Материалы доступны только для специалистов сферы здравоохранения. Авторизуйтесь или зарегистрируйтесь.
Диагностика и мониторинг минимальной остаточной болезни при остром мегакариобластном лейкозе у детей
DOI: 10.26442/18151434.2021.1.200762
________________________________________________
Palladina AD, Popa AV, Valiev TT, Nikitaev VG, Chernysheva OA, Kupryshina NA, Serebryakova IN, Shvedova TV, Kondratchik KL, Tupitsyn NN. Detection and monitoring of minimal residual disease in acute megakaryoblastic leukemia in children. Journal of Modern Oncology. 2021; 23 (1): 148–155. DOI: 10.26442/18151434.2021.1.200762
Материалы доступны только для специалистов сферы здравоохранения. Авторизуйтесь или зарегистрируйтесь.
Цель. Продемонстрировать алгоритмы диагностики и определения МОБ при ОМЛ М7 у детей.
Материалы и методы. В статье проанализированы клинические и иммунологические данные 10 мальчиков и 4 девочек с впервые выявленным диагнозом ОМегЛ в возрасте от 3 мес до 12 лет, 13 из которых получали лечение в ФГБУ «НМИЦ онкологии им. Н.Н. Блохина» и 1 – в ГБУЗ «Морозовская ДГКБ» в период с 1995 по 2020 г. У 6 пациентов оценена МОБ. Оценка МОБ проводилась как морфоцитохимическим методом, так и методом многопараметровой проточной цитометрии с использованием маркеров мегакариоцитов (CD61, CD42, CD41) в сочетании с общемиелоидными маркерами (CD13, CD33), CD34, CD117 и маркерами аберрантности (наиболее часто – CD7).
Результаты. Показано, что адекватное измерение уровня МОБ требует подробного иммунофенотипирования при диагностике для установления аберрантности мегакариобластов. Наиболее часто на бластных клетках ОМегЛ помимо мегакариоцитарных маркеров (100% случаев) экспрессированы маркеры CD9 (100%), общемиелоидный антиген CD33 (69,2%), стволовоклеточный антиген CD34 (46,2%), CD13 (38,5%). Антиген CD117 присутствовал на бластных клетках в 33,3% случаев. Частой явилась экспрессия Т-клеточно-ассоциированного антигена CD7 (46,2%). Оценка МОБ проведена в процессе лечения (чаще – после индукционного курса) на основе маркеров мегакариоцитарной линии (CD61, CD41, CD42a, CD42b), слабой экспрессии CD45, а также особенностей иммунофенотипа при первичной диагностике. Уровни МОБ колебались от полностью отрицательных (0%; 0,006%) до явных (1,05%).
Заключение. Выявление остаточных опухолевых мегакариобластов при ОМЛ М7 с помощью проточной цитометрии является перспективным методом оценки эффекта терапии. Адекватное измерение уровня МОБ требует подробного иммунофенотипирования при диагностике для установления аберрантности мегакариобластов.
Ключевые слова: острый мегакариобластный лейкоз, М7, минимальная остаточная болезнь
________________________________________________
Acute megakaryoblastic leukemia (AMKL) is a rare subtype of acute myeloid leukemia (AML), which is associated with poor prognosis for all patients except children with t(1;22) or Down syndrome. The frequency of complete remission in case of AMKL is comparable to the frequency of complete remission in other variants of AML, and the median survival is much lower. This determines the necessity to update criteria for assessment of the effect of treatment using flow cytometry definition of the level of minimal residual disease (MRD). Nowadays, there are no unified and standardized approaches for the measurement of MRD in case of myeloid leukemia, including AMKL, which prohibits adequate assessment of the therapy effect and in some cases – determination of the indications for allogeneic hematopoietic stem cells transplantation. The article identifies diagnostic features and describes approaches for the measurement of the level of MRD in case of AMKL.
Aim. The aim is to demonstrate the algorithms for diagnosing and measuring MRD in case of AML-M7 in children.
Materials and methods. The article analyzes the clinical and immunological profile of 10 boys and 4 girls with the initial diagnosis of AMKL between the ages of 3 months – 12 years old, 13 of them have received treatment in the FSBI "N.N. Blokhin National Medical Research Center of Oncology" and one – in the GBUZ "Morozovsky DGKB" between 1995 and 2020, The measurement of MRD was carried out in 6 patients. The measurement of MRD was carried out using both morphocytochemical method and multiparameter flow cytometry with megakaryocyte markers (CD61, CD42, CD41) in combination with other myeloid markers (CD13, CD33), CD34, CD117 and aberrant markers (mainly CD7).
Results. We showed that adequate measurement of the level of MRD had required detailed immunophenotyping during diagnosis to determine the aberration of megakaryoblasts. CD9 marker (100%), CD33 myeloid marker (69.2%), stem cell antigen CD34 (46.2%), CD13 (38.2%) in addition to megakaryocyte markers (100%) were most often expressed on blast cells in case of AMKL. The CD117 antigen was present on the blasts in 33.3% of cases. The expression of the T-cell-associated CD7 antigen (46.2%) was frequent. The measurement of MRD was carried out during the treatment (usually after an induction course) on the basis of the markers of megakaryocytic cell line (CD61, CD41, CD42a, CD42b), weak CD45 expression, as well as the immunophenotype characteristics during initial diagnosis. The level of MRD ranged from completely negative (0%; 0.006%) to evident (1.05%).
Conclusion. The detection of residual tumor megakaryoblasts in case of AML-M7 using flow cytometry is a promising method to evaluate the effect of therapy. The adequate measurement of the level of MRD requires detailed immunophenotyping during the diagnosis to determine the aberration of megakaryoblasts.
Keywords: acute megakaryoblastic leukemia, M7, minimal residual disease
2. Hahn AW, et al. Acute megakaryocytic leukemia: What have we learned. Blood Rev 2015. DOI: 10.1016/j.blre.2015.07.005
3. Breton-Gorius J, Reyes F, Duhamel G, et al. Megakaryoblastic acute leukemia: identification by the ultrastructural demonstration of platelet peroxidase. Blood 1978; 51: 45–60.
4. Bennett JM, Catovsky D, Daniel MT, et al. Criteria for the diagnosis of acute leukemia of megakaryocyte lineage (M7), a report of the French-American-British Cooperative Group. Ann Intern Med 1985; 103: 460–2.
5. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues (Revised 4th edition). Eds. Swerdlow SH, Campo E, Harris NL, et al. IARC: Lyon, 2017; p. 163.
6. Луговская С.А., Почтарь М.Е. Гематологический атлас. 4-е изд. М.–Тверь: Триада, 2016 [Lugovskaya SA, Postman ME. Hematological atlas. 4th ed. Moscow–Tver: Triada, 2016 (in Russian)].
7. Окороков А. Диагностика болезней внутренних органов. Кн. 5-1. М.: Мед. лит-ра, 2019; с. 700 [Okorokov A. Diagnosis of diseases of internal organs. Book. 5-1. Moscow: Med. liter, 2019; p. 700 (in Russian)].
8. Masettia R, Guidia V, Ronchinia L, et al. The changing scenario of non-Down syndrome acute megakaryoblastic leukemia in children. Crit Rev Oncol Hematol 2019; 138: 132–8.
9. De Marchi F, Araki M, Komatsu N. Molecular features, prognosis, and novel treatment options for pediatric acute megakaryoblastic leukemia. Expert Rev Hematol 2019. DOI: 10.1080/17474086.2019.1609351
10. Pont J, Souvignet A, Campos L, et al. Accurate Quantification of Fourteen Normal Bone Marrow Cell Subsets in Infants to the Elderly by Flow Cytometry. Cytometry B Clin Cytom 2018; 94 (5): 627–36.
11. Carroll A, Civin C, Schneider N, et al. The t(1;22) (p13;q13) is nonrandom and restricted to infants with acute megakaryoblastic leukemia: a Pediatric Oncology Group Study. Blood 1991; 78 (3): 748–52.
12. Mercher T, Busson-Le Coniat M, Nguyen Khac F, et al. Recurrence of OTT-MAL fusion in t(1;22) of infant AML-M7. Genes Chromosomes Cancer 2002; 33: 22–8.
13. Inaba H, Zhou Y, Abla O, et al. Heterogeneous cytogenetic subgroups and outcomes in childhood acute megakaryoblastic leukemia: a retrospective international study. Blood 2015; 126 (13): 1575–84.
14. O’Brien MM, Cao X, Pounds S, et al. Prognostic features in acute megakaryoblastic leukemia in children without Down syndrome: a report from the AML02 multicenter trial and the Children’s Oncology Group study POG 9421. Leukemia 2015; 344 (6188): 1173–8.
15. Giri S, Pathak R, Prouet P, et al. Acute megakaryocytic leukemia is associated with worse outcomes than other types of acute myeloid leukemia. Blood 2014; 124 (25): 3833–4
16. van Dongen JJ, Lhermitte L, Böttcher S, et al. EuroFlow antibody panels for standardized n-dimensional flow cytometric immunophenotyping of normal, reactive and malignant leukocytes. Leukemia 2012; 26 (9): 1908–75. DOI: 10.1038/leu.2012.120; PMID: 22552007
17. Miyawaki K, Iwasaki H, Jiromaru T, et al. Identification of unipotent megakaryocyte progenitors in human hematopoiesis. Blood 2017; 129 (25): 3332–43.
DOI: 10.1182/blood-2016-09-741611; PMID: 28336526
18. Nishikii H, Kanazawa Y, Umemoto T, et al. Unipotent Megakaryopoietic Pathway Bridging Hematopoietic Stem Cells and Mature Megakaryocytes. Stem Cells 2015; 33 (7): 2196–207. DOI: 10.1002/stem.1985
19. Ferkowicz MJ, Starr M, Xie X, et al. CD41 expression defines the onset of primitive and definitive hematopoiesis in the murine embryo. Development 2003; 130: 4393–403; PubMed: 12900455
20. Deutsch VR, Tomer A. Advances in megakaryocytopoiesis and thrombopoiesis: From bench to bedside. Br J Haematol 2013; 161: 778–93; PubMed: 23594368
21. Björklund E, Gruber A, Mazur J, et al. CD34+ cell subpopulations detected by 8-color flow cytometry in bone marrow and in peripheral blood stem cell collections: application for MRD detection in leukemia patients. Int J Hematol 2009; 90 (3): 292–302. DOI: 10.1007/s12185-009-0389-z; PMID: 19728029
22. Wen Q, Goldenson B, Crispino JD. Normal and malignant megakaryopoiesis. Expert Rev Mol Med 2011; 13: e32. DOI: 10.1017/S1462399411002043; PMID: 22018018; PMCID: PMC4869998
23. Macedo A, Orfao A, Ciudad J, et al. Phenotypic analysis of CD34 subpopulations in normal human bone marrow and its application for the detection of minimal residual disease. Leukemia 1995; 9 (11): 1896–901. PMID: 7475281
________________________________________________
1. Von Boros J, Korenyi A. Uber einen fall von akuter megakaryocyblasten-leukamie, zugleich einige bemerkungen zum. Problem der akuten leukemie. Z Klin Med 1931; 118: 679–718.
2. Hahn AW, et al. Acute megakaryocytic leukemia: What have we learned. Blood Rev 2015. DOI: 10.1016/j.blre.2015.07.005
3. Breton-Gorius J, Reyes F, Duhamel G, et al. Megakaryoblastic acute leukemia: identification by the ultrastructural demonstration of platelet peroxidase. Blood 1978; 51: 45–60.
4. Bennett JM, Catovsky D, Daniel MT, et al. Criteria for the diagnosis of acute leukemia of megakaryocyte lineage (M7), a report of the French-American-British Cooperative Group. Ann Intern Med 1985; 103: 460–2.
5. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues (Revised 4th edition). Eds. Swerdlow SH, Campo E, Harris NL, et al. IARC: Lyon, 2017; p. 163.
6. Lugovskaya SA, Postman ME. Hematological atlas. 4th ed. Moscow–Tver: Triada, 2016 (in Russian)
7. Okorokov A. Diagnosis of diseases of internal organs. Book. 5-1. Moscow: Med. liter, 2019; p. 700 (in Russian)
8. Masettia R, Guidia V, Ronchinia L, et al. The changing scenario of non-Down syndrome acute megakaryoblastic leukemia in children. Crit Rev Oncol Hematol 2019; 138: 132–8.
9. De Marchi F, Araki M, Komatsu N. Molecular features, prognosis, and novel treatment options for pediatric acute megakaryoblastic leukemia. Expert Rev Hematol 2019. DOI: 10.1080/17474086.2019.1609351
10. Pont J, Souvignet A, Campos L, et al. Accurate Quantification of Fourteen Normal Bone Marrow Cell Subsets in Infants to the Elderly by Flow Cytometry. Cytometry B Clin Cytom 2018; 94 (5): 627–36.
11. Carroll A, Civin C, Schneider N, et al. The t(1;22) (p13;q13) is nonrandom and restricted to infants with acute megakaryoblastic leukemia: a Pediatric Oncology Group Study. Blood 1991; 78 (3): 748–52.
12. Mercher T, Busson-Le Coniat M, Nguyen Khac F, et al. Recurrence of OTT-MAL fusion in t(1;22) of infant AML-M7. Genes Chromosomes Cancer 2002; 33: 22–8.
13. Inaba H, Zhou Y, Abla O, et al. Heterogeneous cytogenetic subgroups and outcomes in childhood acute megakaryoblastic leukemia: a retrospective international study. Blood 2015; 126 (13): 1575–84.
14. O’Brien MM, Cao X, Pounds S, et al. Prognostic features in acute megakaryoblastic leukemia in children without Down syndrome: a report from the AML02 multicenter trial and the Children’s Oncology Group study POG 9421. Leukemia 2015; 344 (6188): 1173–8.
15. Giri S, Pathak R, Prouet P, et al. Acute megakaryocytic leukemia is associated with worse outcomes than other types of acute myeloid leukemia. Blood 2014; 124 (25): 3833–4
16. van Dongen JJ, Lhermitte L, Böttcher S, et al. EuroFlow antibody panels for standardized n-dimensional flow cytometric immunophenotyping of normal, reactive and malignant leukocytes. Leukemia 2012; 26 (9): 1908–75. DOI: 10.1038/leu.2012.120; PMID: 22552007
17. Miyawaki K, Iwasaki H, Jiromaru T, et al. Identification of unipotent megakaryocyte progenitors in human hematopoiesis. Blood 2017; 129 (25): 3332–43.
DOI: 10.1182/blood-2016-09-741611; PMID: 28336526
18. Nishikii H, Kanazawa Y, Umemoto T, et al. Unipotent Megakaryopoietic Pathway Bridging Hematopoietic Stem Cells and Mature Megakaryocytes. Stem Cells 2015; 33 (7): 2196–207. DOI: 10.1002/stem.1985
19. Ferkowicz MJ, Starr M, Xie X, et al. CD41 expression defines the onset of primitive and definitive hematopoiesis in the murine embryo. Development 2003; 130: 4393–403; PubMed: 12900455
20. Deutsch VR, Tomer A. Advances in megakaryocytopoiesis and thrombopoiesis: From bench to bedside. Br J Haematol 2013; 161: 778–93; PubMed: 23594368
21. Björklund E, Gruber A, Mazur J, et al. CD34+ cell subpopulations detected by 8-color flow cytometry in bone marrow and in peripheral blood stem cell collections: application for MRD detection in leukemia patients. Int J Hematol 2009; 90 (3): 292–302. DOI: 10.1007/s12185-009-0389-z; PMID: 19728029
22. Wen Q, Goldenson B, Crispino JD. Normal and malignant megakaryopoiesis. Expert Rev Mol Med 2011; 13: e32. DOI: 10.1017/S1462399411002043; PMID: 22018018; PMCID: PMC4869998
23. Macedo A, Orfao A, Ciudad J, et al. Phenotypic analysis of CD34 subpopulations in normal human bone marrow and its application for the detection of minimal residual disease. Leukemia 1995; 9 (11): 1896–901. PMID: 7475281
1 ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н.Н. Блохина» Минздрава России, Москва, Россия;
2 ФГАОУ ВО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России, Москва, Россия;
3 ФГАОУ ВО «Национальный исследовательский ядерный университет “МИФИ”», Москва, Россия;
4 ГБУЗ «Морозовская детская городская клиническая больница» Департамента здравоохранения г. Москвы, Москва, Россия
*palladinaa@gmail.com
________________________________________________
Alexandra D. Palladina1, Aleksandr V. Popa2, Timur T. Valiev1, Valentin G. Nikitaev3, Olga A. Chernysheva1, Natalia A. Kupryshina1, Irina N. Serebryakova1, Tamara V. Shvedova1, Konstantin L. Kondratchik2,4, Nikolai N. Tupitsyn1
1 Blokhin National Medical Research Center of Oncology, Moscow, Russia;
2 Pirogov Russian National Research Medical University, Moscow, Russia;
3 National Research Nuclear University MEPhI, Moscow, Russia;
4 Morozov Children's Clinical Hospital, Moscow, Russia
*palladinaa@gmail.com