Феномен НЕТоза как функциональная особенность нейтрофилов периферической крови и его возможная роль в патогенезе инфекционных и онкологических заболеваний
Феномен НЕТоза как функциональная особенность нейтрофилов периферической крови и его возможная роль в патогенезе инфекционных и онкологических заболеваний
Глухарева А.Е., Афонин Г.В., Мельникова А.А., Гривцова Л.Ю., Колобаев И.В., Иванов С.А., Каприн А.Д. Феномен НЕТоза как функциональная особенность нейтрофилов периферической крови и его возможная роль в патогенезе инфекционных и онкологических заболеваний. Современная Онкология. 2022;24(4):487–493. DOI: 10.26442/18151434.2022.4.201786
Glukhareva AE, Afonin GV, Melnikova AA, Grivtsova LYu, Kolobaev IV, Ivanov SA, Kaprin AD. The NETOsis phenomena as a functional features of peripheral blood neutrophils and its role in the pathogenesis of infections and oncological diseases: A review. Journal of Modern Oncology. 2022;24(4):487–493.
DOI: 10.26442/18151434.2022.4.201786
Феномен НЕТоза как функциональная особенность нейтрофилов периферической крови и его возможная роль в патогенезе инфекционных и онкологических заболеваний
Глухарева А.Е., Афонин Г.В., Мельникова А.А., Гривцова Л.Ю., Колобаев И.В., Иванов С.А., Каприн А.Д. Феномен НЕТоза как функциональная особенность нейтрофилов периферической крови и его возможная роль в патогенезе инфекционных и онкологических заболеваний. Современная Онкология. 2022;24(4):487–493. DOI: 10.26442/18151434.2022.4.201786
Glukhareva AE, Afonin GV, Melnikova AA, Grivtsova LYu, Kolobaev IV, Ivanov SA, Kaprin AD. The NETOsis phenomena as a functional features of peripheral blood neutrophils and its role in the pathogenesis of infections and oncological diseases: A review. Journal of Modern Oncology. 2022;24(4):487–493.
DOI: 10.26442/18151434.2022.4.201786
В обзоре рассматривается особый механизм противоинфекционной защиты нейтрофилов – НЕТоз, заключающийся в формировании нейтрофильных внеклеточных ловушек (НВЛ), представляющих собой нити ДНК, гистоны и белки. Описывается роль НВЛ в аутоиммунных заболеваниях, COVID-19, а также в патогенезе других неинфекционных заболеваний. На основании данных литературы проанализированы роль НВЛ в развитии и течении онкологических заболеваний и значимость данного феномена в отношении метастазирования и прогрессии опухолевого процесса. Охарактеризованы два типа нейтрофилов: нейтрофилы низкой плотности и нейтрофилы высокой плотности. Детальное изучение данного вопроса будет полезным как с фундаментальных позиций в первую очередь для детализации механизмов метастатического каскада опухолей, так и с практической точки зрения для разработки новых иммунотерапевтических подходов в отношении метастатических опухолей.
Ключевые слова: нейтрофильные внеклеточные ловушки, нейтрофилы низкой и высокой плотности, онкологические заболевания, НЕТоз, COVID-19, заболевания легких
________________________________________________
The review is devoted to the analysis of the mechanism of NETosis and the formation of extracellular traps by neutrophils. Neutrophil traps are DNA strands, histones and proteins that are involved in autoimmune diseases, COVID-19, as well as in the pathogenesis of other non-communicable diseases. Based on the literature data, the role of NETosis in the development oncological diseases is analyzed. Two types of neutrophils have been characterized: low-density neutrophils and high-density neutrophils. In particular, the significance of this phenomenon in the progression and metastasis of the cancer. A detailed study of this issue will be useful both from a fundamental standpoint regarding the disclosure of the mechanisms of the metastatic cascade, and from a practical point of view for the development of new immunotherapeutic approaches in the treatment of metastatic tumors.
Keywords: neutrophil extracellular traps, low and high density neutrophils, oncological diseases, NETosis, COVID-19, lung diseases
1. Потапнев М.П., Гущина Л.М., Мороз Л.А. Фенотипическая и функциональная гетерогенность субпопуляций нейтрофилов в норме и при патологии. Иммунология. 2019;40(5):84-96 [Potapnev MP, Gushchina LM, Moroz LA. Phenotypic and functional heterogeneity of neutrophil subpopulations in normal and pathological conditions. Immunology. 2019;40(5):84-96 (in Russian)]. DOI:10.24411/ 0206-4952-2019-15009
2. Brinkmann V, Reichard U, Goosmann C, et al. Neutrophil extracellular traps kill bacteria. Science. 2004;303(5663):1532-5. DOI:10.1126/science.1092385
3. Fuchs TA, Abed U, Goosmann C, et al. Novel cell death program leads to neutrophil extracellular traps. J Cell Biol. 2007;176(2):231-41. DOI:10.1083/jcb.200606027
4. Палладина А.Д., Хомякова Н.Ф. Нетоз как механизм прогрессирования рака. Иммунология гемопоэза. 2019;17(2):39-52 [Palladina AD, Khomyakova NF. NETosis as a mechanism of cancer progression. Immunology of hematopoiesis. 2019;17(2):39-52 (in Russian)].
5. Воробьева Н.В., Черняк Б.В. Нетоз: молекулярные механизмы, роль в физиологии и патологии. Биохимия. 2020;85(10):1383-97 [Vorobyova NV, Chernyak BV. NETosis: molecular mechanisms, role in physiology and pathology. Biochemistry. 2020;85(10):1383‑97 (in Russian)]. DOI:10.31857/S0320972520100061
6. Steinberg SF. Mechanisms for redox-regulation of protein kinase C. Front Pharmacol. 2015;6:128. DOI:10.3389/ fphar.2015.00128
7. Vorobjeva N, Prikhodko A, Galkin I, et al. Mitochondrial reactive oxygen species are involved in chemoattractant-induced oxidative burst and degranula-tion of human neutrophils in vitro. Eur J Cell Biol. 2017;96(3):254-65. DOI:10.1016/j.ejcb.2017.03.003
8. Douda DN, Khan MA, Grasemann H, et al. SK3 channel and mitochondrial ROS mediate NADPH oxidase-independent NETosis induced by calcium influx. Proc Natl Acad Sci U S A. 2015;112(9):2817-22. DOI:10.1073/pnas.1414055112
9. Ravindran M, Khan MA, Palaniyar N. Neutrophil Extracellular Trap Formation: Physiology, Pathology, and Pharmacology. Biomolecules. 2019;9(8):365. DOI:10.3390/biom9080365
10. Vorobjeva N, Galkin I, Pletjushkina O, et al. Mitochondrial permeability transition pore is involved in oxidative burst and NETosis of human neutrophils. Biochim Biophys Acta Mol Basis Dis. 2020;1866(5):165664. DOI:10.1016/j.bbadis.2020.165664
11. Metzler KD, Goosmann C, Lubojemska A, et al. A myeloperoxidase-containing complex regulates neutrophil elastase release and actin dynamics during NETosis. Cell. Rep. 2014;8(3):883-96. DOI:10.1016/j.celrep.2014.06.044
12. Chen KW, Monteleone M, Boucher D, et al. Noncanonical inflammasome signaling elicits gasdermin D-dependent neutrophil extracellular traps. Sci Immunol. 2018;3(26):eaar6676. DOI:10.1126/sciimmunol.aar6676
13. D’Cruz AA, Speir M, Bliss-Moreau M, et al. The pseudokinase MLKL activates PAD4-dependent NET formation in necroptotic neutrophils. Sci Signal. 2018;11(546):eaao1716. DOI:10.1126/scisignal.aao1716
14. Rada B, Leto TL. Oxidative innate immune defenses by Nox/Duox family NADPH oxidases. Contrib Microbiol. 2008;15:164-87. DOI:10.1159/000136357
15. Li P, Li M, Lindberg MR, et al. PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps. J Exp Med. 2010;207(9):1853-62. DOI:10.1084/jem.20100239
16. Demers M, Krause DS, Schatzberg D, et al. Cancers predispose neutrophils to release extracellular DNA traps that contribute to cancer-associated thrombosis. Proc Natl Acad Sci U S A. 2012;109(32):13076-81. DOI:10.1073/pnas.1200419109
17. Yaqinuddin A, Kashir J. Novel therapeutic targets for SARS-CoV-2-induced acute lung injury: Targeting a potential IL-1β/neutrophil extracellular traps feedback loop. Med Hypotheses. 2020;143:109906. DOI:10.1016/j.mehy.2020.109906
18. Schönrich G, Raftery MJ, Samstag Y. Devilishly radical NETwork in COVID-19: Oxidative stress, neutrophil extracellular traps (NETs), and T cell suppression. AdvBiolRegul. 2020;77:100741. DOI:10.1016/j.jbior.2020.100741
19. Abakumova TV, Gening TP, Dolgova DR, et al. Influence of the levels of the pro-inflammatory cytokines on the formation of extracellular neutrophilic traps in disseminated ovarian cancer. Russian Journal of Immunology. 2019;22(2‑2):704‑6. DOI:10.31857/S102872210006765-6
20. Barnes BJ, Adrover JM, Baxter-Stoltzfus A, et al. Targeting potential drivers of COVID-19: Neutrophil extracellular traps. J Exp Med. 2020;217(6):e20200652. DOI:10.1084/jem.20200652
21. Jin X, Zhao Y, Zhang F, et al. Neutrophil extracellular traps involvement in corneal fungal infection. Mol Vis. 2016;22:944-52.
22. Hwang JW, Kim JH, Kim HJ, et al. Neutrophil extracellular traps in nasal secretions of patients with stable and exacerbated chronic rhinosinusitis and their contribution to induce chemokine secretion and strengthen the epithelial barrier. ClinExpAllergy. 2019;49(10):1306‑20. DOI:10.1111/cea.13448
23. Sollberger G, Tilley DO, Zychlinsky A. Neutrophil Extracellular Traps: The Biology of Chromatin Externalization. Dev Cell. 2018;44(5):542-53. DOI:10.1016/j.devcel.2018.01.01
24. Twaddell SH, Baines KJ, Grainge C, et al. The Emerging Role of Neutrophil Extracellular Traps in Respiratory Disease. Chest. 2019;156(4):774-82. DOI:10.1016/j.chest.2019.06.012.8
25. Dicker AJ, Crichton ML, Pumphrey EG, et al. Neutrophil extracellular traps are associated with disease severity and microbiota diversity in patients with chronic obstructive pulmonary disease. J Allergy Clin Immunol. 2018;141(1):117‑27. DOI:10.1016/j.jaci.2017.04.022
26. Uddin M, Watz H, Malmgren A, Pedersen F. NETopathic Inflammation in Chronic Obstructive Pulmonary Disease and Severe Asthma. Front Immunol. 2019;10:47. DOI:10.3389/fimmu.2019.00047
27. Chen L, Zhao Y, Lai D, et al. Neutrophil extracellular traps promote macrophage pyroptosis in sepsis. Cell Death Dis. 2018;9(6):597. DOI:10.1038/s41419-018-0538-5
28. Ivanov I, Shakhawat R, Sun M, et al. Nucleic acids as cofactors for factor XI and prekallikreinactivation: Different roles for high-molecular-weight kininogen. Thromb Haemost. 2017;117(4):671-81. DOI:10.1160/TH16-09-0691
29. Noubouossie D, Whelihan M, Yu YB, et al. In vitro activation of coagulation by human neutrophil DNA and histone proteins but not neutrophil extracellular traps. Blood. 2017;129(8):1021-9. DOI:10.1182/blood-2016-06-722298
30. Okeke EB, Louttit C, Fry C, et al. Inhibition of neutrophil elastase prevents neutrophil extracellular trap formation and rescues mice from endotoxic shock. Biomaterials. 2020;238:119836. DOI:10.1016/j.biomaterials.2020.119836
31. Novotny J, Oberdieck P, Titova A, et al. Thrombus NET content is associated with clinical outcome in stroke and myocardial infarction. Neurology. 2020;94(22):e2346-60. DOI:10.1212/WNL.0000000000009532
32. Айтбаев К.А., Муркамилов И.Т., Фомин В.В., и др. Коронавирусная болезнь 2019 (COVID-19): нетоз-ассоциированные механизмы прогрессирования и перспективы терапии, регулирующей образование нейтрофильныхвнеклекточных ловушек (NETs). Actabiomedicascientifica. 2021;6(4):64-73 [Aitbayev KA, Murkamilov IT, Fomin VV, et al. Coronavirus disease 2019 (COVID-19): not a toz- not a pelvis regulating the formation of neutrophilic entrapment traps (nets). Actabiomedicascientifica. 2021;6(4):64‑73 (in Russian)]. DOI:10.29413/ABS.2021-6.4.6
33. Grieshaber-Bouyer R, Nigrovic PA. Neutrophil Heterogeneity as Therapeutic Opportunity in Immune-Mediated Disease. Front Immunol. 2019;10:346. DOI:10.3389/fimmu.2019.00346
34. Chatfield SM, Thieblemont N, Witko-Sarsat V. Expanding Neutrophil Horizons: New Concepts in Inflammation. J Innate Immun. 2018;10(5-6):422-31. DOI:10.1159/000493101
35. Fousert E, Toes R, Desai J. Neutrophil Extracellular Traps (NETs) Take the Central Stage in Driving Autoimmune Responses. Cells. 2020;9(4):915. DOI:10.3390/cells9040915
36. Wolach O, Sellar RS, Martinod K, et al. Increased neutrophil extracellular trap formation promotes thrombosis in myeloproliferative neoplasms. Sci Transl Med. 2018;10(436):eaan8292. DOI:10.1126/scitranslmed.aan8292
37. Cabrini M, Nahmod K, Geffner J. New insights into the mechanisms controlling neutrophil survival. Curr Opin Hematol. 2010;17(1):31-5. DOI:10.1097/MOH.0b013e3283333b29
38. von Köckritz-Blickwede M, Nizet V. Innate immunity turned inside-out: antimicrobial defense by phagocyte extracellular traps. J Mol Med (Berl). 2009;87(8):775-83. DOI:10.1007/s00109-009-0481-0
39. Yost CC, Cody MJ, Harris ES, et al. Impaired neutrophil extracellular trap (NET) formation: a novel innate immune deficiency of human neonates. Blood. 2009;113(25):6419-27. DOI:10.1182/blood-2008-07-171629
40. Liew PX, Kubes P. The Neutrophil's Role During Health and Disease. Physiol Rev. 2019;99(2):1223-48. DOI:10.1152/physrev.00012.2018
41. Xiong S, Dong L, Cheng L. Neutrophils in cancer carcinogenesis and metastasis. J Hematol Oncol. 2021;14(1):173. DOI:10.1186/s13045-021-01187-y
42. Jaillon S, Ponzetta A, Di Mitri D, et al. Neutrophil diversity and plasticity in tumour progression and therapy. Nat Rev Cancer. 2020;20(9):485-503. DOI:10.1038/s41568-020-0281-y
43. Sagiv JY, Michaeli J, Assi S, et al. Phenotypic diversity and plasticity in circulating neutrophil subpopulations in cancer. Cell Rep. 2015;10(4):562-73. DOI:10.1016/j.celrep.2014.12.039
44. Rocks N, Vanwinge C, Radermecker C, et al. Ozone-primed neutrophils promote early steps of tumour cell metastasis to lungs by enhancing their NET production. Thorax. 2019;74(8):768-79. DOI:10.1136/thoraxjnl-2018-211990
45. Albrengues J, Shields MA, Ng D, et al. Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice. Science. 2018;361(6409):eaao4227. DOI:10.1126/science.aao4227
46. Berger-Achituv S, Brinkmann V, Abed UA, et al. A proposed role for neutrophil extracellular traps in cancer immunoediting. Front Immunol. 2013;4:48. DOI:10.3389/fimmu.2013.00048
47. Oklu R, Sheth RA, Wong KHK, et al. Neutrophil extracellular traps are increased in cancer patients but does not associate with venous thrombosis. Cardiovasc Diagn Ther. 2017;7(Suppl 3):S140-9. DOI:10.21037/cdt.2017.08.01
48. Hsu BE, Tabariès S, Johnson RM, et al. Immature Low-Density Neutrophils Exhibit Metabolic Flexibility that Facilitates Breast Cancer Liver Metastasis. Cell Rep. 2019;27(13):3902-15.e6. DOI:10.1016/j.celrep.2019.05.091
49. Grilz E, Mauracher LM, Posch F, et al. Citrullinated histone H3, a biomarker for neutrophil extracellular trap formation, predicts the risk of mortality in patients with cancer. Br J Haematol. 2019;186(2):311-20. DOI:10.1111/bjh.15906
50. Park J, Wysocki RW, Amoozgar Z, et al. Cancer cells induce metastasis-supporting neutrophil extracellular DNA traps. Sci Transl Med. 2016;8(361):361ra138. DOI:10.1126/scitranslmed.aag1711
51. Vorobjeva NV, Pinegin BV. Neutrophil extracellular traps: mechanisms of formation and role in health and disease. Biochemistry (Mosc). 2014;9(12):1286‑96. DOI:10.1134/S0006297914120025
52. Lewis HD, Liddle J, Coote JE, et al. Inhibition of PAD4 activity is sufficient to disrupt mouse and human NET formation. Nat Chem Biol. 2015;11(3):189-91. DOI:10.1038/nchembio.1735
53. Volkov DV, Tetz GV, Rubtsov YP, et al. Neutrophil Extracellular Traps (NETs): Opportunities for Targeted Therapy. Acta Naturae. 2021;13(3):15-23. DOI:10.32607/actanaturae.11503
54. Гусев С.А., Басырева Л.Ю., Максимов Д.И., и др. Витамин D3 блокирует образование нейтрофильных внеклеточных ловушек в цельной крови. Молекулярные, мембранные и клеточные основы функционирования биосистем: Тезисы докладов международной научной конференции, Четырнадцатого съезда Белорусского общественного объединения фотобиологов и биофизиков, Минск, 17–19 июня 2020 года. Минск: Белорусский государственный университет, 2020; c. 114 [Gusev SA, Batyreva LYu, Maksimov DI, et al. Vitamin D3 blokiruet obrazovanie neitrofil'nykh vnekletochnykh lovushek v tsel'noi krovi. Molekuliarnye, membrannye i kletochnye osnovy funktsionirovaniia biosistem: Tezisy dokladov mezhdunarodnoi nauchnoi konferentsii, Chetyrnadtsatogo s"ezda Belorusskogo obshchestvennogo ob"edineniia fotobiologov i biofizikov, Minsk, 17–19 iiunia 2020 goda. Minsk: Belarusian State University, 2020; p. 114 (in Russian)].
55. Пинегин Б.В., Дагиль Ю.А., Воробьева Н.В., и др. Влияние азоксимера бромида на формирование внеклеточных нейтрофильных ловушек. РМЖ. 2019;1:1-6 [Pinegin BV, Dogel YuA, Vorobyova NV, et al. The effect of azoximer bromide on the formation of extracellular neutrophil traps. Breast cancer. 2019;1:1-6 (in Russian)].
________________________________________________
1. Potapnev MP, Gushchina LM, Moroz LA. Phenotypic and functional heterogeneity of neutrophil subpopulations in normal and pathological conditions. Immunology. 2019;40(5):84-96 (in Russian). DOI:10.24411/ 0206-4952-2019-15009
2. Brinkmann V, Reichard U, Goosmann C, et al. Neutrophil extracellular traps kill bacteria. Science. 2004;303(5663):1532-5. DOI:10.1126/science.1092385
3. Fuchs TA, Abed U, Goosmann C, et al. Novel cell death program leads to neutrophil extracellular traps. J Cell Biol. 2007;176(2):231-41. DOI:10.1083/jcb.200606027
4. Palladina AD, Khomyakova NF. NETosis as a mechanism of cancer progression. Immunology of hematopoiesis. 2019;17(2):39-52 (in Russian).
5. Vorobyova NV, Chernyak BV. NETosis: molecular mechanisms, role in physiology and pathology. Biochemistry. 2020;85(10):1383‑97 (in Russian). DOI:10.31857/S0320972520100061
6. Steinberg SF. Mechanisms for redox-regulation of protein kinase C. Front Pharmacol. 2015;6:128. DOI:10.3389/ fphar.2015.00128
7. Vorobjeva N, Prikhodko A, Galkin I, et al. Mitochondrial reactive oxygen species are involved in chemoattractant-induced oxidative burst and degranula-tion of human neutrophils in vitro. Eur J Cell Biol. 2017;96(3):254-65. DOI:10.1016/j.ejcb.2017.03.003
8. Douda DN, Khan MA, Grasemann H, et al. SK3 channel and mitochondrial ROS mediate NADPH oxidase-independent NETosis induced by calcium influx. Proc Natl Acad Sci U S A. 2015;112(9):2817-22. DOI:10.1073/pnas.1414055112
9. Ravindran M, Khan MA, Palaniyar N. Neutrophil Extracellular Trap Formation: Physiology, Pathology, and Pharmacology. Biomolecules. 2019;9(8):365. DOI:10.3390/biom9080365
10. Vorobjeva N, Galkin I, Pletjushkina O, et al. Mitochondrial permeability transition pore is involved in oxidative burst and NETosis of human neutrophils. Biochim Biophys Acta Mol Basis Dis. 2020;1866(5):165664. DOI:10.1016/j.bbadis.2020.165664
11. Metzler KD, Goosmann C, Lubojemska A, et al. A myeloperoxidase-containing complex regulates neutrophil elastase release and actin dynamics during NETosis. Cell. Rep. 2014;8(3):883-96. DOI:10.1016/j.celrep.2014.06.044
12. Chen KW, Monteleone M, Boucher D, et al. Noncanonical inflammasome signaling elicits gasdermin D-dependent neutrophil extracellular traps. Sci Immunol. 2018;3(26):eaar6676. DOI:10.1126/sciimmunol.aar6676
13. D’Cruz AA, Speir M, Bliss-Moreau M, et al. The pseudokinase MLKL activates PAD4-dependent NET formation in necroptotic neutrophils. Sci Signal. 2018;11(546):eaao1716. DOI:10.1126/scisignal.aao1716
14. Rada B, Leto TL. Oxidative innate immune defenses by Nox/Duox family NADPH oxidases. Contrib Microbiol. 2008;15:164-87. DOI:10.1159/000136357
15. Li P, Li M, Lindberg MR, et al. PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps. J Exp Med. 2010;207(9):1853-62. DOI:10.1084/jem.20100239
16. Demers M, Krause DS, Schatzberg D, et al. Cancers predispose neutrophils to release extracellular DNA traps that contribute to cancer-associated thrombosis. Proc Natl Acad Sci U S A. 2012;109(32):13076-81. DOI:10.1073/pnas.1200419109
17. Yaqinuddin A, Kashir J. Novel therapeutic targets for SARS-CoV-2-induced acute lung injury: Targeting a potential IL-1β/neutrophil extracellular traps feedback loop. Med Hypotheses. 2020;143:109906. DOI:10.1016/j.mehy.2020.109906
18. Schönrich G, Raftery MJ, Samstag Y. Devilishly radical NETwork in COVID-19: Oxidative stress, neutrophil extracellular traps (NETs), and T cell suppression. AdvBiolRegul. 2020;77:100741. DOI:10.1016/j.jbior.2020.100741
19. Abakumova TV, Gening TP, Dolgova DR, et al. Influence of the levels of the pro-inflammatory cytokines on the formation of extracellular neutrophilic traps in disseminated ovarian cancer. Russian Journal of Immunology. 2019;22(2‑2):704‑6. DOI:10.31857/S102872210006765-6
20. Barnes BJ, Adrover JM, Baxter-Stoltzfus A, et al. Targeting potential drivers of COVID-19: Neutrophil extracellular traps. J Exp Med. 2020;217(6):e20200652. DOI:10.1084/jem.20200652
21. Jin X, Zhao Y, Zhang F, et al. Neutrophil extracellular traps involvement in corneal fungal infection. Mol Vis. 2016;22:944-52.
22. Hwang JW, Kim JH, Kim HJ, et al. Neutrophil extracellular traps in nasal secretions of patients with stable and exacerbated chronic rhinosinusitis and their contribution to induce chemokine secretion and strengthen the epithelial barrier. ClinExpAllergy. 2019;49(10):1306‑20. DOI:10.1111/cea.13448
23. Sollberger G, Tilley DO, Zychlinsky A. Neutrophil Extracellular Traps: The Biology of Chromatin Externalization. Dev Cell. 2018;44(5):542-53. DOI:10.1016/j.devcel.2018.01.01
24. Twaddell SH, Baines KJ, Grainge C, et al. The Emerging Role of Neutrophil Extracellular Traps in Respiratory Disease. Chest. 2019;156(4):774-82. DOI:10.1016/j.chest.2019.06.012.8
25. Dicker AJ, Crichton ML, Pumphrey EG, et al. Neutrophil extracellular traps are associated with disease severity and microbiota diversity in patients with chronic obstructive pulmonary disease. J Allergy Clin Immunol. 2018;141(1):117‑27. DOI:10.1016/j.jaci.2017.04.022
26. Uddin M, Watz H, Malmgren A, Pedersen F. NETopathic Inflammation in Chronic Obstructive Pulmonary Disease and Severe Asthma. Front Immunol. 2019;10:47. DOI:10.3389/fimmu.2019.00047
27. Chen L, Zhao Y, Lai D, et al. Neutrophil extracellular traps promote macrophage pyroptosis in sepsis. Cell Death Dis. 2018;9(6):597. DOI:10.1038/s41419-018-0538-5
28. Ivanov I, Shakhawat R, Sun M, et al. Nucleic acids as cofactors for factor XI and prekallikreinactivation: Different roles for high-molecular-weight kininogen. Thromb Haemost. 2017;117(4):671-81. DOI:10.1160/TH16-09-0691
29. Noubouossie D, Whelihan M, Yu YB, et al. In vitro activation of coagulation by human neutrophil DNA and histone proteins but not neutrophil extracellular traps. Blood. 2017;129(8):1021-9. DOI:10.1182/blood-2016-06-722298
30. Okeke EB, Louttit C, Fry C, et al. Inhibition of neutrophil elastase prevents neutrophil extracellular trap formation and rescues mice from endotoxic shock. Biomaterials. 2020;238:119836. DOI:10.1016/j.biomaterials.2020.119836
31. Novotny J, Oberdieck P, Titova A, et al. Thrombus NET content is associated with clinical outcome in stroke and myocardial infarction. Neurology. 2020;94(22):e2346-60. DOI:10.1212/WNL.0000000000009532
32. Aitbayev KA, Murkamilov IT, Fomin VV, et al. Coronavirus disease 2019 (COVID-19): not a toz- not a pelvis regulating the formation of neutrophilic entrapment traps (nets). Actabiomedicascientifica. 2021;6(4):64‑73 (in Russian). DOI:10.29413/ABS.2021-6.4.6
33. Grieshaber-Bouyer R, Nigrovic PA. Neutrophil Heterogeneity as Therapeutic Opportunity in Immune-Mediated Disease. Front Immunol. 2019;10:346. DOI:10.3389/fimmu.2019.00346
34. Chatfield SM, Thieblemont N, Witko-Sarsat V. Expanding Neutrophil Horizons: New Concepts in Inflammation. J Innate Immun. 2018;10(5-6):422-31. DOI:10.1159/000493101
35. Fousert E, Toes R, Desai J. Neutrophil Extracellular Traps (NETs) Take the Central Stage in Driving Autoimmune Responses. Cells. 2020;9(4):915. DOI:10.3390/cells9040915
36. Wolach O, Sellar RS, Martinod K, et al. Increased neutrophil extracellular trap formation promotes thrombosis in myeloproliferative neoplasms. Sci Transl Med. 2018;10(436):eaan8292. DOI:10.1126/scitranslmed.aan8292
37. Cabrini M, Nahmod K, Geffner J. New insights into the mechanisms controlling neutrophil survival. Curr Opin Hematol. 2010;17(1):31-5. DOI:10.1097/MOH.0b013e3283333b29
38. von Köckritz-Blickwede M, Nizet V. Innate immunity turned inside-out: antimicrobial defense by phagocyte extracellular traps. J Mol Med (Berl). 2009;87(8):775-83. DOI:10.1007/s00109-009-0481-0
39. Yost CC, Cody MJ, Harris ES, et al. Impaired neutrophil extracellular trap (NET) formation: a novel innate immune deficiency of human neonates. Blood. 2009;113(25):6419-27. DOI:10.1182/blood-2008-07-171629
40. Liew PX, Kubes P. The Neutrophil's Role During Health and Disease. Physiol Rev. 2019;99(2):1223-48. DOI:10.1152/physrev.00012.2018
41. Xiong S, Dong L, Cheng L. Neutrophils in cancer carcinogenesis and metastasis. J Hematol Oncol. 2021;14(1):173. DOI:10.1186/s13045-021-01187-y
42. Jaillon S, Ponzetta A, Di Mitri D, et al. Neutrophil diversity and plasticity in tumour progression and therapy. Nat Rev Cancer. 2020;20(9):485-503. DOI:10.1038/s41568-020-0281-y
43. Sagiv JY, Michaeli J, Assi S, et al. Phenotypic diversity and plasticity in circulating neutrophil subpopulations in cancer. Cell Rep. 2015;10(4):562-73. DOI:10.1016/j.celrep.2014.12.039
44. Rocks N, Vanwinge C, Radermecker C, et al. Ozone-primed neutrophils promote early steps of tumour cell metastasis to lungs by enhancing their NET production. Thorax. 2019;74(8):768-79. DOI:10.1136/thoraxjnl-2018-211990
45. Albrengues J, Shields MA, Ng D, et al. Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice. Science. 2018;361(6409):eaao4227. DOI:10.1126/science.aao4227
46. Berger-Achituv S, Brinkmann V, Abed UA, et al. A proposed role for neutrophil extracellular traps in cancer immunoediting. Front Immunol. 2013;4:48. DOI:10.3389/fimmu.2013.00048
47. Oklu R, Sheth RA, Wong KHK, et al. Neutrophil extracellular traps are increased in cancer patients but does not associate with venous thrombosis. Cardiovasc Diagn Ther. 2017;7(Suppl 3):S140-9. DOI:10.21037/cdt.2017.08.01
48. Hsu BE, Tabariès S, Johnson RM, et al. Immature Low-Density Neutrophils Exhibit Metabolic Flexibility that Facilitates Breast Cancer Liver Metastasis. Cell Rep. 2019;27(13):3902-15.e6. DOI:10.1016/j.celrep.2019.05.091
49. Grilz E, Mauracher LM, Posch F, et al. Citrullinated histone H3, a biomarker for neutrophil extracellular trap formation, predicts the risk of mortality in patients with cancer. Br J Haematol. 2019;186(2):311-20. DOI:10.1111/bjh.15906
50. Park J, Wysocki RW, Amoozgar Z, et al. Cancer cells induce metastasis-supporting neutrophil extracellular DNA traps. Sci Transl Med. 2016;8(361):361ra138. DOI:10.1126/scitranslmed.aag1711
51. Vorobjeva NV, Pinegin BV. Neutrophil extracellular traps: mechanisms of formation and role in health and disease. Biochemistry (Mosc). 2014;9(12):1286‑96. DOI:10.1134/S0006297914120025
52. Lewis HD, Liddle J, Coote JE, et al. Inhibition of PAD4 activity is sufficient to disrupt mouse and human NET formation. Nat Chem Biol. 2015;11(3):189-91. DOI:10.1038/nchembio.1735
53. Volkov DV, Tetz GV, Rubtsov YP, et al. Neutrophil Extracellular Traps (NETs): Opportunities for Targeted Therapy. Acta Naturae. 2021;13(3):15-23. DOI:10.32607/actanaturae.11503
54. Gusev SA, Batyreva LYu, Maksimov DI, et al. Vitamin D3 blokiruet obrazovanie neitrofil'nykh vnekletochnykh lovushek v tsel'noi krovi. Molekuliarnye, membrannye i kletochnye osnovy funktsionirovaniia biosistem: Tezisy dokladov mezhdunarodnoi nauchnoi konferentsii, Chetyrnadtsatogo s"ezda Belorusskogo obshchestvennogo ob"edineniia fotobiologov i biofizikov, Minsk, 17–19 iiunia 2020 goda. Minsk: Belarusian State University, 2020; p. 114 (in Russian).
55. Pinegin BV, Dogel YuA, Vorobyova NV, et al. The effect of azoximer bromide on the formation of extracellular neutrophil traps. Breast cancer. 2019;1:1-6 (in Russian).
1 Медицинский радиологический научный центр им. А.Ф. Цыба – филиал ФГБУ «Национальный медицинский исследовательский центр радиологии» Минздрава России, Обнинск, Россия;
2 ФГБУ «Национальный медицинский исследовательский центр радиологии» Минздрава России, Обнинск, Россия;
3 ФГАОУ ВО «Российский университет дружбы народов», Москва, Россия
*gluharevaa78@gmail.com
________________________________________________
Anastasia E. Glukhareva*1, Grigory V. Afonin1, Angelika A. Melnikova1, Lyudmila Yu. Grivtsova1, Ilya V. Kolobaev1, Sergei A. Ivanov1, Andrei D. Kaprin2,3
1 Tsyb Medical Radiological Research Centre – branch of the National Medical Research Radiological Center, Obninsk, Russia;
2 National Medical Research Radiological Center, Obninsk, Russia;
3 People’s Friendship University of Russia (RUDN University), Moscow, Russia
*gluharevaa78@gmail.com