Kovaleva OV, Podlesnaya PA, Gratchev AN, Chang VL, Ognerubov NA, Kushlinskii NE. Stomach cancer. Clinical significance of the expression of key components of PD-1/PD-L1 immune checkpoint. Journal of Modern Oncology. 2021; 23 (1): 122–127. DOI: 10.26442/18151434.2021.1.200749
Kovaleva OV, Podlesnaya PA, Gratchev AN, Chang VL, Ognerubov NA, Kushlinskii NE. Stomach cancer. Clinical significance of the expression of key components of PD-1/PD-L1 immune checkpoint. Journal of Modern Oncology. 2021; 23 (1): 122–127. DOI: 10.26442/18151434.2021.1.200749
Рак желудка – одна из широко распространенных опухолей желудочно-кишечного тракта. По выявляемости в России рак желудка занимает 4-е место среди злокачественных новообразований, уступая опухолям легкого, молочной железы и толстой кишки. Несмотря на то, что успех применения ингибиторов PD-1/PD-L1 в клинической практике доказан для многих форм онкологических заболеваний, целесообразность применения данных видов препаратов для случаев рака желудка еще не определена. Целью данного обзора является анализ современных исследований, посвященных клинической значимости экспрессии PD-1 и PD-L1 в опухолях желудка и перспектив иммунотерапии опухолей данной локализации. В настоящее время описано большое количество исследований, посвященных изучению уровней экспрессии PD-1, PD-L1 в опухолевых клетках и растворимых форм данных белков sPD-1 и sPD-L1 в сыворотке крови больных раком желудка. Однако клиническая их значимость неоднозначна, и во многих случаях прогностическая роль экспрессии PD-L1 в эффективности иммунотерапии еще однозначно не определена. Дальнейшее накопление знаний в этой области может помочь повысить эффективность существующих методов иммунотерапии и выработать новые прогностические критерии ее эффективности.
Stomach cancer is one of the most common tumors of the gastrointestinal tract. In Russia, stomach cancer is ranked fourth in incidence among malignancies and gives ground for lung, breast and colon cancers. Although the success of PD-1/PD-L1 inhibitors application in clinical practice has been proven in cases of many forms of malignancies, the advantages of application of these types of drugs in cases of stomach cancer has not yet been determined. The purpose of this review is to analyze modern studies concerning the clinical significance of PD-1 and PD-L1 expression in stomach tumors and to find the prospects of immunotherapy these tumors. The large number of studies are currently being described, concerning the analysis of the expression of PD-1, PD-L1 levels in tumor cells and soluble forms of these proteins sPD-1 and sPD-L1 in the serum in patients with stomach cancer. However, their clinical significance is unclear, and in many cases the predictive role of PD-L1 expression for the efficacy of immunotherapy is not yet clearly defined. Further accumulation of knowledge in this area can help to improve the efficacy of existing immunotherapy methods and to develop new predictive criteria.
Keywords: stomach cancer, expression, PD-1, PD-L1, sPD-1, sPD-L1
For citation:
1. Richman DM, Tirumani SH, Hornick JL, et al. Beyond gastric adenocarcinoma: Multimodality assessment of common and uncommon gastric neoplasms. Abdom Radiol 2017; 42: 124–40.
2. Strand MS, Lockhart AC, Fields RC. Genetics of gastric cancer. Surgical Clinics 2017; 97 (2): 345–70.
3. Заридзе Д.Г., Максимович Д.М. Профилактика злокачественных новообразований. Успехи молекулярной онкологии. 2017; 4 (2): 8–25 [Zaridze DG, Maksimovich DM. Profilaktika zlokachestvennykh novoobrazovanii. Uspekhi molekuliarnoi onkologii. 2017; 4 (2): 8–25 (in Russian)].
4. Poorolajal J, et al. Risk factors for stomach cancer: a systematic review and meta-analysis. Epidemiol Health 2020; 42.
5. Кушлинский Н.Е., Немцова М.В. Молекулярные механизмы опухолевого роста. Мед. новости. 2014; 9: 29–37 [Kushlinskii NE, Nemtsova MV. Molekuliarnye mekhanizmy opukholevogo rosta. Med. novosti. 2014; 9: 29–37 (in Russian)].
6. Jang BG, Kim WH. Molecular pathology of gastric carcinoma. Pathobiology 2011; 78 (6): 302–10.
7. Zhao C, Bu X. Promoter methylation of tumorrelated genes in gastric carcinogenesis. Histol Histopathol 2012; 27 (10): 1271–82.
8. Kang GH, Lee S, Kim WH, et al. Epstein–Barr virus-positive gastric carcinoma demonstrates frequent aberrant methylation of multiple genes and constitutes CpG island methylator phenotype-positive gastric carcinoma. Am J Pathol 2002; 160 (3): 787–94.
9. Ahn HJ, Lee DS. Helicobacter pylori in gastric carcinogenesis. World J Gastrointest Oncol 2015; 7 (12): 455–65.
10. Исаев Ш.Г., Поздеев О.К. Роль Helicobacter pylori в патогенезе злокачественных трансформаций эпителия слизистой оболочки желудка. Казан. мед. журн. 2003; 6: 437–43 [Isaev ShG, Pozdeev OK. Rol' Helicobacter pylori v patogeneze zlokachestvennykh transformatsii epiteliia slizistoi obolochki zheludka. Kazan. med. zhurn. 2003; 6: 437–43 (in Russian)].
11. Тарасенко Л.А., Шиманец С.В., Дударев В.С., и др. Хронический Helicobacter pylori ассоциированный гастрит и его роль в развитии рака желудка. Вестн. Смоленской государственной медицинской академии. 2015; 1: 80–6 [Tarasenko LA, Shimanets SV, Dudarev VS, et al. Khronicheskii Helicobacter pylori assotsiirovannyi gastrit i ego rol' v razvitii raka zheludka. Vestn. Smolenskoi gosudarstvennoi meditsinskoi akademii. 2015; 1: 80–6 (in Russian)].
12. Dong CX. Promoter methylation of p16 associated with Helicobacter pylori infection in precancerous gastric lesions: a population-based study. Int J Cancer 2009; 124 (2): 434–39.
13. Palaia I, et al. Immunotherapy For Ovarian Cancer: Recent Advances And Combination Therapeutic Approaches. Onco Targets Ther 2020; 13: 6109.
14. Shigemori T, Toiyama Y, Okugawa Y, et al. Soluble PD-L1 Expression in Circulation as a Predictive Marker for Recurrence and Prognosis in Gastric Cancer: Direct Comparison of the Clinical Burden Between Tissue and Serum PD-L1 Expression. Ann Surg Oncol 2019; 26 (3): 876–83.
15. Ando K, et al. Plasma levels of soluble PD-L1 correlate with tumor regression in patients with lung and gastric cancer treated with immune checkpoint inhibitors. Anticancer Res 2019; 39 (9): 5195–201.
16. Choi YY, et al. Microsatellite instability and programmed cell death-ligand 1 expression in stage II/III gastric cancer: post hoc analysis of the CLASSIC randomized controlled study. Ann Surg 2019; 270 (2): 309–16.
17. Практические рекомендации Российского общества клинической онкологии. Лекарственное лечение злокачественных опухолей под ред. В.М. Моисеенко. Злокачественные опухоли. Практические рекомендации RUSSCO. 2019; 9 (3s2) [Prakticheskie rekomendatsii Rossiiskogo obshchestva klinicheskoi onkologii. Lekarstvennoe lechenie zlokachestvennykh opukholei pod red. V.M. Moiseenko. Zlokachestvennye opukholi. Prakticheskie rekomendatsii RUSSCO. 2019; 9 (3s2) (in Russian)].
18. Barber DL, Wherry EJ, Masopust D, et al. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 2006; 439: 682–7.
19. Deng R, Cassady K, Li X, et al. B7H1/CD80 interaction augments PD-1-dependent T cell apoptosis and ameliorates graft-versus-host disease. J Immunol 2015; 194: 560–74.
20. Goldberg MV, Maris CH, Hipkiss EL, et al. Role of PD-1 and its ligand, B7-H1, in early fate decisions of CD8 T cells. Blood 2007; 110: 186–92.
21. Martin-Orozco N, Wang YH, Yagita H, Dong C. Cutting Edge: programmed death (PD) ligand-1/PD-1 interaction is required for CD8+ T cell tolerance to tissue antigens. J Immunol 2006; 177: 8291–5.
22. Ribas A, Wolchok JD. Cancer immunotherapy using checkpoint blockade. Science 2018; 359: 1350–5.
23. Böger C, Behrens HM, Mathiak M, et al. PD-L1 is an independent prognostic predictor in gastric cancer of Western patients. Oncotarget 2016; 7 (17): 24269–83.
24. Yang JH, Kim H, Roh SY, et al. Discordancy and changes in the pattern of programmed death ligand 1 expression before and after platinum-based chemotherapy in metastatic gastric cancer. Gastric Cancer 2019; 22 (1): 147–54.
25. Cho J, Lee J, Bang H, et al. Programmed cell death-ligand 1 expression predicts survival in patients with gastric carcinoma with microsatellite instability. Oncotarget 2017; 8: 13320–8.
26. Chang H, Jung WY, Kang Y, et al. Programmed death-ligand 1 expression in gastric adenocarcinoma is a poor prognostic factor in a high CD8+ tumor infiltrating lymphocytes group. Oncotarget 2016; 7 (49): 80426–34.
27. Tamura T, Ohira M, Tanaka H, et al. Programmed Death-1 Ligand-1 (PDL1) Expression Is Associated with the Prognosis of Patients with Stage II/III Gastric Cancer. Anticancer Res 2015; 35 (10): 5369–76.
28. Zhang L, Qiu M, Jin Y, et al. Programmed cell death ligand 1 (PD-L1) expression on gastric cancer and its relationship with clinicopathologic factors. Int J Clin Exp Pathol 2015; 8: 11084–91.
29. Thompson ED, Zahurak M, Murphy A, et al. Patterns of PD-L1 expression and CD8 T cell infiltration in gastric adenocarcinomas and associated immune stroma. Gut 2017; 66 (5): 794–801. DOI: 10.1136/gutjnl-2015-310839
30. Kawazoe A, Kuwata T, Kuboki Y, et al. Clinicopathological features of programmed death ligand 1 expression with tumor-infiltrating lymphocyte, mismatch repair, and Epstein-Barr virus status in a large cohort of gastric cancer patients. Gastric Cancer 2017; 20 (3): 407–15. DOI: 10.1007/s10120-016-0631-3
31. Zhang M, Dong Y, Liu H, et al. The clinicopathological and prognostic significance of PD-L1 expression in gastric cancer: a meta-analysis of 10 studies with 1,901 patients. Sci Rep 2016; 6: 37933.
32. Gu L, Chen M, Guo D, et al. PD-L1 and gastric cancer prognosis: A systematic review and meta-analysis. PLoS One 2017; 12 (8): e0182692.
33. Thompson ED, Zahurak M, Murphy A, et al. Patterns of PD-L1 expression and CD8 T cell infiltration in gastric adenocarcinomas and associated immune stroma. Gut 2017; 66: 794–801.
34. Pereira MA, Ramos MFKP, Faraj SF, et al. Clinicopathological and prognostic features of Epstein-Barr virus infection, microsatellite instability, and PD-L1 expression in gastric cancer. J Surg Oncol 2018; 117 (5): 829–39.
35. Wang L, Zhang Q, Ni S, et al. Programmed death-ligand 1 expression in gastric cancer: correlation with mismatch repair deficiency and HER2-negative status. Cancer Med 2018; 7 (6): 2612–20.
36. Koh J, Ock CY, Kim JW, et al. Clinicopathologic implications of immune classification by PD-L1 expression and CD8-positive tumor-infiltrating lymphocytes in stage II and III gastric cancer patients. Oncotarget 2017; 8 (16): 26356–67.
37. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature 2014; 513: 202–9.
38. Derks S, Liao X, Chiaravalli AM, et al. Abundant PD-L1 expression in Epstein–Barr Virus-infected gastric cancers. Oncotarget 2016; 7 (22): 32925–32.
39. Ma C, Patel K, Singhi AD, et al. Programmed Death-Ligand 1 Expression Is Common in Gastric Cancer Associated With Epstein-Barr Virus or Microsatellite Instability. Am J Surg Pathol 2016; 40 (11): 1496–506.
40. Fridman WH, Pagès F, Sautès-Fridman C, Galon J. The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer 2012; 12: 298–306.
41. Lee HE, Chae SW, Lee YJ, et al. Prognostic implications of type and density of tumour-infiltrating lymphocytes in gastric cancer. Br J Cancer 2008; 99: 1704–11.
42. Wakatsuki K, Sho M, Yamato I, et al. Clinical impact of tumor-infiltrating CD45RO+ memory T cells on human gastric cancer. Oncol Rep 2013; 29: 1756–62.
43. Kang Y-K, Boku N, Satoh T, et al. Nivolumab in patients with advanced gastric or gastro-oesophageal junction cancer refractory to, or intolerant of, at least two previous chemotherapy regimens (ONO-4538-12, ATTRACTION-2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2017; 390: 2461–71. DOI: 10.1016/S0140-6736(17)31827-5
44. Muro K, Fuchs CS, Jang RW-J, et al. KEYNOTE-059 cohort 1: Pembrolizumab (Pembro) monotherapy in previously treated advanced gastric or gastroesophageal junction (G/GEJ) cancer in patients (Pts) with PD-L1+ tumors – Asian subgroup analysis. J Clin Oncol 2018; 36 (Suppl. 4): 723.
45. Bang Y-J, Muro K, Fuchs CS, et al. KEYNOTE-059 cohort 2: Safety and efficacy of pembrolizumab (pembro) plus 5-fluorouracil (5-FU) and cisplatin for first-line (1L) treatment of advanced gastric cancer. J Clin Oncol 2017; 36 (Suppl. 4): 4012.
46. Catenacci VD, Wainberg Z, Fuchs SC, et al. KEYNOTE-059 cohort 3: safety and efficacy of pembrolizumab monotherapy for first-line treatment of patients (pts) with PD-L1-positive advanced gastric/gastroesophageal (G/GEJ) cancer. J Clin Oncol 2017.
47. Fuchs CS, Ozguroglu M, Bang Y-J, et al. Pembrolizumab (pembro) vs paclitaxel (PTX) for previously treated advanced gastric or gastroesophageal junction (G/GEJ) cancer: phase 3 KEYNOTE-061 trial. J Clin Oncol 2018; 36: 4062. DOI: 10.1200/JCO.2018.36.15_suppl.4062
48. Kim JW, et al. Prognostic implications of immunosuppressive protein expression in tumors as well as immune cell infiltration within the tumor microenvironment in gastric cancer. Gastric Cancer 2016; 19 (1): 42–52.
49. Nielsen C, Ohm-Laursen L, Barington T, et al. Alternative splice variants of the human PD-1 gene. Cell Immunol 2005; 235 (2): 109–16. DOI: 10.1016/j.cellimm.2005.07.007; PMID: 16171790
50. Dai S, et al. The PD-1/PD-Ls pathway and autoimmune diseases. Cell Immunol 2014; 290 (1): 72–9.
51. Chen Y, Wang Q, Shi B, et al. Development of a sandwich ELISA for evaluating soluble PD-L1 (CD274) in human sera of different ages as well as supernatants of PD-L1+ cell lines. Cytokine 2011; 56 (2): 231–8. DOI: 10.1016/j.cyto.2011.06.004; PMID: 21733718
52. Geng H, Zhang GM, Xiao H, et al. HSP70 vaccine in combination with gene therapy with plasmid DNA encoding sPD-1 overcomes immune resistance and suppresses the progression of pulmonary metastatic melanoma. Int J Cancer 2006; 118 (11): 2657–64. DOI: 10.1002/ijc.21795; PMID: 16425224
53. Song MY, Park SH, Nam HJ, et al. Enhancement of vaccine-induced primary and memory CD8(+) T-cell responses by soluble PD-1. J Immunother 2011; 34 (3): 297–306. DOI: 10.1097/CJI.0b013e318210ed0e; PMID: 21389868
54. Wan B, Nie H, Liu A, et al. Aberrant regulation of synovial T cell activation by soluble costimulatory molecules in rheumatoid arthritis. J Immunol 2006; 177 (12): 8844–50. DOI: 10.4049/jimmunol.177.12.8844; PMID: 17142787
55. Ding Y, Sun C, Li J, et al. The Prognostic Significance of Soluble Programmed Death Ligand 1 Expression in Cancers: A Systematic Review and Meta-analysis. Scand J Immunol 2017; 86 (5): 361–7.
56. Герштейн Е.С., Огнерубов Н.А., Чанг В.Л., и др. Растворимые формы PD-1 и PD-L1 в плазме крови больных раком желудка и их связь с клиническими и морфологическими характеристиками заболевания. Клин. лаб. диагностика. 2020; 65 (6): 347–52 [Gershtein ES, Ognerubov NA, Chang VL, et al. Rastvorimye formy PD-1 i PD-L1 v plazme krovi bol'nykh rakom zheludka i ikh sviaz' s klinicheskimi i morfologicheskimi kharakteristikami zabolevaniia. Klin. lab. diagnostika. 2020; 65 (6): 347–52 (in Russian)].
57. Takahashi N, Iwasa S, Sasaki Y, et al. Serum levels of soluble programmed cell death ligand 1 as a prognostic factor on the first-line treatment of metastatic or recurrent gastric cancer. J Cancer Res Clin Oncol 2016; 142 (8): 1727–38.
58. Zheng Z, et al. Level of circulating PD-L1 expression in patients with advanced gastric cancer and its clinical implications. Chinese Journal of Cancer Research 2014; 26 (1): 104.
59. Shigemori T, Toiyama Y, Okugawa Y, et al. Soluble PD-L1 Expression in Circulation as a Predictive Marker for Recurrence and Prognosis in Gastric Cancer: Direct Comparison of the Clinical Burden Between Tissue and Serum PD-L1 Expression. Ann Surg Oncol 2019; 26 (3): 876–83.
________________________________________________
1. Richman DM, Tirumani SH, Hornick JL, et al. Beyond gastric adenocarcinoma: Multimodality assessment of common and uncommon gastric neoplasms. Abdom Radiol 2017; 42: 124–40.
2. Strand MS, Lockhart AC, Fields RC. Genetics of gastric cancer. Surgical Clinics 2017; 97 (2): 345–70.
3. Zaridze DG, Maksimovich DM. Profilaktika zlokachestvennykh novoobrazovanii. Uspekhi molekuliarnoi onkologii. 2017; 4 (2): 8–25 (in Russian)
4. Poorolajal J, et al. Risk factors for stomach cancer: a systematic review and meta-analysis. Epidemiol Health 2020; 42.
5. Kushlinskii NE, Nemtsova MV. Molekuliarnye mekhanizmy opukholevogo rosta. Med. novosti. 2014; 9: 29–37 (in Russian)
6. Jang BG, Kim WH. Molecular pathology of gastric carcinoma. Pathobiology 2011; 78 (6): 302–10.
7. Zhao C, Bu X. Promoter methylation of tumorrelated genes in gastric carcinogenesis. Histol Histopathol 2012; 27 (10): 1271–82.
8. Kang GH, Lee S, Kim WH, et al. Epstein–Barr virus-positive gastric carcinoma demonstrates frequent aberrant methylation of multiple genes and constitutes CpG island methylator phenotype-positive gastric carcinoma. Am J Pathol 2002; 160 (3): 787–94.
9. Ahn HJ, Lee DS. Helicobacter pylori in gastric carcinogenesis. World J Gastrointest Oncol 2015; 7 (12): 455–65.
10. Isaev ShG, Pozdeev OK. Rol' Helicobacter pylori v patogeneze zlokachestvennykh transformatsii epiteliia slizistoi obolochki zheludka. Kazan. med. zhurn. 2003; 6: 437–43 (in Russian)
11. Tarasenko LA, Shimanets SV, Dudarev VS, et al. Khronicheskii Helicobacter pylori assotsiirovannyi gastrit i ego rol' v razvitii raka zheludka. Vestn. Smolenskoi gosudarstvennoi meditsinskoi akademii. 2015; 1: 80–6 (in Russian)
12. Dong CX. Promoter methylation of p16 associated with Helicobacter pylori infection in precancerous gastric lesions: a population-based study. Int J Cancer 2009; 124 (2): 434–39.
13. Palaia I, et al. Immunotherapy For Ovarian Cancer: Recent Advances And Combination Therapeutic Approaches. Onco Targets Ther 2020; 13: 6109.
14. Shigemori T, Toiyama Y, Okugawa Y, et al. Soluble PD-L1 Expression in Circulation as a Predictive Marker for Recurrence and Prognosis in Gastric Cancer: Direct Comparison of the Clinical Burden Between Tissue and Serum PD-L1 Expression. Ann Surg Oncol 2019; 26 (3): 876–83.
15. Ando K, et al. Plasma levels of soluble PD-L1 correlate with tumor regression in patients with lung and gastric cancer treated with immune checkpoint inhibitors. Anticancer Res 2019; 39 (9): 5195–201.
16. Choi YY, et al. Microsatellite instability and programmed cell death-ligand 1 expression in stage II/III gastric cancer: post hoc analysis of the CLASSIC randomized controlled study. Ann Surg 2019; 270 (2): 309–16.
17. Prakticheskie rekomendatsii Rossiiskogo obshchestva klinicheskoi onkologii. Lekarstvennoe lechenie zlokachestvennykh opukholei pod red. V.M. Moiseenko. Zlokachestvennye opukholi. Prakticheskie rekomendatsii RUSSCO. 2019; 9 (3s2) (in Russian)
18. Barber DL, Wherry EJ, Masopust D, et al. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 2006; 439: 682–7.
19. Deng R, Cassady K, Li X, et al. B7H1/CD80 interaction augments PD-1-dependent T cell apoptosis and ameliorates graft-versus-host disease. J Immunol 2015; 194: 560–74.
20. Goldberg MV, Maris CH, Hipkiss EL, et al. Role of PD-1 and its ligand, B7-H1, in early fate decisions of CD8 T cells. Blood 2007; 110: 186–92.
21. Martin-Orozco N, Wang YH, Yagita H, Dong C. Cutting Edge: programmed death (PD) ligand-1/PD-1 interaction is required for CD8+ T cell tolerance to tissue antigens. J Immunol 2006; 177: 8291–5.
22. Ribas A, Wolchok JD. Cancer immunotherapy using checkpoint blockade. Science 2018; 359: 1350–5.
23. Böger C, Behrens HM, Mathiak M, et al. PD-L1 is an independent prognostic predictor in gastric cancer of Western patients. Oncotarget 2016; 7 (17): 24269–83.
24. Yang JH, Kim H, Roh SY, et al. Discordancy and changes in the pattern of programmed death ligand 1 expression before and after platinum-based chemotherapy in metastatic gastric cancer. Gastric Cancer 2019; 22 (1): 147–54.
25. Cho J, Lee J, Bang H, et al. Programmed cell death-ligand 1 expression predicts survival in patients with gastric carcinoma with microsatellite instability. Oncotarget 2017; 8: 13320–8.
26. Chang H, Jung WY, Kang Y, et al. Programmed death-ligand 1 expression in gastric adenocarcinoma is a poor prognostic factor in a high CD8+ tumor infiltrating lymphocytes group. Oncotarget 2016; 7 (49): 80426–34.
27. Tamura T, Ohira M, Tanaka H, et al. Programmed Death-1 Ligand-1 (PDL1) Expression Is Associated with the Prognosis of Patients with Stage II/III Gastric Cancer. Anticancer Res 2015; 35 (10): 5369–76.
28. Zhang L, Qiu M, Jin Y, et al. Programmed cell death ligand 1 (PD-L1) expression on gastric cancer and its relationship with clinicopathologic factors. Int J Clin Exp Pathol 2015; 8: 11084–91.
29. Thompson ED, Zahurak M, Murphy A, et al. Patterns of PD-L1 expression and CD8 T cell infiltration in gastric adenocarcinomas and associated immune stroma. Gut 2017; 66 (5): 794–801. DOI: 10.1136/gutjnl-2015-310839
30. Kawazoe A, Kuwata T, Kuboki Y, et al. Clinicopathological features of programmed death ligand 1 expression with tumor-infiltrating lymphocyte, mismatch repair, and Epstein-Barr virus status in a large cohort of gastric cancer patients. Gastric Cancer 2017; 20 (3): 407–15. DOI: 10.1007/s10120-016-0631-3
31. Zhang M, Dong Y, Liu H, et al. The clinicopathological and prognostic significance of PD-L1 expression in gastric cancer: a meta-analysis of 10 studies with 1,901 patients. Sci Rep 2016; 6: 37933.
32. Gu L, Chen M, Guo D, et al. PD-L1 and gastric cancer prognosis: A systematic review and meta-analysis. PLoS One 2017; 12 (8): e0182692.
33. Thompson ED, Zahurak M, Murphy A, et al. Patterns of PD-L1 expression and CD8 T cell infiltration in gastric adenocarcinomas and associated immune stroma. Gut 2017; 66: 794–801.
34. Pereira MA, Ramos MFKP, Faraj SF, et al. Clinicopathological and prognostic features of Epstein-Barr virus infection, microsatellite instability, and PD-L1 expression in gastric cancer. J Surg Oncol 2018; 117 (5): 829–39.
35. Wang L, Zhang Q, Ni S, et al. Programmed death-ligand 1 expression in gastric cancer: correlation with mismatch repair deficiency and HER2-negative status. Cancer Med 2018; 7 (6): 2612–20.
36. Koh J, Ock CY, Kim JW, et al. Clinicopathologic implications of immune classification by PD-L1 expression and CD8-positive tumor-infiltrating lymphocytes in stage II and III gastric cancer patients. Oncotarget 2017; 8 (16): 26356–67.
37. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature 2014; 513: 202–9.
38. Derks S, Liao X, Chiaravalli AM, et al. Abundant PD-L1 expression in Epstein–Barr Virus-infected gastric cancers. Oncotarget 2016; 7 (22): 32925–32.
39. Ma C, Patel K, Singhi AD, et al. Programmed Death-Ligand 1 Expression Is Common in Gastric Cancer Associated With Epstein-Barr Virus or Microsatellite Instability. Am J Surg Pathol 2016; 40 (11): 1496–506.
40. Fridman WH, Pagès F, Sautès-Fridman C, Galon J. The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer 2012; 12: 298–306.
41. Lee HE, Chae SW, Lee YJ, et al. Prognostic implications of type and density of tumour-infiltrating lymphocytes in gastric cancer. Br J Cancer 2008; 99: 1704–11.
42. Wakatsuki K, Sho M, Yamato I, et al. Clinical impact of tumor-infiltrating CD45RO+ memory T cells on human gastric cancer. Oncol Rep 2013; 29: 1756–62.
43. Kang Y-K, Boku N, Satoh T, et al. Nivolumab in patients with advanced gastric or gastro-oesophageal junction cancer refractory to, or intolerant of, at least two previous chemotherapy regimens (ONO-4538-12, ATTRACTION-2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2017; 390: 2461–71. DOI: 10.1016/S0140-6736(17)31827-5
44. Muro K, Fuchs CS, Jang RW-J, et al. KEYNOTE-059 cohort 1: Pembrolizumab (Pembro) monotherapy in previously treated advanced gastric or gastroesophageal junction (G/GEJ) cancer in patients (Pts) with PD-L1+ tumors – Asian subgroup analysis. J Clin Oncol 2018; 36 (Suppl. 4): 723.
45. Bang Y-J, Muro K, Fuchs CS, et al. KEYNOTE-059 cohort 2: Safety and efficacy of pembrolizumab (pembro) plus 5-fluorouracil (5-FU) and cisplatin for first-line (1L) treatment of advanced gastric cancer. J Clin Oncol 2017; 36 (Suppl. 4): 4012.
46. Catenacci VD, Wainberg Z, Fuchs SC, et al. KEYNOTE-059 cohort 3: safety and efficacy of pembrolizumab monotherapy for first-line treatment of patients (pts) with PD-L1-positive advanced gastric/gastroesophageal (G/GEJ) cancer. J Clin Oncol 2017.
47. Fuchs CS, Ozguroglu M, Bang Y-J, et al. Pembrolizumab (pembro) vs paclitaxel (PTX) for previously treated advanced gastric or gastroesophageal junction (G/GEJ) cancer: phase 3 KEYNOTE-061 trial. J Clin Oncol 2018; 36: 4062. DOI: 10.1200/JCO.2018.36.15_suppl.4062
48. Kim JW, et al. Prognostic implications of immunosuppressive protein expression in tumors as well as immune cell infiltration within the tumor microenvironment in gastric cancer. Gastric Cancer 2016; 19 (1): 42–52.
49. Nielsen C, Ohm-Laursen L, Barington T, et al. Alternative splice variants of the human PD-1 gene. Cell Immunol 2005; 235 (2): 109–16. DOI: 10.1016/j.cellimm.2005.07.007; PMID: 16171790
50. Dai S, et al. The PD-1/PD-Ls pathway and autoimmune diseases. Cell Immunol 2014; 290 (1): 72–9.
51. Chen Y, Wang Q, Shi B, et al. Development of a sandwich ELISA for evaluating soluble PD-L1 (CD274) in human sera of different ages as well as supernatants of PD-L1+ cell lines. Cytokine 2011; 56 (2): 231–8. DOI: 10.1016/j.cyto.2011.06.004; PMID: 21733718
52. Geng H, Zhang GM, Xiao H, et al. HSP70 vaccine in combination with gene therapy with plasmid DNA encoding sPD-1 overcomes immune resistance and suppresses the progression of pulmonary metastatic melanoma. Int J Cancer 2006; 118 (11): 2657–64. DOI: 10.1002/ijc.21795; PMID: 16425224
53. Song MY, Park SH, Nam HJ, et al. Enhancement of vaccine-induced primary and memory CD8(+) T-cell responses by soluble PD-1. J Immunother 2011; 34 (3): 297–306. DOI: 10.1097/CJI.0b013e318210ed0e; PMID: 21389868
54. Wan B, Nie H, Liu A, et al. Aberrant regulation of synovial T cell activation by soluble costimulatory molecules in rheumatoid arthritis. J Immunol 2006; 177 (12): 8844–50. DOI: 10.4049/jimmunol.177.12.8844; PMID: 17142787
55. Ding Y, Sun C, Li J, et al. The Prognostic Significance of Soluble Programmed Death Ligand 1 Expression in Cancers: A Systematic Review and Meta-analysis. Scand J Immunol 2017; 86 (5): 361–7.
56. Gershtein ES, Ognerubov NA, Chang VL, et al. Rastvorimye formy PD-1 i PD-L1 v plazme krovi bol'nykh rakom zheludka i ikh sviaz' s klinicheskimi i morfologicheskimi kharakteristikami zabolevaniia. Klin. lab. diagnostika. 2020; 65 (6): 347–52 (in Russian)
57. Takahashi N, Iwasa S, Sasaki Y, et al. Serum levels of soluble programmed cell death ligand 1 as a prognostic factor on the first-line treatment of metastatic or recurrent gastric cancer. J Cancer Res Clin Oncol 2016; 142 (8): 1727–38.
58. Zheng Z, et al. Level of circulating PD-L1 expression in patients with advanced gastric cancer and its clinical implications. Chinese Journal of Cancer Research 2014; 26 (1): 104.
59. Shigemori T, Toiyama Y, Okugawa Y, et al. Soluble PD-L1 Expression in Circulation as a Predictive Marker for Recurrence and Prognosis in Gastric Cancer: Direct Comparison of the Clinical Burden Between Tissue and Serum PD-L1 Expression. Ann Surg Oncol 2019; 26 (3): 876–83.
1 ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н.Н. Блохина» Минздрава России, Москва, Россия;
2 ФГБОУ ВО «Тамбовский государственный университет им. Г.Р. Державина», Тамбов, Россия;
3 ГБУЗ «Тамбовский областной онкологический клинический диспансер», Тамбов, Россия
*ovkovaleva@gmail.com
________________________________________________
Olga V. Kovaleva*1, Polina A. Podlesnaya1, Alexei N. Gratchev1, Victor L. Chang2, Nikolai A. Ognerubov2,3, Nikolai E. Kushlinskii1
1 Blokhin National Medical Research Center of Oncology, Moscow, Russia;
2 Derzhavin Tambov State University, Tambov, Russia;
3 Tambov Regional Oncological Clinical Dispensary, Tambov, Russia
*ovkovaleva@gmail.com