/NEJMoa1813904
30. Schmid P, Cortes J, Robson Met al. Abstract OT2-08-02: Capivasertib and paclitaxel in first-line treatment of patients with metastatic triple-negative breast cancer: A phase III trial (CAPItello-290). Cancer Res 2020; 80 (Suppl. 4). DOI: 10.1158/1538-7445.SABCS19-OT2-08-02
31. Dent R, Kim S-B, Oliveira M et al. IPATunity130: A pivotal randomized phase III trial evaluating ipatasertib (IPAT) paclitaxel (PAC) for PIK3CA/AKT1/PTEN-altered advanced triple-negative (TN) or hormone receptor-positive HER2-negative (HR/HER2–) breast cancer (BC). J ClinOncol 36 (Suppl. 15). DOI: 10.1200/JCO.2018.36.15_suppl.TPS1117
32. Gray R, Bhattacharya S, Bowden C et al. Independent review of E2100: a phase III trial of bevacizumab plus paclitaxel versus paclitaxel in women with metastatic breast cancer. J Clin Oncol 2009; 27 (30): 4966–72.
33. Pivot X, Schneeweiss A, Verma S et al. Efficacy and safety of bevacizumab in combination with docetaxel for the first-line treatment of elderly patients with locally recurrent or metastatic breast cancer: results from AVADO. Eur J Cancer 2011; 47 (16): 2387–95.
34. Robert NJ, Diéras V, Glaspy J et al. RIBBON-1: randomized, double-blind, placebo-controlled, phase III trial of chemotherapy with or without bevacizumab for first-line treatment of human epidermal growth factor receptor 2-negative, locally recurrent or metastatic breast cancer. J Clin Oncol 2011; 29 (10): 1252–60.
35. O'Shaughnessy J, Miles D, Gray RJ et al. A meta-analysis of overall survival data from three randomized trials of bevacizumab (BV) and first-line chemotherapy as treatment for patients with metastatic breast cancer (MBC). J Clin Oncol 2010; 28 (Suppl. 15): 1005.
36. Gligorov J, Doval D, Bines J et al. Maintenance capecitabine and bevacizumab versus bevacizumab alone after initial first-line bevacizumab and docetaxel for patients with HER2-negative metastatic breast cancer. Lancet Oncol 2014; 15 (12): 1351–60.
37. Denkert C, von Minckwitz G, Darb-Esfahani S et al. Tumour-infiltrating lymphocytes and prognosis in different subtypes of breast cancer: a pooled analysis of 3771 patients treated with neoadjuvant therapy. Lancet Oncol 2018; 19: 40–50.
38. Fehrenbacher L, Spira A, Ballinger M et al. Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): a multicentre, open-label, phase 2 randomised controlled trial. Lancet 2016; 387: 1837–46.
39. Emens LA et al. ESMO 2020. Abstract LBA16.
40. Luen S, Virassamy B, Savas P et al. The genomic landscape of breast cancer and its interaction with host immunity. Breast 2016; 29: 241–50.
41. Schmid P, Rugo HS, Adams S et al. Atezolizumab plus nab-paclitaxel as first-line treatment for unresectable, locally advanced or metastatic triple-negative breast cancer (IMpassion 130): updated efficacy results from a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol 2020; 21 (1): 44–59. DOI: 10.1016/S1470-2045(19)30689-8; PMID: 31786121.
42. Miles DW, Gligorov J, André F et al. Primary results from IMpassion 131, a double-blind placebo-controlled randomised phase III trial of first-line paclitaxel (PAC)± atezolizumab (atezo) for unresectable locally advanced/metastatic triple-negative breast cancer (mTNBC). Ann Oncol 2020; 31 (Suppl. 4): S1142–215.
43. Drugs@FDA [database on the Internet]. Silver Spring (MD): U.S. Food and Drug Administration. BLA 125514/S-14 Approval Letter. https://www.accessdata.fda.gov/drugsatfda_docs/appletter/2017/125514Orig1s014ltr.pdf
44. Le DT, Durham JN, Smith KN et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 2017; 357 (6349): 409–13. DOI: 10.1126/science.aan6733
45. Cortes J, Cescon DW, Rugo S et al. KEYNOTE-355: Randomized, double-blind, phase III study of pembrolizumab + chemotherapy versus placebo + chemotherapy for previously untreated locally recurrent inoperable or metastatic triple-negative breast cancer. J Clin Oncol 2020; 38 (Suppl. 15): 1000.
46. Malone KE, Daling JR, Doody DR et al. Prevalence and predictors of BRCA1 and BRCA2 mutations in a population-based study of breast cancer in white and black American women ages 35 to 64 years. Cancer Res 2006; 66 (16): 8297–308.
47. Engel C, Rhiem K, Hahnen E et al. Prevalence of pathogenic BRCA1/2 germline mutations among 802 women with unilateral triple-negative breast cancer without family cancer history. BMC Cancer 2018; 18 (265).
48. NCCN Clinical Practice Guidelines. Genetic/Familial High Risk Assessment: Breast, Ovaria, Pancreatic. Version 1.2021 – September 8, 2020.
49. Tutt A, Tovey H, Cheang MCU et al. Carboplatin in BRCA1/2-mutated and triple-negative breast cancer BRCAness subgroups: the TNT Trial. Nat Med 2018; 24 (5): 628–37. DOI: 10.1038/s41591-018-0009-7;. PMID: 29713086; PMCID: PMC6372067.
50. Robson M, Ruddy KJ, Im SA et al. Patient-reported outcomes in patients with a germline BRCA mutation and HER2-negative metastatic breast cancer receiving olaparib versus chemotherapy in the OlympiAD trial. Eur J Cancer 2019; 120: 20–30.
51. Ettl J, Quek RGW, Lee KH et al. Quality of life with talazoparib versus physician’s choice of chemotherapy in patients with advanced breast cancer and germline BRCA1/2 mutation: Patient-reported outcomes from the EMBRACA phase III trial. Ann Oncol 2018; 29: 1939–47.
52. Pantelidou C, Sonzogni O, De Oliveria Taveira M et al. PARP Inhibitor Efficacy Depends on CD8+ T-cell Recruitment via Intratumoral STING Pathway Activation in BRCA-Deficient Models of Triple-Negative Breast Cancer. Cancer Discov 2019; 9 (6): 722–37. DOI: 10.1158/2159-8290.CD-18-1218; PMID: 31015319; PMCID: PMC6548644.
53. Domchek S, Postel-Vinay S, Im S et al. Phase II study of olaparib (O) and durvalumab (D) (MEDIOLA): updated results in patients (pts) with germline BRCA-mutated (gBRCAm) metastatic breast cancer (MBC). Ann Oncol 2019; 30 (Suppl. 5): v475–532.
54. Vinayak S, Tolaney SM, Schwartzberg LS et al. TOPACIO/Keynote-162: Niraparib + pembrolizumab in patients (pts) with metastatic triple-negative breast cancer (TNBC), a phase 2 trial. J Clin Oncol 2018; 36 (Suppl. 15): 1011.
55. Amiri-Kordestani L et al. FDA approval: ado-trastuzumab emtansine for the treatment of patients with HER2-positive metastatic breast cancer. Clin Cancer Res: 2014; 20 (17): 4436–41. DOI: 10.1158/1078-0432.CCR-14-0012
56. Keam SJ. Trastuzumab Deruxtecan: First Approval. Drugs 2020; 80 (5): 501–8. DOI: 10.1007/s40265-020-01281-4; PMID: 32144719.
57. Zhao W, Kuai X, Zhou X et al. Trop2 is a potential biomarker for the promotion of EMT in human breast cancer. Oncol Rep 2018; 40 (2): 759–66.
58. Bardia A, Mayer IA, Vahdat LT et al: Sacituzumab govitecan-hziy in refractory metastatic triple-negative breast cancer. N Engl J Med 2019; 380: 741–51.
59. U.S. Food and Drug Administration: FDA grants accelerated approval to sacituzumab govitecan-hziy for metastatic triple negative breast cancer. https://www.fda.gov/drugs/drug-approvals-and-databases/fda-grants-accelerated-approval-sacituzumab-g...
60. Bardia A et al. ASCENT: A randomized phase 3 study of sacituzumab govitecan (SG) vs treatment of physician’s choice (TPC) in patients (pts) with previously treated metastatic triple-negative breast cancer (mTNBC). ESMO Virtual Congress 2020, LBA17. Presented September 19, 2020.
61. Dent R, Antunes De Melo e Oliveira M, Isakoff SJ et al: Final results of the double-blind placebo-controlled randomized phase II LOTUS trial of first-line ipatasertib plus paclitaxel for inoperable locally advanced/metastatic triple-negative breast cancer 2020 ESMO Breast Cancer Virtual Meeting. Abstract 139O. Presented May 23, 2020.
62. Schmid P et al. Capivasertib Plus Paclitaxel Versus Placebo Plus Paclitaxel As First-Line Therapy for Metastatic Triple-Negative Breast Cancer: The PAKT Trial. J Clin Oncol 2020; 38 (5): 423–33. DOI: 10.1200/JCO.19.00368
63. Lyons TG. Targeted Therapies for Triple-Negative Breast Cancer. Curr Treat Options Oncol 2019; 20 (11): 82. DOI: 10.1007/s11864-019-0682-x; PMID: 31754897.
Авторы
И.П. Ганьшина*, О.О. Гордеева, М.Ш. Манукян
ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н.Н. Блохина» Минздрава России, Москва, Россия
*ganshinainna77@gmail.com
________________________________________________
Inna P. Ganshina*, Olga O. Gordeeva, Mariam Sh. Manukian