Материалы доступны только для специалистов сферы здравоохранения.
Чтобы посмотреть материал полностью
Авторизуйтесь
или зарегистрируйтесь.
CAR NK-клетки и возможность их использования для лечения гематологических новообразований
CAR NK-клетки и возможность их использования для лечения гематологических новообразований
Грибкова И.В. CAR NK-клетки и возможность их использования для лечения гематологических новообразований. Современная Онкология. 2022;24(3):331–335.
DOI: 10.26442/18151434.2022.3.201699
© ООО «КОНСИЛИУМ МЕДИКУМ», 2022 г.
DOI: 10.26442/18151434.2022.3.201699
© ООО «КОНСИЛИУМ МЕДИКУМ», 2022 г.
________________________________________________
Материалы доступны только для специалистов сферы здравоохранения.
Чтобы посмотреть материал полностью
Авторизуйтесь
или зарегистрируйтесь.
Аннотация
Гематологические злокачественные новообразования включают в себя более 100 различных подтипов и составляют около 4,8% от всех опухолевых заболеваний в России. Несмотря на значительные успехи в диагностике и лечении, многие из них связаны с плохим прогнозом. В последние годы клеточная терапия представляется многообещающим подходом к лечению неизлечимых гематологических злокачественных новообразований, показывая поразительные результаты в различных клинических испытаниях. Наиболее изученной и показавшей значимые клинические результаты клеточной терапией является терапия Т-лимфоцитами с химерными антигенными рецепторами (CAR Т-лимфоциты или CAR Т-клетки, от англ. СAR – chimeric antigen receptor). Управление по контролю пищевых продуктов и лекарств в США (Food and Drug Administration) одобрило применение CAR T-клеток для терапии В-клеточных лимфом и В-клеточных острых лимфобластных лейкозов. Однако остаются значительные проблемы, связанные с производством, стоимостью и серьезными побочными эффектами данного метода лечения. Альтернативой применения Т-клеток может стать использование клеток врожденного иммунитета, в частности натуральных киллеров (NK), обладающих высоким противоопухолевым потенциалом. В исследованиях последних лет показана противо- опухолевая эффективность терапии, в которой используются генетически модифицированные натуральные киллеры – CAR NK-клетки. Целью данного обзора является описание и систематизация опыта использования CAR NK-клеток для лечения гематологических новообразований. В обзоре представлены преимущества и недостатки данного метода, а также проблемы, которые еще предстоит решить для его широкого внедрения в клиническую практику.
Ключевые слова: гематологические злокачественные новообразования, CAR NK-клеточная терапия, химерный антигенный рецептор, адоптивная терапия, иммунотерапия
Keywords: hematological malignancies, CAR NK-cell therapy, chimeric antigen receptor, adoptive therapy, immunotherapy
Ключевые слова: гематологические злокачественные новообразования, CAR NK-клеточная терапия, химерный антигенный рецептор, адоптивная терапия, иммунотерапия
________________________________________________
Keywords: hematological malignancies, CAR NK-cell therapy, chimeric antigen receptor, adoptive therapy, immunotherapy
Полный текст
Список литературы
1. Каприн А.Д., Старинский В.В., Петрова Г.В., и др. Злокачественные новообразования в России в 2018 году (заболеваемость и смертность). М.: МНИОИ им. П.А. Герцена – филиал ФГБУ «НМИЦ радиологии» Минздрава России, 2019 [Kaprin AD, Starinskij VV, Petrova GV, et al. Zlokachestvennye novoobrazovaniya v Rossii v 2018 godu (zabolevaemost' i smertnost'). Moscow: MNIOI im. P.A. Gercena – filial FGBU «NMIC radiologii» Minzdrava Rossii, 2019 (in Russian)].
2. DeSantis CE, Miller KD, Dale W, et al. Cancer statistics for adults aged 85 years and older, 2019. CA Cancer J Clin. 2019;69:452-67. DOI:10.3322/caac.21577
3. Oostindie SC, van der Horst HJ, Kil LP, et al. DuoHexaBody-CD37((R)), a novel biparatopic CD37 antibody with enhanced Fc-mediated hexamerization as a potential therapy for B-cell malignancies. Blood Cancer J. 2020;10(3):30. DOI:10.1038/s41408-020-0292-7
4. Bonello F, D’Agostino M, Moscvin M, et al. CD38 as an immunotherapeutic target in multiple myeloma. Expert Opin Biol Ther. 2018;18:1209-21. DOI:10.1080/14712598.2018.1544240
5. Salles G, Barrett M, Foa R, et al. Rituximab in B-Cell Hematologic Malignancies: A Review of 20 Years of Clinical Experience. Adv Ther. 2017;34:2232-73.
DOI:10.1007/s12325-017-0612-x
6. Mori Y, Choi I, Yoshimoto G, et al. Phase I/II study of bortezomib, lenalidomide, and dexamethasone treatment for relapsed and refractory multiple myeloma. Int J Hematol. 2020;111:673-80. DOI:10.1007/s12185-020-02833-w
7. Fathi E, Farahzadi R, Sheervalilou R, et al. A general view of CD33(+) leukemic stem cells and CAR-T cells as interesting targets in acute myeloblatsic leukemia therapy. Blood Res. 2020;55:10-6. DOI:10.5045/br.2020.55.1.10
8. Lee HR, Baek KH. Role of natural killer cells for immunotherapy in chronic myeloid leukemia (Review). Oncol Rep. 2019;41:2625-35. DOI:10.3892/or.2019.7059
9. Van Acker HH, Versteven M, Lichtenegger FS, et al. Dendritic Cell-Based Immunotherapy of Acute Myeloid Leukemia. J Clin Med. 2019;8:579. DOI:10.3390/jcm8050579
10. Song W, Zhang M. Use of CAR-T cell therapy, PD-1 blockade, and their combination for the treatment of hematological malignancies. Clin Immunol. 2020;214:108382. DOI:10.1016/j.clim.2020.108382
11. Грибкова И.В., Завьялов А.А. Терапия Т-лимфоцитами с химерным антигенным рецептором (CAR) В-клеточной неходжкинской лимфомы: возможности и проблемы. Вопросы онкологии. 2021;67(3):350-60 [Gribkova IV, Zavyalov AA. Chimeric antigen receptor T-cell therapy for B-cell non-Hodgkin lymphoma: opportunities and challenges. Voprosy onkologii. 2021;67(3):350-60 (in Russian)]. DOI:10.37469/0507-3758-2021-67-3-350-360
12. Грибкова И.В., Завьялов А.А. CAR Т-клетки для лечения хронического лимфоцитарного лейкоза. Клиническая онкогематология. 2021;14(2):225-30 [Gribkova IV, Zavyalov AA. CAR T-cells for the treatment of chronic lymphocytic leukemia. Klinicheskaia onkogematologiia. 2021;14(2):225-30 (in Russian)]. DOI:10.21320/2500-2139-2021-14-2-225-230
13. Боробова Е.А., Жеравин А.А. Натуральные киллеры в иммунотерапии онкологических заболеваний. Сибирский онкологический журнал. 2018;17(6):97‑104 [Borobova EA, Zheravin AA. Natural killer cels in immunotherapy for cancer. Sibirskij onkologicheskij zhurnal. 2018;17(6):97-104 (in Russian)]. DOI:10.21294/1814-4861-2018-17-6-97-104
14. Hu Y, Tian Zh, Zhang C. Chimeric antigen receptor (CAR)-transduced natural killer cells in tumor immunotherapy. Acta Pharmacologica Sinica. 2018;39:167‑76. DOI:10.1038/aps.2017.125
15. Orange JS. Natural killer cell deficiency. J Allergy Clin Immunol. 2013;132:515‑25. DOI:10.1016/j.jaci.2013.07.020
16. Xie G, Dong H, Liang Y, et al. CAR-NK cells: A promising cellular immunotherapy for cancer. EBioMedicine. 2020;59:102975. DOI:10.1016/j.ebiom.2020.102975
17. Lanier LL. Up on the tightrope: natural killer cell activation and inhibition. Nat Immunol. 2008;9(5):495-502. DOI:10.1038/ni1581
18. Hofland T, Eldering E, Kater AP, Tonino SH. Engaging Cytotoxic T and NK Cells for Immunotherapy in Chronic Lymphocytic Leukemia. Int J Mol Sci. 2019;20(17):4315. DOI:10.3390/ijms20174315
19. Wang W, Erbe AK, Hank JA, et al. NK cell-mediated antibodydependent cellular cytotoxicity in cancer immunotherapy. Front Immunol 2015;6:368. DOI:10.3389/fimmu.2015.00368
20. Vivier E, Raulet DH, Moretta A, et al. Innate or adaptive immunity? The example of natural killer cells. Science. 2011;331(6013):44-9. DOI:10.1126/science.1198687
21. Zhang C, Hu Y, Shi C. Targeting Natural Killer Cells for Tumor Immunotherapy. Front Immunol. 2020;11:60. DOI:10.3389/fimmu.2020.00060
22. Sun C, Sun HY, Xiao WH, et al. Natural killer cell dysfunction in hepatocellular carcinoma and NK cell-based immunotherapy. Acta Pharmacol Sin. 2015;36:1191‑9. DOI:10.1038/aps.2015.41
23. Habif G, Crinier A, Andre P, et al. Targeting natural killer cells in solid tumors. Cell Mol Immunol. 2019;16:415-22. DOI:10.1038/s41423-019-0224-2
24. Bi J, Tian Z. NK Cell exhaustion. Front Immunol. 2017;8:760. DOI:10.3389/fimmu.2017.00760
25. Wang W, Jiang J, Wu C. CAR-NK for tumor immunotherapy: Clinical transformation and future prospects. Cancer Lett. 2020;472:175-80. DOI:10.1016/j.canlet.2019.11.033
26. Wang L, Dou M, Ma Q, et al. Chimeric antigen receptor (CAR)-modified NK cells against cancer: Opportunities and challenges. Int Immunopharmacol. 2019;74:105695. DOI:10.1016/j.intimp.2019.105695
27. Rotolo R, Leuci V, Donini C, et al. CAR-Based Strategies beyond T Lymphocytes: Integrative Opportunities for Cancer Adoptive Immunotherapy. Int J Mol Sci. 2019;20:2839. DOI:10.3390/ijms20112839
28. Boissel L, Betancur M, Wels WS, et al. Transfection with mRNA for CD19 specific huchimeric antigen receptor restores NK cell mediated killing of CLL cells. Leuk Res. 2009;33:1255-9. DOI:10.1016/j.leukres.2008.11.024
29. Romee R, Schneider SE, Leong JW, et al. Cytokine activation induces human memory-like NK cells. Blood. 2012;120:4751-60. DOI:10.1182/blood-2012-04-419283
30. Acharya UH, Dhawale T, Yun S, et al. Management of cytokine release syndrome and neurotoxicity in chimeric antigen receptor (CAR) T cell therapy. Expert Rev Hematol. 2019;12:195-205. DOI:10.1080/17474086.2019.1585238
31. Bryceson YT, March ME, Ljunggren HG, Long EO. Activation, coactivation, and costimulation of resting human natural killer cells. Immunol Rev. 2006;214:73‑91.
DOI:10.1111/j.1600-065X.2006.00457.x
32. Olson JA, Leveson-Gower DB, Gill S, et al. NK cells mediate reduction of GVHD by inhibiting activated, alloreactive T cells while retaining GVT effects. Blood. 2010;115:4293-301. DOI:10.1182/blood-2009-05-222190
33. Oberschmidt O, Kloess S, Koehl U. Redirected Primary Human Chimeric Antigen Receptor Natural Killer Cells as an “off-the-Shelf Immunotherapy” for Improvement in Cancer Treatment. Front Immunol. 2017;8:654. DOI:10.3389/fimmu.2017.00654
34. MacKay M, Afshinnekoo E, Rub J, et al. The therapeutic landscape for cells engineered with chimeric antigen receptors. Nat Biotechnol. 2020;38(2):233-44.
DOI:10.1038/s41587-019-0329-2
35. Tang X, Yang L, Li Z, et al. First-in-man clinical trial of CAR NK-92 cells: safety test of CD33-CAR NK-92 cells in patients with relapsed and refractory acute myeloid leukemia. Am J Cancer Res. 2018;8(6):1083-9.
36. Liu E, Marin D, Banerjee P, et al. Use of CAR-Transduced Natural Killer Cells in CD19-Positive Lymphoid Tumors. N Engl J Med. 2020;382(6):545-53. DOI:10.1056/NEJMoa1910607
37. Liu E, Tong Y, Dotti G, et al. Cord blood NK cells engineered to express IL-15 and a CD19-targeted CAR show long-term persistence and potent antitumor activity. Leukemia. 2018;32(2):520-31. DOI:10.1038/leu.2017.226
38. Li Y, Hermanson DL, Moriarity BS, Kaufman DS. Human iPSC-Derived Natural Killer Cells Engineered with Chimeric Antigen Receptors Enhance Anti-tumor Activity. Cell Stem Cell. 2018;23(2):181-92.e5. DOI:10.1016/j.stem.2018.06.002
39. Pfefferle A, Huntington ND. You Have Got a Fast CAR: Chimeric Antigen Receptor NK Cells in Cancer Therapy. Cancers. 2020;12:706. DOI:10.3390/cancers12030706
40. Quintarelli C, Sivori S, Caruso S, et al. Efficacy of third-party chimeric antigen receptor modified peripheral blood natural killer cells for adoptive cell therapy of B-cell precursor acute lymphoblastic leukemia. Leukemia. 2020;34(4):1102‑15. DOI:10.1038/s41375-019-0613-7
41. van Ostaijen-ten Dam MM, Prins HJ, Boerman GH, et al. Preparation of Cytokine-activated NK Cells for Use in Adoptive Cell Therapy in Cancer Patients: Protocol Optimization and Therapeutic Potential. J Immunother. 2016;39(2):90-100. DOI:10.1097/CJI.0000000000000110
42. Domogala A, Madrigal JA, Saudemont A. Cryopreservation has no effect on function of natural killer cells differentiated in vitro from umbilical cord blood CD34(+) cells. Cytotherapy. 2016;18(6):754-9. DOI:10.1016/j.jcyt.2016.02.008
43. Shah NN, Baird K, Delbrook CP, et al. Acute GVHD in patients receiving IL-15/4-1BBL activated NK cells following T-cell-depleted stem cell transplantation. Blood. 2015;125(5):784-92. DOI:10.1182/blood-2014-07-592881
2. DeSantis CE, Miller KD, Dale W, et al. Cancer statistics for adults aged 85 years and older, 2019. CA Cancer J Clin. 2019;69:452-67. DOI:10.3322/caac.21577
3. Oostindie SC, van der Horst HJ, Kil LP, et al. DuoHexaBody-CD37((R)), a novel biparatopic CD37 antibody with enhanced Fc-mediated hexamerization as a potential therapy for B-cell malignancies. Blood Cancer J. 2020;10(3):30. DOI:10.1038/s41408-020-0292-7
4. Bonello F, D’Agostino M, Moscvin M, et al. CD38 as an immunotherapeutic target in multiple myeloma. Expert Opin Biol Ther. 2018;18:1209-21. DOI:10.1080/14712598.2018.1544240
5. Salles G, Barrett M, Foa R, et al. Rituximab in B-Cell Hematologic Malignancies: A Review of 20 Years of Clinical Experience. Adv Ther. 2017;34:2232-73.
DOI:10.1007/s12325-017-0612-x
6. Mori Y, Choi I, Yoshimoto G, et al. Phase I/II study of bortezomib, lenalidomide, and dexamethasone treatment for relapsed and refractory multiple myeloma. Int J Hematol. 2020;111:673-80. DOI:10.1007/s12185-020-02833-w
7. Fathi E, Farahzadi R, Sheervalilou R, et al. A general view of CD33(+) leukemic stem cells and CAR-T cells as interesting targets in acute myeloblatsic leukemia therapy. Blood Res. 2020;55:10-6. DOI:10.5045/br.2020.55.1.10
8. Lee HR, Baek KH. Role of natural killer cells for immunotherapy in chronic myeloid leukemia (Review). Oncol Rep. 2019;41:2625-35. DOI:10.3892/or.2019.7059
9. Van Acker HH, Versteven M, Lichtenegger FS, et al. Dendritic Cell-Based Immunotherapy of Acute Myeloid Leukemia. J Clin Med. 2019;8:579. DOI:10.3390/jcm8050579
10. Song W, Zhang M. Use of CAR-T cell therapy, PD-1 blockade, and their combination for the treatment of hematological malignancies. Clin Immunol. 2020;214:108382. DOI:10.1016/j.clim.2020.108382
11. Gribkova IV, Zavyalov AA. Chimeric antigen receptor T-cell therapy for B-cell non-Hodgkin lymphoma: opportunities and challenges. Voprosy onkologii. 2021;67(3):350-60 (in Russian). DOI:10.37469/0507-3758-2021-67-3-350-360
12. Gribkova IV, Zavyalov AA. CAR T-cells for the treatment of chronic lymphocytic leukemia. Klinicheskaia onkogematologiia. 2021;14(2):225-30 (in Russian).
DOI:10.21320/2500-2139-2021-14-2-225-230
13. Borobova EA, Zheravin AA. Natural killer cels in immunotherapy for cancer. Sibirskij onkologicheskij zhurnal. 2018;17(6):97-104 (in Russian). DOI:10.21294/1814-4861-2018-17-6-97-104
14. Hu Y, Tian Zh, Zhang C. Chimeric antigen receptor (CAR)-transduced natural killer cells in tumor immunotherapy. Acta Pharmacologica Sinica. 2018;39:167‑76. DOI:10.1038/aps.2017.125
15. Orange JS. Natural killer cell deficiency. J Allergy Clin Immunol. 2013;132:515‑25. DOI:10.1016/j.jaci.2013.07.020
16. Xie G, Dong H, Liang Y, et al. CAR-NK cells: A promising cellular immunotherapy for cancer. EBioMedicine. 2020;59:102975. DOI:10.1016/j.ebiom.2020.102975
17. Lanier LL. Up on the tightrope: natural killer cell activation and inhibition. Nat Immunol. 2008;9(5):495-502. DOI:10.1038/ni1581
18. Hofland T, Eldering E, Kater AP, Tonino SH. Engaging Cytotoxic T and NK Cells for Immunotherapy in Chronic Lymphocytic Leukemia. Int J Mol Sci. 2019;20(17):4315. DOI:10.3390/ijms20174315
19. Wang W, Erbe AK, Hank JA, et al. NK cell-mediated antibodydependent cellular cytotoxicity in cancer immunotherapy. Front Immunol 2015;6:368. DOI:10.3389/fimmu.2015.00368
20. Vivier E, Raulet DH, Moretta A, et al. Innate or adaptive immunity? The example of natural killer cells. Science. 2011;331(6013):44-9. DOI:10.1126/science.1198687
21. Zhang C, Hu Y, Shi C. Targeting Natural Killer Cells for Tumor Immunotherapy. Front Immunol. 2020;11:60. DOI:10.3389/fimmu.2020.00060
22. Sun C, Sun HY, Xiao WH, et al. Natural killer cell dysfunction in hepatocellular carcinoma and NK cell-based immunotherapy. Acta Pharmacol Sin. 2015;36:1191‑9. DOI:10.1038/aps.2015.41
23. Habif G, Crinier A, Andre P, et al. Targeting natural killer cells in solid tumors. Cell Mol Immunol. 2019;16:415-22. DOI:10.1038/s41423-019-0224-2
24. Bi J, Tian Z. NK Cell exhaustion. Front Immunol. 2017;8:760. DOI:10.3389/fimmu.2017.00760
25. Wang W, Jiang J, Wu C. CAR-NK for tumor immunotherapy: Clinical transformation and future prospects. Cancer Lett. 2020;472:175-80. DOI:10.1016/j.canlet.2019.11.033
26. Wang L, Dou M, Ma Q, et al. Chimeric antigen receptor (CAR)-modified NK cells against cancer: Opportunities and challenges. Int Immunopharmacol. 2019;74:105695. DOI:10.1016/j.intimp.2019.105695
27. Rotolo R, Leuci V, Donini C, et al. CAR-Based Strategies beyond T Lymphocytes: Integrative Opportunities for Cancer Adoptive Immunotherapy. Int J Mol Sci. 2019;20:2839. DOI:10.3390/ijms20112839
28. Boissel L, Betancur M, Wels WS, et al. Transfection with mRNA for CD19 specific huchimeric antigen receptor restores NK cell mediated killing of CLL cells. Leuk Res. 2009;33:1255-9. DOI:10.1016/j.leukres.2008.11.024
29. Romee R, Schneider SE, Leong JW, et al. Cytokine activation induces human memory-like NK cells. Blood. 2012;120:4751-60. DOI:10.1182/blood-2012-04-419283
30. Acharya UH, Dhawale T, Yun S, et al. Management of cytokine release syndrome and neurotoxicity in chimeric antigen receptor (CAR) T cell therapy. Expert Rev Hematol. 2019;12:195-205. DOI:10.1080/17474086.2019.1585238
31. Bryceson YT, March ME, Ljunggren HG, Long EO. Activation, coactivation, and costimulation of resting human natural killer cells. Immunol Rev. 2006;214:73‑91.
DOI:10.1111/j.1600-065X.2006.00457.x
32. Olson JA, Leveson-Gower DB, Gill S, et al. NK cells mediate reduction of GVHD by inhibiting activated, alloreactive T cells while retaining GVT effects. Blood. 2010;115:4293-301. DOI:10.1182/blood-2009-05-222190
33. Oberschmidt O, Kloess S, Koehl U. Redirected Primary Human Chimeric Antigen Receptor Natural Killer Cells as an “off-the-Shelf Immunotherapy” for Improvement in Cancer Treatment. Front Immunol. 2017;8:654. DOI:10.3389/fimmu.2017.00654
34. MacKay M, Afshinnekoo E, Rub J, et al. The therapeutic landscape for cells engineered with chimeric antigen receptors. Nat Biotechnol. 2020;38(2):233-44.
DOI:10.1038/s41587-019-0329-2
35. Tang X, Yang L, Li Z, et al. First-in-man clinical trial of CAR NK-92 cells: safety test of CD33-CAR NK-92 cells in patients with relapsed and refractory acute myeloid leukemia. Am J Cancer Res. 2018;8(6):1083-9.
36. Liu E, Marin D, Banerjee P, et al. Use of CAR-Transduced Natural Killer Cells in CD19-Positive Lymphoid Tumors. N Engl J Med. 2020;382(6):545-53. DOI:10.1056/NEJMoa1910607
37. Liu E, Tong Y, Dotti G, et al. Cord blood NK cells engineered to express IL-15 and a CD19-targeted CAR show long-term persistence and potent antitumor activity. Leukemia. 2018;32(2):520-31. DOI:10.1038/leu.2017.226
38. Li Y, Hermanson DL, Moriarity BS, Kaufman DS. Human iPSC-Derived Natural Killer Cells Engineered with Chimeric Antigen Receptors Enhance Anti-tumor Activity. Cell Stem Cell. 2018;23(2):181-92.e5. DOI:10.1016/j.stem.2018.06.002
39. Pfefferle A, Huntington ND. You Have Got a Fast CAR: Chimeric Antigen Receptor NK Cells in Cancer Therapy. Cancers. 2020;12:706. DOI:10.3390/cancers12030706
40. Quintarelli C, Sivori S, Caruso S, et al. Efficacy of third-party chimeric antigen receptor modified peripheral blood natural killer cells for adoptive cell therapy of B-cell precursor acute lymphoblastic leukemia. Leukemia. 2020;34(4):1102‑15. DOI:10.1038/s41375-019-0613-7
41. van Ostaijen-ten Dam MM, Prins HJ, Boerman GH, et al. Preparation of Cytokine-activated NK Cells for Use in Adoptive Cell Therapy in Cancer Patients: Protocol Optimization and Therapeutic Potential. J Immunother. 2016;39(2):90-100. DOI:10.1097/CJI.0000000000000110
42. Domogala A, Madrigal JA, Saudemont A. Cryopreservation has no effect on function of natural killer cells differentiated in vitro from umbilical cord blood CD34(+) cells. Cytotherapy. 2016;18(6):754-9. DOI:10.1016/j.jcyt.2016.02.008
43. Shah NN, Baird K, Delbrook CP, et al. Acute GVHD in patients receiving IL-15/4-1BBL activated NK cells following T-cell-depleted stem cell transplantation. Blood. 2015;125(5):784-92. DOI:10.1182/blood-2014-07-592881
2. DeSantis CE, Miller KD, Dale W, et al. Cancer statistics for adults aged 85 years and older, 2019. CA Cancer J Clin. 2019;69:452-67. DOI:10.3322/caac.21577
3. Oostindie SC, van der Horst HJ, Kil LP, et al. DuoHexaBody-CD37((R)), a novel biparatopic CD37 antibody with enhanced Fc-mediated hexamerization as a potential therapy for B-cell malignancies. Blood Cancer J. 2020;10(3):30. DOI:10.1038/s41408-020-0292-7
4. Bonello F, D’Agostino M, Moscvin M, et al. CD38 as an immunotherapeutic target in multiple myeloma. Expert Opin Biol Ther. 2018;18:1209-21. DOI:10.1080/14712598.2018.1544240
5. Salles G, Barrett M, Foa R, et al. Rituximab in B-Cell Hematologic Malignancies: A Review of 20 Years of Clinical Experience. Adv Ther. 2017;34:2232-73.
DOI:10.1007/s12325-017-0612-x
6. Mori Y, Choi I, Yoshimoto G, et al. Phase I/II study of bortezomib, lenalidomide, and dexamethasone treatment for relapsed and refractory multiple myeloma. Int J Hematol. 2020;111:673-80. DOI:10.1007/s12185-020-02833-w
7. Fathi E, Farahzadi R, Sheervalilou R, et al. A general view of CD33(+) leukemic stem cells and CAR-T cells as interesting targets in acute myeloblatsic leukemia therapy. Blood Res. 2020;55:10-6. DOI:10.5045/br.2020.55.1.10
8. Lee HR, Baek KH. Role of natural killer cells for immunotherapy in chronic myeloid leukemia (Review). Oncol Rep. 2019;41:2625-35. DOI:10.3892/or.2019.7059
9. Van Acker HH, Versteven M, Lichtenegger FS, et al. Dendritic Cell-Based Immunotherapy of Acute Myeloid Leukemia. J Clin Med. 2019;8:579. DOI:10.3390/jcm8050579
10. Song W, Zhang M. Use of CAR-T cell therapy, PD-1 blockade, and their combination for the treatment of hematological malignancies. Clin Immunol. 2020;214:108382. DOI:10.1016/j.clim.2020.108382
11. Грибкова И.В., Завьялов А.А. Терапия Т-лимфоцитами с химерным антигенным рецептором (CAR) В-клеточной неходжкинской лимфомы: возможности и проблемы. Вопросы онкологии. 2021;67(3):350-60 [Gribkova IV, Zavyalov AA. Chimeric antigen receptor T-cell therapy for B-cell non-Hodgkin lymphoma: opportunities and challenges. Voprosy onkologii. 2021;67(3):350-60 (in Russian)]. DOI:10.37469/0507-3758-2021-67-3-350-360
12. Грибкова И.В., Завьялов А.А. CAR Т-клетки для лечения хронического лимфоцитарного лейкоза. Клиническая онкогематология. 2021;14(2):225-30 [Gribkova IV, Zavyalov AA. CAR T-cells for the treatment of chronic lymphocytic leukemia. Klinicheskaia onkogematologiia. 2021;14(2):225-30 (in Russian)]. DOI:10.21320/2500-2139-2021-14-2-225-230
13. Боробова Е.А., Жеравин А.А. Натуральные киллеры в иммунотерапии онкологических заболеваний. Сибирский онкологический журнал. 2018;17(6):97‑104 [Borobova EA, Zheravin AA. Natural killer cels in immunotherapy for cancer. Sibirskij onkologicheskij zhurnal. 2018;17(6):97-104 (in Russian)]. DOI:10.21294/1814-4861-2018-17-6-97-104
14. Hu Y, Tian Zh, Zhang C. Chimeric antigen receptor (CAR)-transduced natural killer cells in tumor immunotherapy. Acta Pharmacologica Sinica. 2018;39:167‑76. DOI:10.1038/aps.2017.125
15. Orange JS. Natural killer cell deficiency. J Allergy Clin Immunol. 2013;132:515‑25. DOI:10.1016/j.jaci.2013.07.020
16. Xie G, Dong H, Liang Y, et al. CAR-NK cells: A promising cellular immunotherapy for cancer. EBioMedicine. 2020;59:102975. DOI:10.1016/j.ebiom.2020.102975
17. Lanier LL. Up on the tightrope: natural killer cell activation and inhibition. Nat Immunol. 2008;9(5):495-502. DOI:10.1038/ni1581
18. Hofland T, Eldering E, Kater AP, Tonino SH. Engaging Cytotoxic T and NK Cells for Immunotherapy in Chronic Lymphocytic Leukemia. Int J Mol Sci. 2019;20(17):4315. DOI:10.3390/ijms20174315
19. Wang W, Erbe AK, Hank JA, et al. NK cell-mediated antibodydependent cellular cytotoxicity in cancer immunotherapy. Front Immunol 2015;6:368. DOI:10.3389/fimmu.2015.00368
20. Vivier E, Raulet DH, Moretta A, et al. Innate or adaptive immunity? The example of natural killer cells. Science. 2011;331(6013):44-9. DOI:10.1126/science.1198687
21. Zhang C, Hu Y, Shi C. Targeting Natural Killer Cells for Tumor Immunotherapy. Front Immunol. 2020;11:60. DOI:10.3389/fimmu.2020.00060
22. Sun C, Sun HY, Xiao WH, et al. Natural killer cell dysfunction in hepatocellular carcinoma and NK cell-based immunotherapy. Acta Pharmacol Sin. 2015;36:1191‑9. DOI:10.1038/aps.2015.41
23. Habif G, Crinier A, Andre P, et al. Targeting natural killer cells in solid tumors. Cell Mol Immunol. 2019;16:415-22. DOI:10.1038/s41423-019-0224-2
24. Bi J, Tian Z. NK Cell exhaustion. Front Immunol. 2017;8:760. DOI:10.3389/fimmu.2017.00760
25. Wang W, Jiang J, Wu C. CAR-NK for tumor immunotherapy: Clinical transformation and future prospects. Cancer Lett. 2020;472:175-80. DOI:10.1016/j.canlet.2019.11.033
26. Wang L, Dou M, Ma Q, et al. Chimeric antigen receptor (CAR)-modified NK cells against cancer: Opportunities and challenges. Int Immunopharmacol. 2019;74:105695. DOI:10.1016/j.intimp.2019.105695
27. Rotolo R, Leuci V, Donini C, et al. CAR-Based Strategies beyond T Lymphocytes: Integrative Opportunities for Cancer Adoptive Immunotherapy. Int J Mol Sci. 2019;20:2839. DOI:10.3390/ijms20112839
28. Boissel L, Betancur M, Wels WS, et al. Transfection with mRNA for CD19 specific huchimeric antigen receptor restores NK cell mediated killing of CLL cells. Leuk Res. 2009;33:1255-9. DOI:10.1016/j.leukres.2008.11.024
29. Romee R, Schneider SE, Leong JW, et al. Cytokine activation induces human memory-like NK cells. Blood. 2012;120:4751-60. DOI:10.1182/blood-2012-04-419283
30. Acharya UH, Dhawale T, Yun S, et al. Management of cytokine release syndrome and neurotoxicity in chimeric antigen receptor (CAR) T cell therapy. Expert Rev Hematol. 2019;12:195-205. DOI:10.1080/17474086.2019.1585238
31. Bryceson YT, March ME, Ljunggren HG, Long EO. Activation, coactivation, and costimulation of resting human natural killer cells. Immunol Rev. 2006;214:73‑91.
DOI:10.1111/j.1600-065X.2006.00457.x
32. Olson JA, Leveson-Gower DB, Gill S, et al. NK cells mediate reduction of GVHD by inhibiting activated, alloreactive T cells while retaining GVT effects. Blood. 2010;115:4293-301. DOI:10.1182/blood-2009-05-222190
33. Oberschmidt O, Kloess S, Koehl U. Redirected Primary Human Chimeric Antigen Receptor Natural Killer Cells as an “off-the-Shelf Immunotherapy” for Improvement in Cancer Treatment. Front Immunol. 2017;8:654. DOI:10.3389/fimmu.2017.00654
34. MacKay M, Afshinnekoo E, Rub J, et al. The therapeutic landscape for cells engineered with chimeric antigen receptors. Nat Biotechnol. 2020;38(2):233-44.
DOI:10.1038/s41587-019-0329-2
35. Tang X, Yang L, Li Z, et al. First-in-man clinical trial of CAR NK-92 cells: safety test of CD33-CAR NK-92 cells in patients with relapsed and refractory acute myeloid leukemia. Am J Cancer Res. 2018;8(6):1083-9.
36. Liu E, Marin D, Banerjee P, et al. Use of CAR-Transduced Natural Killer Cells in CD19-Positive Lymphoid Tumors. N Engl J Med. 2020;382(6):545-53. DOI:10.1056/NEJMoa1910607
37. Liu E, Tong Y, Dotti G, et al. Cord blood NK cells engineered to express IL-15 and a CD19-targeted CAR show long-term persistence and potent antitumor activity. Leukemia. 2018;32(2):520-31. DOI:10.1038/leu.2017.226
38. Li Y, Hermanson DL, Moriarity BS, Kaufman DS. Human iPSC-Derived Natural Killer Cells Engineered with Chimeric Antigen Receptors Enhance Anti-tumor Activity. Cell Stem Cell. 2018;23(2):181-92.e5. DOI:10.1016/j.stem.2018.06.002
39. Pfefferle A, Huntington ND. You Have Got a Fast CAR: Chimeric Antigen Receptor NK Cells in Cancer Therapy. Cancers. 2020;12:706. DOI:10.3390/cancers12030706
40. Quintarelli C, Sivori S, Caruso S, et al. Efficacy of third-party chimeric antigen receptor modified peripheral blood natural killer cells for adoptive cell therapy of B-cell precursor acute lymphoblastic leukemia. Leukemia. 2020;34(4):1102‑15. DOI:10.1038/s41375-019-0613-7
41. van Ostaijen-ten Dam MM, Prins HJ, Boerman GH, et al. Preparation of Cytokine-activated NK Cells for Use in Adoptive Cell Therapy in Cancer Patients: Protocol Optimization and Therapeutic Potential. J Immunother. 2016;39(2):90-100. DOI:10.1097/CJI.0000000000000110
42. Domogala A, Madrigal JA, Saudemont A. Cryopreservation has no effect on function of natural killer cells differentiated in vitro from umbilical cord blood CD34(+) cells. Cytotherapy. 2016;18(6):754-9. DOI:10.1016/j.jcyt.2016.02.008
43. Shah NN, Baird K, Delbrook CP, et al. Acute GVHD in patients receiving IL-15/4-1BBL activated NK cells following T-cell-depleted stem cell transplantation. Blood. 2015;125(5):784-92. DOI:10.1182/blood-2014-07-592881
________________________________________________
2. DeSantis CE, Miller KD, Dale W, et al. Cancer statistics for adults aged 85 years and older, 2019. CA Cancer J Clin. 2019;69:452-67. DOI:10.3322/caac.21577
3. Oostindie SC, van der Horst HJ, Kil LP, et al. DuoHexaBody-CD37((R)), a novel biparatopic CD37 antibody with enhanced Fc-mediated hexamerization as a potential therapy for B-cell malignancies. Blood Cancer J. 2020;10(3):30. DOI:10.1038/s41408-020-0292-7
4. Bonello F, D’Agostino M, Moscvin M, et al. CD38 as an immunotherapeutic target in multiple myeloma. Expert Opin Biol Ther. 2018;18:1209-21. DOI:10.1080/14712598.2018.1544240
5. Salles G, Barrett M, Foa R, et al. Rituximab in B-Cell Hematologic Malignancies: A Review of 20 Years of Clinical Experience. Adv Ther. 2017;34:2232-73.
DOI:10.1007/s12325-017-0612-x
6. Mori Y, Choi I, Yoshimoto G, et al. Phase I/II study of bortezomib, lenalidomide, and dexamethasone treatment for relapsed and refractory multiple myeloma. Int J Hematol. 2020;111:673-80. DOI:10.1007/s12185-020-02833-w
7. Fathi E, Farahzadi R, Sheervalilou R, et al. A general view of CD33(+) leukemic stem cells and CAR-T cells as interesting targets in acute myeloblatsic leukemia therapy. Blood Res. 2020;55:10-6. DOI:10.5045/br.2020.55.1.10
8. Lee HR, Baek KH. Role of natural killer cells for immunotherapy in chronic myeloid leukemia (Review). Oncol Rep. 2019;41:2625-35. DOI:10.3892/or.2019.7059
9. Van Acker HH, Versteven M, Lichtenegger FS, et al. Dendritic Cell-Based Immunotherapy of Acute Myeloid Leukemia. J Clin Med. 2019;8:579. DOI:10.3390/jcm8050579
10. Song W, Zhang M. Use of CAR-T cell therapy, PD-1 blockade, and their combination for the treatment of hematological malignancies. Clin Immunol. 2020;214:108382. DOI:10.1016/j.clim.2020.108382
11. Gribkova IV, Zavyalov AA. Chimeric antigen receptor T-cell therapy for B-cell non-Hodgkin lymphoma: opportunities and challenges. Voprosy onkologii. 2021;67(3):350-60 (in Russian). DOI:10.37469/0507-3758-2021-67-3-350-360
12. Gribkova IV, Zavyalov AA. CAR T-cells for the treatment of chronic lymphocytic leukemia. Klinicheskaia onkogematologiia. 2021;14(2):225-30 (in Russian).
DOI:10.21320/2500-2139-2021-14-2-225-230
13. Borobova EA, Zheravin AA. Natural killer cels in immunotherapy for cancer. Sibirskij onkologicheskij zhurnal. 2018;17(6):97-104 (in Russian). DOI:10.21294/1814-4861-2018-17-6-97-104
14. Hu Y, Tian Zh, Zhang C. Chimeric antigen receptor (CAR)-transduced natural killer cells in tumor immunotherapy. Acta Pharmacologica Sinica. 2018;39:167‑76. DOI:10.1038/aps.2017.125
15. Orange JS. Natural killer cell deficiency. J Allergy Clin Immunol. 2013;132:515‑25. DOI:10.1016/j.jaci.2013.07.020
16. Xie G, Dong H, Liang Y, et al. CAR-NK cells: A promising cellular immunotherapy for cancer. EBioMedicine. 2020;59:102975. DOI:10.1016/j.ebiom.2020.102975
17. Lanier LL. Up on the tightrope: natural killer cell activation and inhibition. Nat Immunol. 2008;9(5):495-502. DOI:10.1038/ni1581
18. Hofland T, Eldering E, Kater AP, Tonino SH. Engaging Cytotoxic T and NK Cells for Immunotherapy in Chronic Lymphocytic Leukemia. Int J Mol Sci. 2019;20(17):4315. DOI:10.3390/ijms20174315
19. Wang W, Erbe AK, Hank JA, et al. NK cell-mediated antibodydependent cellular cytotoxicity in cancer immunotherapy. Front Immunol 2015;6:368. DOI:10.3389/fimmu.2015.00368
20. Vivier E, Raulet DH, Moretta A, et al. Innate or adaptive immunity? The example of natural killer cells. Science. 2011;331(6013):44-9. DOI:10.1126/science.1198687
21. Zhang C, Hu Y, Shi C. Targeting Natural Killer Cells for Tumor Immunotherapy. Front Immunol. 2020;11:60. DOI:10.3389/fimmu.2020.00060
22. Sun C, Sun HY, Xiao WH, et al. Natural killer cell dysfunction in hepatocellular carcinoma and NK cell-based immunotherapy. Acta Pharmacol Sin. 2015;36:1191‑9. DOI:10.1038/aps.2015.41
23. Habif G, Crinier A, Andre P, et al. Targeting natural killer cells in solid tumors. Cell Mol Immunol. 2019;16:415-22. DOI:10.1038/s41423-019-0224-2
24. Bi J, Tian Z. NK Cell exhaustion. Front Immunol. 2017;8:760. DOI:10.3389/fimmu.2017.00760
25. Wang W, Jiang J, Wu C. CAR-NK for tumor immunotherapy: Clinical transformation and future prospects. Cancer Lett. 2020;472:175-80. DOI:10.1016/j.canlet.2019.11.033
26. Wang L, Dou M, Ma Q, et al. Chimeric antigen receptor (CAR)-modified NK cells against cancer: Opportunities and challenges. Int Immunopharmacol. 2019;74:105695. DOI:10.1016/j.intimp.2019.105695
27. Rotolo R, Leuci V, Donini C, et al. CAR-Based Strategies beyond T Lymphocytes: Integrative Opportunities for Cancer Adoptive Immunotherapy. Int J Mol Sci. 2019;20:2839. DOI:10.3390/ijms20112839
28. Boissel L, Betancur M, Wels WS, et al. Transfection with mRNA for CD19 specific huchimeric antigen receptor restores NK cell mediated killing of CLL cells. Leuk Res. 2009;33:1255-9. DOI:10.1016/j.leukres.2008.11.024
29. Romee R, Schneider SE, Leong JW, et al. Cytokine activation induces human memory-like NK cells. Blood. 2012;120:4751-60. DOI:10.1182/blood-2012-04-419283
30. Acharya UH, Dhawale T, Yun S, et al. Management of cytokine release syndrome and neurotoxicity in chimeric antigen receptor (CAR) T cell therapy. Expert Rev Hematol. 2019;12:195-205. DOI:10.1080/17474086.2019.1585238
31. Bryceson YT, March ME, Ljunggren HG, Long EO. Activation, coactivation, and costimulation of resting human natural killer cells. Immunol Rev. 2006;214:73‑91.
DOI:10.1111/j.1600-065X.2006.00457.x
32. Olson JA, Leveson-Gower DB, Gill S, et al. NK cells mediate reduction of GVHD by inhibiting activated, alloreactive T cells while retaining GVT effects. Blood. 2010;115:4293-301. DOI:10.1182/blood-2009-05-222190
33. Oberschmidt O, Kloess S, Koehl U. Redirected Primary Human Chimeric Antigen Receptor Natural Killer Cells as an “off-the-Shelf Immunotherapy” for Improvement in Cancer Treatment. Front Immunol. 2017;8:654. DOI:10.3389/fimmu.2017.00654
34. MacKay M, Afshinnekoo E, Rub J, et al. The therapeutic landscape for cells engineered with chimeric antigen receptors. Nat Biotechnol. 2020;38(2):233-44.
DOI:10.1038/s41587-019-0329-2
35. Tang X, Yang L, Li Z, et al. First-in-man clinical trial of CAR NK-92 cells: safety test of CD33-CAR NK-92 cells in patients with relapsed and refractory acute myeloid leukemia. Am J Cancer Res. 2018;8(6):1083-9.
36. Liu E, Marin D, Banerjee P, et al. Use of CAR-Transduced Natural Killer Cells in CD19-Positive Lymphoid Tumors. N Engl J Med. 2020;382(6):545-53. DOI:10.1056/NEJMoa1910607
37. Liu E, Tong Y, Dotti G, et al. Cord blood NK cells engineered to express IL-15 and a CD19-targeted CAR show long-term persistence and potent antitumor activity. Leukemia. 2018;32(2):520-31. DOI:10.1038/leu.2017.226
38. Li Y, Hermanson DL, Moriarity BS, Kaufman DS. Human iPSC-Derived Natural Killer Cells Engineered with Chimeric Antigen Receptors Enhance Anti-tumor Activity. Cell Stem Cell. 2018;23(2):181-92.e5. DOI:10.1016/j.stem.2018.06.002
39. Pfefferle A, Huntington ND. You Have Got a Fast CAR: Chimeric Antigen Receptor NK Cells in Cancer Therapy. Cancers. 2020;12:706. DOI:10.3390/cancers12030706
40. Quintarelli C, Sivori S, Caruso S, et al. Efficacy of third-party chimeric antigen receptor modified peripheral blood natural killer cells for adoptive cell therapy of B-cell precursor acute lymphoblastic leukemia. Leukemia. 2020;34(4):1102‑15. DOI:10.1038/s41375-019-0613-7
41. van Ostaijen-ten Dam MM, Prins HJ, Boerman GH, et al. Preparation of Cytokine-activated NK Cells for Use in Adoptive Cell Therapy in Cancer Patients: Protocol Optimization and Therapeutic Potential. J Immunother. 2016;39(2):90-100. DOI:10.1097/CJI.0000000000000110
42. Domogala A, Madrigal JA, Saudemont A. Cryopreservation has no effect on function of natural killer cells differentiated in vitro from umbilical cord blood CD34(+) cells. Cytotherapy. 2016;18(6):754-9. DOI:10.1016/j.jcyt.2016.02.008
43. Shah NN, Baird K, Delbrook CP, et al. Acute GVHD in patients receiving IL-15/4-1BBL activated NK cells following T-cell-depleted stem cell transplantation. Blood. 2015;125(5):784-92. DOI:10.1182/blood-2014-07-592881
Авторы
И.В. Грибкова*
ГБУ города Москвы «Научно-исследовательский институт организации здравоохранения и медицинского менеджмента Департамента здравоохранения города Москвы», Москва, Россия
*igribkova@yandex.ru
Research Institute for Healthcare Organization and Medical Management of Moscow Healthcare Department, Moscow, Russia
*igribkova@yandex.ru
ГБУ города Москвы «Научно-исследовательский институт организации здравоохранения и медицинского менеджмента Департамента здравоохранения города Москвы», Москва, Россия
*igribkova@yandex.ru
________________________________________________
Research Institute for Healthcare Organization and Medical Management of Moscow Healthcare Department, Moscow, Russia
*igribkova@yandex.ru
Цель портала OmniDoctor – предоставление профессиональной информации врачам, провизорам и фармацевтам.
