Denisenko NP, Shuev GN, Mukhamadiev RH, Perfilieva OM, Kazakov RE, Kachanova AA, Milyutina OI, Konenkova OV, Ryzhkin SA, Ivashchenko DV, Bure IV, Kirienko SL, Zhmaeva EM, Mirzaev KB, Ametov AS, Poddubnaya IV, Sychev DA. Genetic markers associated with resistance to radioiodine therapy in thyroid cancer patients: Prospective cohort study. Journal of Modern Oncology. 2022;24(3):345–350. DOI: 10.26442/18151434.2022.3.201867
Генетические маркеры, ассоциированные с резистентностью к радиойодтерапии, у больных раком щитовидной железы
Denisenko NP, Shuev GN, Mukhamadiev RH, Perfilieva OM, Kazakov RE, Kachanova AA, Milyutina OI, Konenkova OV, Ryzhkin SA, Ivashchenko DV, Bure IV, Kirienko SL, Zhmaeva EM, Mirzaev KB, Ametov AS, Poddubnaya IV, Sychev DA. Genetic markers associated with resistance to radioiodine therapy in thyroid cancer patients: Prospective cohort study. Journal of Modern Oncology. 2022;24(3):345–350. DOI: 10.26442/18151434.2022.3.201867
Обоснование. Показанием для проведения радиойодтерапии является принадлежность пациента к группе промежуточного или высокого риска агрессивного течения рака щитовидной железы, которая определяется на основании клинико-диагностических данных и послеоперационного патоморфологического исследования опухолевой ткани щитовидной железы. Радиойодтерапия позволяет уничтожить остатки тиреоидной ткани и накапливающие радиоактивный йод вероятные резидуальные опухолевые очаги, позитивно влияет на метастазы дифференцированного рака щитовидной железы, снижая риск развития рецидива и улучшая отдаленные результаты терапии. Представляется значимым изучение роли полиморфизмов генов NFKB1, ATM, ATG16L2 и ATG10, продукты которых задействованы в процессах восстановления ДНК в ответ на повреждение и при аутофагии, в формировании резистентности к радиойодтерапии больных раком щитовидной железы. Цель. Изучить ассоциации между носительством полиморфизмов генов NFKB1, ATM, ATG16L2 и ATG10 и развитием резистентности к радиойодтерапии у больных раком щитовидной железы.
Материалы и методы. В исследование включен 181 пациент (37 мужчин, 144 женщины; медиана возраста 56 лет [41; 66,3]) с гистологически подтвержденным раком щитовидной железы и тиреоидэктомией в анамнезе, получивший радиойодтерапию. Определение носительства однонуклеотидных полиморфизмов (rs230493) NFKB1, (rs11212570) ATM, (rs10898880) ATG16L2 и (rs10514231, rs1864183, rs4703533) ATG10 проводилось методом аллель-специфической полимеразной цепной реакции в режиме реального времени с помощью наборов TaqMan™. Результаты. Резистентность к радиойодтерапии наблюдалась в 11 (6,1%) случаях из 181 наблюдения. Достоверных ассоциаций носительства отдельных изученных полиморфизмов с резистентностью к радиойодтерапии не получено, p>0,05. Гаплотипический анализ показал, что носительство гаплотипа C-C ATG10 rs10514231-rs1864183 ассоциировано с повышенным риском развития резистентности к радиойодтерапии, p=0,04. Заключение. Необходимы дальнейшие исследования на больших выборках резистентных к радиойодтерапии пациентов с применением методов полногеномного секвенирования для уточнения роли генетических факторов в ответе на терапию 131I.
Background. The indication for radiotherapy in oncological practice are metastases of differentiated thyroid cancer after thyroidectomy, the presence of distant metastases, or stage N1b, or negative dynamics of blood thyroglobulin levels after thyroidectomy for thyroid cancer. The mechanism of action of radiotherapy is based on provoking double-stranded DNA breaks. It is important to study the role of polymorphisms of NFKB1, ATM, ATG16L2 and ATG10 genes, products of which are involved in the processes of DNA damage response pathway and autophagy, in the formation of resistance to radioiodine therapy of thyroid cancer patients. Aim. To examine the association between NFKB1, ATM, ATG16L2 and ATG10 polymorphisms and resistance to radioiodine therapy in thyroid cancer patients. Materials and methods. The study included 181 patients (37 men, 144 women; mean age 53.5±15.7 years) with histologically confirmed thyroid cancer and a history of thyroidectomy who received radioiodine therapy. Carriage of single-nucleotide polymorphisms (rs230493) NFKB1, (rs11212570) ATM, (rs10898880) ATG16L2 and (rs10514231, rs1864183, rs4703533) ATG10 was determined by real-time PCR using TaqMan™ kits. Results. Among 181 patients, resistance to radioiodine therapy was observed in 11 (6.1%) cases. No significant associations between the individual polymorphisms and resistance to radioiodine therapy were obtained, p>0.05. Haplotype analysis showed that carriage of the C-C ATG10 rs10514231-rs1864183 haplotype was associated with an increased risk of developing resistance to radioiodine therapy, p=0.04. Conclusion. Further studies on large samples of radioiodine therapy-resistant patients using whole-genome sequencing methods are required to specify the role of genetic factors in the response to 131I therapy.
1. Van Nostrand D. The Benefits and Risks of I-131 Therapy in Patients with Well-Differentiated Thyroid Cancer. Thyroid. 2009;19(12):1381-91. DOI:10.1089/thy.2009.1611
2. Клинические рекомендации «Дифференцированный рак щитовидной железы» (утв. Минздравом России, 2020 г.). Режим доступа: https://cr.minzdrav.gov.ru/recomend/329_1. Ссылка активна на 16.04.2022 [Clinical recommendations: differentiated thyroid cancer (approved by the Ministry of Health of Russia, 2020). Available at: https://cr.minzdrav.gov.ru/recomend/329_1. Accessed: 16.04.2022 (in Russian)].
3. Jackson S, Bartek J. The DNA-damage response in human biology and disease. Nature. 2009;461(7267):1071-8. DOI:10.1038/nature08467
4. Yan M, Tang C, Ma Z, et al. DNA damage response in nephrotoxic and ischemic kidney injury. Toxicol Appl Pharmacol. 2016;313:104-108. DOI:10.1016/j.taap.2016.10.022
5. Marechal A, Zou L. DNA Damage Sensing by the ATM and ATR Kinases. Cold Spring Harb Perspect Biol. 2013;5(9):a012716. DOI:10.1101/cshperspect.a012716
6. Thomasova D, Mulay SR, Bruns H, Anders HJ. p53-Independent Roles of MDM2 in NF-κB Signaling: Implications for Cancer Therapy, Wound Healing, and Autoimmune Diseases. Neoplasia. 2012;14(12):1097-101. DOI:10.1593/neo.121534
7. Boya P, Reggiori F, Codogno P. Emerging regulation and functions of autophagy. Nat Cell Biol. 2013;15(7):713-20. DOI:10.1038/ncb2788
8. Katayama M, Kawaguchi T, Berger M, Pieper R. DNA damaging agent-induced autophagy produces a cytoprotective adenosine triphosphate surge in malignant glioma cells. Cell Death Differ. 2007;14(3):548-58. DOI:10.1038/sj.cdd.4402030
9. Dyavaiah M, Rooney J, Chittur S, et al. Autophagy-Dependent Regulation of the DNA Damage Response Protein Ribonucleotide Reductase 1. Mol Cancer Res. 2011;9(4):462-75. DOI:10.1158/1541-7786.mcr-10-0473
10. Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell. 2008;132(1):27-42.
11. Sridhar S, Botbol Y, Macian F, Cuervo A. Autophagy and disease: always two sides to a problem. J Pathol. 2011;226(2):255-73. DOI:10.1002/path.3025
12. Tsukada M, Ohsumi Y. Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett. 1993;333(1-2):169-74.
DOI:10.1016/0014-5793(93)80398-e
13. Lamb C, Yoshimori T, Tooze S. The autophagosome: origins unknown, biogenesis complex. Nat Rev Mol Cell Biol. 2013;14(12):759-74. DOI:10.1038/nrm3696
14. Ishibashi K, Fujita N, Kanno E, et al. Atg16L2, a novel isoform of mammalian Atg16L that is not essential for canonical autophagy despite forming an Atg12–5-16L2 complex. Autophagy. 2011;7(12):1500-13. DOI:10.4161/auto.7.12.18025
15. Tang J, Wang D, Shen Y, Xue F. ATG16L2 overexpression is associated with a good prognosis in colorectal cancer. J Gastrointest Oncol. 2021;12(5):2192-202.
DOI:10.21037/jgo-21-495
16. Zhou Q, Chen X, Chen Q, et al. A Four Autophagy-Related Gene-Based Prognostic Signature for Pancreatic Cancer. Crit Rev Eukaryot Gene Expr. 2021;31(4):89-100.
DOI:10.1615/critreveukaryotgeneexpr.2021038733
17. Filetti S, Durante C, Hartl D, et al. Thyroid cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2019;30(12):1856-83. DOI:10.1093/annonc/mdz400
18. Kastan MB, Lim DS, Kim ST, Yang D. ATM--A Key Determinant of Multiple Cellular Responses to Irradiation. Acta Oncol. (Madr). 2001;40(6):686-8. DOI:10.1080/02841860152619089
19. Hickson I, Zhao Y, Richardson CJ, et al. Identification and Characterization of a Novel and Specific Inhibitor of the Ataxia-Telangiectasia Mutated Kinase ATM. Cancer Res. 2004;64(24):9152-9. DOI:10.1158/0008-5472.CAN-04-2727
20. Aggarwal BB, Sung B. NF-κB in Cancer: A Matter of Life and Death: Figure 1. Cancer Discov. 2011;1(6):469-71. DOI:10.1158/2159-8290.CD-11-0260
21. Perkins ND. The diverse and complex roles of NF-κB subunits in cancer. Nat Rev Cancer. 2012;12(2):121-32. DOI:10.1038/nrc3204
22. Wu Z, Shi Y, Tibbetts R, Miyamoto S. Molecular Linkage Between the Kinase ATM and NF-κB Signaling in Response to Genotoxic Stimuli. Science. 2006;311(5764):1141-6.
DOI:10.1126/science.1121513
23. Plantinga T, Petrulea M, Oosting M, et al. Association of NF-κB polymorphisms with clinical outcome of non-medullary thyroid carcinoma. Endocr Relat Cancer. 2017:307-18. DOI:10.1530/erc-17-0033
24. Liu J, Tang X, Shi F, et al. Genetic polymorphism contributes to 131I radiotherapy-induced toxicities in patients with differentiated thyroid cancer. Pharmacogenomics. 2018;19(17):1335-44. DOI:10.2217/pgs-2018-0070
25. Xie K, Liang C, Li Q, et al. Role of ATG10 expression quantitative trait loci in non-small cell lung cancer survival. Int J Cancer. 2016;139(7):1564-73. DOI:10.1002/ijc.30205
26. Bai H, He Y, Lin Y, et al. Identification of a novel differentially methylated region adjacent to ATG16L2 in lung cancer cells using methyl-CpG binding domain protein-enriched genome sequencing. Genome. 2021;64(5):533-46. DOI:10.1139/gen-2020-0071
27. Yang Z, Liu Z. Potentially functional variants of autophagy-related genes are associated with the efficacy and toxicity of radiotherapy in patients with nasopharyngeal carcinoma. Mol Genet Genomic Med. 2019;7(12):e1030. DOI:10.1002/mgg3.1030
________________________________________________
1. Van Nostrand D. The Benefits and Risks of I-131 Therapy in Patients with Well-Differentiated Thyroid Cancer. Thyroid. 2009;19(12):1381-91. DOI:10.1089/thy.2009.1611
2. Clinical recommendations: differentiated thyroid cancer (approved by the Ministry of Health of Russia, 2020). Available at: https://cr.minzdrav.gov.ru/recomend/329_1. Accessed: 16.04.2022 (in Russian).
3. Jackson S, Bartek J. The DNA-damage response in human biology and disease. Nature. 2009;461(7267):1071-8. DOI:10.1038/nature08467
4. Yan M, Tang C, Ma Z, et al. DNA damage response in nephrotoxic and ischemic kidney injury. Toxicol Appl Pharmacol. 2016;313:104-108. DOI:10.1016/j.taap.2016.10.022
5. Marechal A, Zou L. DNA Damage Sensing by the ATM and ATR Kinases. Cold Spring Harb Perspect Biol. 2013;5(9):a012716. DOI:10.1101/cshperspect.a012716
6. Thomasova D, Mulay SR, Bruns H, Anders HJ. p53-Independent Roles of MDM2 in NF-κB Signaling: Implications for Cancer Therapy, Wound Healing, and Autoimmune Diseases. Neoplasia. 2012;14(12):1097-101. DOI:10.1593/neo.121534
7. Boya P, Reggiori F, Codogno P. Emerging regulation and functions of autophagy. Nat Cell Biol. 2013;15(7):713-20. DOI:10.1038/ncb2788
8. Katayama M, Kawaguchi T, Berger M, Pieper R. DNA damaging agent-induced autophagy produces a cytoprotective adenosine triphosphate surge in malignant glioma cells. Cell Death Differ. 2007;14(3):548-58. DOI:10.1038/sj.cdd.4402030
9. Dyavaiah M, Rooney J, Chittur S, et al. Autophagy-Dependent Regulation of the DNA Damage Response Protein Ribonucleotide Reductase 1. Mol Cancer Res. 2011;9(4):462-75. DOI:10.1158/1541-7786.mcr-10-0473
10. Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell. 2008;132(1):27-42.
11. Sridhar S, Botbol Y, Macian F, Cuervo A. Autophagy and disease: always two sides to a problem. J Pathol. 2011;226(2):255-73. DOI:10.1002/path.3025
12. Tsukada M, Ohsumi Y. Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett. 1993;333(1-2):169-74.
DOI:10.1016/0014-5793(93)80398-e
13. Lamb C, Yoshimori T, Tooze S. The autophagosome: origins unknown, biogenesis complex. Nat Rev Mol Cell Biol. 2013;14(12):759-74. DOI:10.1038/nrm3696
14. Ishibashi K, Fujita N, Kanno E, et al. Atg16L2, a novel isoform of mammalian Atg16L that is not essential for canonical autophagy despite forming an Atg12–5-16L2 complex. Autophagy. 2011;7(12):1500-13. DOI:10.4161/auto.7.12.18025
15. Tang J, Wang D, Shen Y, Xue F. ATG16L2 overexpression is associated with a good prognosis in colorectal cancer. J Gastrointest Oncol. 2021;12(5):2192-202.
DOI:10.21037/jgo-21-495
16. Zhou Q, Chen X, Chen Q, et al. A Four Autophagy-Related Gene-Based Prognostic Signature for Pancreatic Cancer. Crit Rev Eukaryot Gene Expr. 2021;31(4):89-100.
DOI:10.1615/critreveukaryotgeneexpr.2021038733
17. Filetti S, Durante C, Hartl D, et al. Thyroid cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2019;30(12):1856-83. DOI:10.1093/annonc/mdz400
18. Kastan MB, Lim DS, Kim ST, Yang D. ATM--A Key Determinant of Multiple Cellular Responses to Irradiation. Acta Oncol. (Madr). 2001;40(6):686-8. DOI:10.1080/02841860152619089
19. Hickson I, Zhao Y, Richardson CJ, et al. Identification and Characterization of a Novel and Specific Inhibitor of the Ataxia-Telangiectasia Mutated Kinase ATM. Cancer Res. 2004;64(24):9152-9. DOI:10.1158/0008-5472.CAN-04-2727
20. Aggarwal BB, Sung B. NF-κB in Cancer: A Matter of Life and Death: Figure 1. Cancer Discov. 2011;1(6):469-71. DOI:10.1158/2159-8290.CD-11-0260
21. Perkins ND. The diverse and complex roles of NF-κB subunits in cancer. Nat Rev Cancer. 2012;12(2):121-32. DOI:10.1038/nrc3204
22. Wu Z, Shi Y, Tibbetts R, Miyamoto S. Molecular Linkage Between the Kinase ATM and NF-κB Signaling in Response to Genotoxic Stimuli. Science. 2006;311(5764):1141-6.
DOI:10.1126/science.1121513
23. Plantinga T, Petrulea M, Oosting M, et al. Association of NF-κB polymorphisms with clinical outcome of non-medullary thyroid carcinoma. Endocr Relat Cancer. 2017:307-18. DOI:10.1530/erc-17-0033
24. Liu J, Tang X, Shi F, et al. Genetic polymorphism contributes to 131I radiotherapy-induced toxicities in patients with differentiated thyroid cancer. Pharmacogenomics. 2018;19(17):1335-44. DOI:10.2217/pgs-2018-0070
25. Xie K, Liang C, Li Q, et al. Role of ATG10 expression quantitative trait loci in non-small cell lung cancer survival. Int J Cancer. 2016;139(7):1564-73. DOI:10.1002/ijc.30205
26. Bai H, He Y, Lin Y, et al. Identification of a novel differentially methylated region adjacent to ATG16L2 in lung cancer cells using methyl-CpG binding domain protein-enriched genome sequencing. Genome. 2021;64(5):533-46. DOI:10.1139/gen-2020-0071
27. Yang Z, Liu Z. Potentially functional variants of autophagy-related genes are associated with the efficacy and toxicity of radiotherapy in patients with nasopharyngeal carcinoma. Mol Genet Genomic Med. 2019;7(12):e1030. DOI:10.1002/mgg3.1030
1 НЦМУ «Центр персонализированной медицины», Санкт-Петербург, Россия;
2 ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России, Москва, Россия
*natalypilipenko3990@gmail.com
________________________________________________
Natalia P. Denisenko*1,2, Grigorij N. Shuev2, Reis H. Mukhamadiev2, Oksana M. Perfilieva2, Ruslan E. Kazakov2, Anastasia A. Kachanova2, Olga I. Milyutina2, Olga V. Konenkova2, Sergey A. Ryzhkin2, Dmitriy V. Ivashchenko1,2, Irina V. Bure1,2, Sergey L. Kirienko2, Elena M. Zhmaeva2, Karin B. Mirzaev1,2, Alexander S. Ametov2, Irina V. Poddubnaya2, Dmitry A. Sychev2
1 Centre for Personalized Medicine, Saint Petersburg, Russia;
2 Russian Medical Academy of Continuous Professional Education, Moscow, Russia
*natalypilipenko3990@gmail.com