Chulkova SV, Sholokhova EN, Poddubnaya IV, Stilidi IS, Tupitsyn NN. The analysis of the relationship between transferrin receptor 1 (TfR1) and clinical, morphological and immunophenotypic characteristics of breast cancer: retrospective cohort study. Journal of Modern Oncology. 2022;24(3):355–360.
DOI: 10.26442/18151434.2022.3.201821
Анализ взаимосвязи трансферринового рецептора 1 (TfR1) с клинико-морфологическими и иммунофенотипическими характеристиками рака молочной железы
Чулкова С.В., Шолохова Е.Н., Поддубная И.В., Стилиди И.С., Тупицын Н.Н. Анализ взаимосвязи трансферринового рецептора 1 (TfR1) с клинико-морфологическими и иммунофенотипическими характеристиками рака молочной железы. Современная Онкология. 2022;24(3):355–360.
DOI: 10.26442/18151434.2022.3.201821
Chulkova SV, Sholokhova EN, Poddubnaya IV, Stilidi IS, Tupitsyn NN. The analysis of the relationship between transferrin receptor 1 (TfR1) and clinical, morphological and immunophenotypic characteristics of breast cancer: retrospective cohort study. Journal of Modern Oncology. 2022;24(3):355–360.
DOI: 10.26442/18151434.2022.3.201821
Обоснование. Экспрессия рецептора трансферрина 1 (TfR1) обнаружена при ряде злокачественных опухолей. Отмечается, что его гиперэкспрессия придает ростовые преимущества клеткам рака. Оценка экспрессии трансферринового рецептора при раке молочной железы (РМЖ) может стать важным компонентом в прогнозировании заболевания, выборе тактики лечения. TfR1 может оказаться привлекательной мишенью для таргетной терапии. Цель. Оценить уровень экспрессии TfR1 клетками РМЖ и изучить его взаимосвязь с клинико-морфологическими и иммунофенотипическими характеристиками опухоли. Материалы и методы. В работу включены 82 больных РМЖ, которые получали лечение в ФГБУ «НМИЦ онкологии им. Н.Н. Блохина». Изучена экспрессия TfR1 на клетках первичной опухоли, проанализирована взаимосвязь TfR1 с клинико-морфологическими и иммунофенотипическими характеристиками РМЖ. Иммунофенотипирование первичной опухоли выполнено иммуногистохимическим методом (иммунофлуоресцентное окрашивание) на криостатных срезах. Использованы антитела к CD71, CD95, CD54, CD29, MUC1, Pgp170. Оценку реакции проводили с помощью люминесцентного микроскопа ZEISS (AXIOSKOP, Германия). В исследовании преобладали больные с IIB (54%) и IIIB-стадиями РМЖ (21%). Инфильтративно-протоковый РМЖ диагностирован у 67% (n=55) больных, инфильтративно-дольковый – в 22% (n=18) случаев, другие виды – в 11,0% (n=9). Результаты. Клетки РМЖ экспрессировали TfR1 в большинстве случаев (64,4%, n=61), при этом отмечено сочетание его мономорфной экспрессии с мономорфной экспрессией мембранного белка MUC1 (74,4%; n=47). СD29 был представлен как мозаично (38,7%), так и мономорфно (51,6%). Антиген Pgp170 мономорфно наблюдался в 27,5% случаев. По мере нарастания пропорции клеток, которые несут TfR1, увеличивалась частота экспрессии молекулы адгезии CD54 (с 10,5 до 33,3%), установлена положительная корреляция (r=0,293; р=0,008). В группе с мономорфной экспрессией TfR1 уменьшалась частота опухолей, экспрессирующих молекулу апоптоза CD95: 25,0% vs 13% (р=0,042). Заключение. Клетки РМЖ гиперэкспрессируют TfR1. Экспрессия TfR1 связана с иммунофенотипом опухоли.
Background. Transferrin receptor 1 (TfR1) expression has been identified in a number of malignant tumors. It is noted that its overexpression gives growth advantages to cancer cells. Estimation of transferrin receptor expression in breast cancer (BC) might be an important component in disease prognosis, choice of treatment, also might be an attractive target for targeted therapy. Aim. To evaluate the expression of TfR1 by BC cells and to study its relationship with the clinical, morphological and immunophenotypic characteristics of the tumor. Materials and methods. This study included 82 patients with BC who received treatment at the Blokhin National Medical Research Center of Oncology (Moscow). The expression of TfR1 on primary tumor cells was studied, the relationship of TfR1 with clinical, morphological and immunophenotypic characteristics of BC was analyzed. Immunophenotyping of the primary tumor was performed by the immunohistochemical method (immunofluorescent staining) on cryostat sections. Antibodies to CD71, CD95, CD54, CD29, MUC1, Pgp170 were used. The reaction was evaluated using a luminescent microscope (AXIOSKOP, Germany). The study was dominated by patients with stage IIB – 54% and IIIB – 21%. Infiltrative ductal BC was diagnosed in 67% (n=55) of patients, infiltrative-lobular – in 22% (n=18) of cases, other types – in 11.0% (n=9). Results. BC cells expressed TfR1 in most cases (64.4%; n=61). A combination of TfR1 monomorphic expression with MUC1 monomorphic ex * pression (74.4%; n=47) was noted. CD29 is presented both mosaic (38.7%) and monomorphic (51.6%). The Pgp170 antigen was monomorphically observed in 27.5% of cases. As the proportion of TfR+ cells increased, the expression frequency of the adhesion molecule CD54 increased from 10.5 to 33.3%, a positive correlation was established (r=0.293; p=0.008). In the group with TfR1 monomorphic expression, the frequency of tumors expressing the CD95 apoptosis molecule decreased: 25.0% vs 13% (p=0.042). Conclusion. BC cells overexpress TfR1. TfR1 expression is associated with tumor immunophenotype.
1. Global Cancer Statistics 2020. Available at: https://gco.iarc.fr/today/data/factsheets/cancers/20-Breast-fact-sheet.pdf. Accessed: 24.08.2022.
2. Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71(3):209-49. DOI:10.3322/caac.21660
3. Ibrahim EM, Al-Foheidi ME, Al-Mansour MM, Kazkaz GA. The prognostic value of tumor-infiltrating lymphocytes in triple-negative breast cancer: a meta-analysis. Breast Cancer Res Treat. 2014;148(3):467-76. DOI:10.1007/s10549-014-3185-2
4. Рябчиков Д.А., Абдуллаева Э.И., Дудина И.А., и др. Роль микро-РНК в канцерогенезе и прогнозе злокачественных новообразований молочной железы. Вестник Российского научного центра рентгенорадиологии. 2018;18(2):5 [Ryabchikov DA, Abdullaeva EI, Dudina IA, et al. The role of micro-RNA in cancerogenesis and breast cancer prognosis. Vestnik Rossiiskogo nauchnogo tsentra rentgenoradiologii. 2018;18(2):5 (in Russian)].
5. Sinn BV, Weber, KE, Schmitt WD, et al. Human leucocyte antigen class I in hormone receptor-positive, HER2-negative breast cancer: association with response and survival after neoadjuvant chemotherapy. Breast Cancer Res. 2019;21(1):142. DOI:10.1186/s13058-019-1231-z
6. Рябчиков Д.А., Безнос О.А., Дудина И.А., и др. Диссеминированные опухолевые клетки у пациентов с люминальным раком молочной железы. Российский биотерапевтический журнал. 2018;17(1):53-7 [Ryabchikov DA, Beznos OA, Dudina IA, et al. DIsseminated tumor cells of luminal breast cancer patients. Russian Journal of Biotherapy. 2018;17(1):53-7 (in Russian)]. DOI:10.17650/1726-9784-2018-17-1-53-57
7. Титов К.С., Казаков А.М., Барышникова М.А., и др. Некоторые молекулярные и иммунологические факторы прогноза трижды негативного рака молочной железы. Онкогинекология. 2019;4(32):26-34 [Titov KS, Kazakov AM, Baryshnikova MA, et al. Some molecular and immunologic prognostic factors of triple negative breast cancer. Oncogynecology. 2019;4(32):26-34 (in Russian)]. DOI:10.52313/22278710_2019_4_26
8. Талипов О.А., Рябчиков Д.А., Чулкова С.В., и др. Метилирование генов супрессорных микроРНК при раке молочной железы. Онкогинекология. 2020;2(34):14-22 [Talipov OA, Ryabchikov DA, Tchulkova SV. Methylation of suppressor microRNA genes in breast cancer. Oncogynecology. 2020;2(34):14‑22 (in Russian)]. DOI:10.52313/22278710_2020_2_14
9. Cheng Y, Zak O, Aisen P, et al. Structure of the human transferrin receptor-transferrin complex. Cell. 2004;116(4):565-76. DOI:10.1016/s0092-8674(04)00130-8
10. Eckenroth BE, Steere AN, Chasteen ND, et al. How the binding of human transferrin primes the transferrin receptor potentiating iron release at endosomal pH. Proc Natl Acad Sci USA. 2011;108(32):13089-94. DOI:10.1073/pnas.1105786108
11. Daniels TR, Delgado T, Rodriguez JA, et al. The transferrin receptor part I: biology and targeting with cytotoxic antibodies for the treatment of cancer. Clin Immunol. 2006;121(2):144-58. DOI:10.1016/j.clim.2006.06.010
12. Uhlen M, Fagerberg L, Hallstrom BM, et al. Proteomics. Tissue-based map of the human proteome. Science. 2015;347(6220):1260419. DOI:10.1126/science.1260419
13. Shen Y, Li X, Dong D, et al. Transferrin receptor 1 in cancer: a new sight for cancer therapy. Am J Cancer Res. 2018;8(6):916-31.
14. Basuli D, Tesfay L, Deng Z, et al. Iron addiction: a novel therapeutic target in ovarian cancer. Oncogene. 2017;36(29):4089-99. DOI:10.1038/onc.2017.11
15. Habashy HO, Powe DG, Staka CM, et al. Transferrin receptor (CD71) is a marker of poor prognosis in breast cancer and can predict response to tamoxifen. Breast Cancer Res Treat. 2010;119(2):283. DOI:10.1007/s10549-009-0345-x
16. Jiang XP, Elliott RL. Decreased iron in cancer cells and their microenvironment improves cytolysis of breast cancer cells by natural killer cells. Anticancer Res. 2017;37(5):2297-305. DOI:10.21873/anticanres.11567
17. Pham CG, Bubici C, Zazzeroni F, et al. Ferritin heavy chain upregulation by NF-kB inhibits TNFalpha-induced apoptosis by suppressing reactive oxygen species. Cell. 2004;119(4):529-42. DOI:10.1016/j.cell.2004.10.017
18. Kenneth NS, Mudie S, Naron S, Rocha S. TfR1 interacts with the IKK complex and is involved in IKK-NF-kB signalling. Biochem J. 2013;449(1):275-84. DOI:10.1042/BJ20120625
19. Greene CJ, Attwood K, Sharma NJ, et al. Transferrin receptor 1 upregulation in primary tumor and downregulation in benign kidney is associated with progression and mortality in renal cell carcinoma patients. Oncotarget. 2017;8(63):107052-75. DOI:10.18632/oncotarget.22323
20. Jamnongkan W, Thanan R, Techasen A, et al. Upregulation of transferrin receptor-1 induces cholangiocarcinoma progression via induction of labile iron pool. Tumour Biol. 2017;39(7):1010428317717655. DOI:10.1177/1010428317717655
21. Chan KT, Choi MY, Lai KK, et al. Overexpression of transferrin receptor CD71 and its tumorigenic properties in esophageal squamous cell carcinoma. Oncol Rep. 2014;31(3):1296-304. DOI:10.3892/or.2014.2981
22. Rosager AM, Sorensen MD, Dahlrot RH, et al. Transferrin receptor-1 and ferritin heavy and light chains in astrocytic brain tumors: Expression and prognostic value. PLoS One. 2017;12(8):e0182954. DOI:10.1371/journal.pone.0182954
23. Беришвили А.И., Тупицын Н.Н., Лактионов К.П. Иммунофенотипическая характеристика отечно-инфильтративной формы рака молочной железы. Опухоли женской репродуктивной системы. 2009;(3-4):15-9 [Berishvili AI, Tupitsyn NN, Laktionov KP. Immunophenotypic characteristics of inflammatory breast cancer. Tumors of female reproductive system. 2009;(3-4):15-9 (in Russian)]. DOI:10.17650/1994-4098-2009-0-3-4-15-19
24. Ohkuma M, Haraguchi N, Ishii H, et al. Absence of CD71 transferrin receptor characterizes human gastric adenosquamous carcinoma stem cells. Ann Surg Oncol. 2012;19(4):1357-64. DOI:10.1245/s10434-011-1739-7
25. Leung TH, Tang HW, Siu MK, et al. CD71+ Population Enriched by HPV-E6 Protein Promotes Cancer Aggressiveness and Radioresistance in Cervical Cancer Cells. Mol Cancer Res. 2019;17(9):1867-80. DOI:10.1158/1541-7786.MCR-19-0068
26. Kang MK, Hur BI, Ko MH, et al. Potential identity of multi-potential cancer stem-like subpopulation after radiation of cultured brain glioma. BMC Neurosci. 2008;9:15. DOI:10.1186/1471-2202-9-15
27. Артамонова Е.В. Роль иммунофенотипирования в диагностике и прогнозе рака молочной железы. Иммунология гемопоэза. 2009;1(9):8-52 [Artamonova EV. The role of tumor cell immunophenotyping in the diagnosis and prognosis of breast cancer. Haematopoesis Immunology. 2009;1(9):8-52 (in Russian)].
28. Субботина А.А., Летягин В.П., Тупицын Н.Н., и др. Анализ результатов нео- адъювантного лечения больных с учетом иммунофенотипических особенностей рака молочной железы. Опухоли женской репродуктивной системы. 2008;(4):31-4 [Subbotina AA, Letyagin VP, Tupitsyn NN, et al. Analysis of the results of neoadjuvant treatment in patients with consideration for the immunophenotypical features of breast cancer. Tumors of female reproductive system. 2008;(4):31-4 (in Russian)].
DOI:10.17650/1994-4098-2008-0-4-31-34
29. Chen JQ, Russo J. Dysregulation of glucose transport, glycolysis, TCA cycle and glutaminolysis by oncogenes and tumor suppressors in cancer cells. Biochim Biophys Acta. 2012;1826(2):370-84. DOI:10.1016/j.bbcan.2012.06.004
30. Riganti C, Gazzano E, Polimeni M, et al. The pentose phosphate pathway: an antioxidant defense and a crossroad in tumor cell fate. Free Radic Biol Med. 2012;53(3):421-36. DOI:10.1016/j.freeradbiomed.2012.05.006
31. Kang MK, Hur BI, Ko MH, Kim CH, Cha SH, Kang SK. Potential identity of multi-potential cancer stem-like subpopulation after radiation of cultured brain glioma. BMC Neurosci. 2008;9:15
________________________________________________
1. Global Cancer Statistics 2020. Available at: https://gco.iarc.fr/today/data/factsheets/cancers/20-Breast-fact-sheet.pdf. Accessed: 24.08.2022.
2. Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71(3):209-49. DOI:10.3322/caac.21660
3. Ibrahim EM, Al-Foheidi ME, Al-Mansour MM, Kazkaz GA. The prognostic value of tumor-infiltrating lymphocytes in triple-negative breast cancer: a meta-analysis. Breast Cancer Res Treat. 2014;148(3):467-76. DOI:10.1007/s10549-014-3185-2
4. Ryabchikov DA, Abdullaeva EI, Dudina IA, et al. The role of micro-RNA in cancerogenesis and breast cancer prognosis. Vestnik Rossiiskogo nauchnogo tsentra rentgenoradiologii. 2018;18(2):5 (in Russian).
5. Sinn BV, Weber, KE, Schmitt WD, et al. Human leucocyte antigen class I in hormone receptor-positive, HER2-negative breast cancer: association with response and survival after neoadjuvant chemotherapy. Breast Cancer Res. 2019;21(1):142. DOI:10.1186/s13058-019-1231-z
6. Ryabchikov DA, Beznos OA, Dudina IA, et al. DIsseminated tumor cells of luminal breast cancer patients. Russian Journal of Biotherapy. 2018;17(1):53-7 (in Russian).
DOI:10.17650/1726-9784-2018-17-1-53-57
7. Titov KS, Kazakov AM, Baryshnikova MA, et al. Some molecular and immunologic prognostic factors of triple negative breast cancer. Oncogynecology. 2019;4(32):26-34 (in Russian). DOI:10.52313/22278710_2019_4_26
8. Talipov OA, Ryabchikov DA, Tchulkova SV. Methylation of suppressor microRNA genes in breast cancer. Oncogynecology. 2020;2(34):14‑22 (in Russian). DOI:10.52313/22278710_2020_2_14
9. Cheng Y, Zak O, Aisen P, et al. Structure of the human transferrin receptor-transferrin complex. Cell. 2004;116(4):565-76. DOI:10.1016/s0092-8674(04)00130-8
10. Eckenroth BE, Steere AN, Chasteen ND, et al. How the binding of human transferrin primes the transferrin receptor potentiating iron release at endosomal pH. Proc Natl Acad Sci USA. 2011;108(32):13089-94. DOI:10.1073/pnas.1105786108
11. Daniels TR, Delgado T, Rodriguez JA, et al. The transferrin receptor part I: biology and targeting with cytotoxic antibodies for the treatment of cancer. Clin Immunol. 2006;121(2):144-58. DOI:10.1016/j.clim.2006.06.010
12. Uhlen M, Fagerberg L, Hallstrom BM, et al. Proteomics. Tissue-based map of the human proteome. Science. 2015;347(6220):1260419. DOI:10.1126/science.1260419
13. Shen Y, Li X, Dong D, et al. Transferrin receptor 1 in cancer: a new sight for cancer therapy. Am J Cancer Res. 2018;8(6):916-31.
14. Basuli D, Tesfay L, Deng Z, et al. Iron addiction: a novel therapeutic target in ovarian cancer. Oncogene. 2017;36(29):4089-99. DOI:10.1038/onc.2017.11
15. Habashy HO, Powe DG, Staka CM, et al. Transferrin receptor (CD71) is a marker of poor prognosis in breast cancer and can predict response to tamoxifen. Breast Cancer Res Treat. 2010;119(2):283. DOI:10.1007/s10549-009-0345-x
16. Jiang XP, Elliott RL. Decreased iron in cancer cells and their microenvironment improves cytolysis of breast cancer cells by natural killer cells. Anticancer Res. 2017;37(5):2297-305. DOI:10.21873/anticanres.11567
17. Pham CG, Bubici C, Zazzeroni F, et al. Ferritin heavy chain upregulation by NF-kB inhibits TNFalpha-induced apoptosis by suppressing reactive oxygen species. Cell. 2004;119(4):529-42. DOI:10.1016/j.cell.2004.10.017
18. Kenneth NS, Mudie S, Naron S, Rocha S. TfR1 interacts with the IKK complex and is involved in IKK-NF-kB signalling. Biochem J. 2013;449(1):275-84. DOI:10.1042/BJ20120625
19. Greene CJ, Attwood K, Sharma NJ, et al. Transferrin receptor 1 upregulation in primary tumor and downregulation in benign kidney is associated with progression and mortality in renal cell carcinoma patients. Oncotarget. 2017;8(63):107052-75. DOI:10.18632/oncotarget.22323
20. Jamnongkan W, Thanan R, Techasen A, et al. Upregulation of transferrin receptor-1 induces cholangiocarcinoma progression via induction of labile iron pool. Tumour Biol. 2017;39(7):1010428317717655. DOI:10.1177/1010428317717655
21. Chan KT, Choi MY, Lai KK, et al. Overexpression of transferrin receptor CD71 and its tumorigenic properties in esophageal squamous cell carcinoma. Oncol Rep. 2014;31(3):1296-304. DOI:10.3892/or.2014.2981
22. Rosager AM, Sorensen MD, Dahlrot RH, et al. Transferrin receptor-1 and ferritin heavy and light chains in astrocytic brain tumors: Expression and prognostic value. PLoS One. 2017;12(8):e0182954. DOI:10.1371/journal.pone.0182954
23. Berishvili AI, Tupitsyn NN, Laktionov KP. Immunophenotypic characteristics of inflammatory breast cancer. Tumors of female reproductive system. 2009;(3-4):15-9 (in Russian). DOI:10.17650/1994-4098-2009-0-3-4-15-19
24. Ohkuma M, Haraguchi N, Ishii H, et al. Absence of CD71 transferrin receptor characterizes human gastric adenosquamous carcinoma stem cells. Ann Surg Oncol. 2012;19(4):1357-64. DOI:10.1245/s10434-011-1739-7
25. Leung TH, Tang HW, Siu MK, et al. CD71+ Population Enriched by HPV-E6 Protein Promotes Cancer Aggressiveness and Radioresistance in Cervical Cancer Cells. Mol Cancer Res. 2019;17(9):1867-80. DOI:10.1158/1541-7786.MCR-19-0068
26. Kang MK, Hur BI, Ko MH, et al. Potential identity of multi-potential cancer stem-like subpopulation after radiation of cultured brain glioma. BMC Neurosci. 2008;9:15. DOI:10.1186/1471-2202-9-15
27. Artamonova EV. The role of tumor cell immunophenotyping in the diagnosis and prognosis of breast cancer. Haematopoesis Immunology. 2009;1(9):8-52 (in Russian).
28. Subbotina AA, Letyagin VP, Tupitsyn NN, et al. Analysis of the results of neoadjuvant treatment in patients with consideration for the immunophenotypical features of breast cancer. Tumors of female reproductive system. 2008;(4):31-4 (in Russian). DOI:10.17650/1994-4098-2008-0-4-31-34
29. Chen JQ, Russo J. Dysregulation of glucose transport, glycolysis, TCA cycle and glutaminolysis by oncogenes and tumor suppressors in cancer cells. Biochim Biophys Acta. 2012;1826(2):370-84. DOI:10.1016/j.bbcan.2012.06.004
30. Riganti C, Gazzano E, Polimeni M, et al. The pentose phosphate pathway: an antioxidant defense and a crossroad in tumor cell fate. Free Radic Biol Med. 2012;53(3):421-36. DOI:10.1016/j.freeradbiomed.2012.05.006
31. Kang MK, Hur BI, Ko MH, Kim CH, Cha SH, Kang SK. Potential identity of multi-potential cancer stem-like subpopulation after radiation of cultured brain glioma. BMC Neurosci. 2008;9:15
1 ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н.Н. Блохина» Минздрава России, Москва, Россия;
2 ФГАОУ ВО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России, Москва, Россия;
3 ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России, Москва, Россия
*chulkova@mail.ru
________________________________________________
Svetlana V. Chulkova*1,2, Elena N. Sholokhova1, Irina V. Poddubnaya3, Ivan S. Stilidi1,2, Nikolai N. Tupitsyn1
1 Blokhin National Medical Research Center of Oncology, Moscow, Russia;
2 Pirogov Russian National Research Medical University, Moscow, Russia;
3 Russian Medical Academy of Continuous Professional Education, Moscow, Russia
*chulkova@mail.ru