Обоснование. Десмоидный фиброматоз (ДФ) представляет собой редкую опухоль мезенхимального происхождения, характеризующуюся инвазивным ростом, высокой частотой рецидивирования и низкой встречаемостью (2–4 случая на 1 млн человек в год). Учитывая малое число пациентов с ДФ и, как следствие, недостаточную изученность этой патологии, поиск молекулярных предикторов течения заболевания, индивидуализации лечения и профилактики является актуальной задачей. Цель. Изучить молекулярно-генетический и иммуногистохимический профиль опухолевых клеток, определить их клиническую значимость у пациентов с ДФ абдоминальной и забрюшинной локализации. Материалы и методы. Проведен комплексный анализ клинических и лабораторных данных 31 пациента с ДФ абдоминальной и забрюшинной локализации, выполнено молекулярно-генетическое и морфологическое исследование опухолевых образцов, включая секвенирование нового поколения (NGS) с использованием онкопанели Onconetix и иммуногистохимическое исследование с использованием антител к β-катенину, рецепторам эстрогена и прогестерона. Результаты. По данным NGS тестирования в 28 (90%) из 31 опухолевого образца обнаружены соматические мутации. В 26 (84%) опухолевых образцах обнаружены соматические мутации в гене CTNNB1, при этом у 21 (68%) пациента: c.121A>G (p.Thr41Ala, rs121913412), у 3 (10%) пациентов определялась мутация c.134C>T (p.Ser45Phe, rs121913409), у 1 (3%) пациента: c.133T>C (p.Ser45Pro, rs121913407), у 1 (3%) пациента: c.122C>T (p.Thr41Ile, rs121913413). У 2 (6%) пациентов обнаружены мутации в гене APC: c.4381G>T (p.Glu1461Ter, COSM30779) и c.4634C>A (p.Ser1545Ter (rs863225356). У 3 (9%) пациентов в исследуемых генах мутаций не обнаружено. По данным иммуногистохимического исследования в 16 (51,6%) случаях выявлена экспрессия β-катенина в цитоплазме и ядрах опухолевых клеток. Ядерная экспрессия эстрогеновых и прогестероновых рецепторов выявлена в 6 (19%) и 1 (3,2%) случаях соответственно. Среди 10 пациентов с установленными рецидивами у 7 по данным секвенирования (NGS) выявлена мутация c.121A>G (p.Thr41Ala, rs121913412), у 1 пациента: c.134C>T (p.Ser45Phe, rs121913409), у 2 пациентов в опухолевых образцах мутаций не обнаружено. Заключение. Сочетание таких факторов, как забрюшинная форма ДФ, наличие мутации c.121A>G (p.Thr41Ala, rs121913412) в гене CTNNB1, женский пол, молодой возраст, могут служить основанием для отнесения пациента к группе с неблагоприятным прогнозом течения ДФ.
Ключевые слова: десмоидный фиброматоз, забрюшинный, β-катенин, секвенирование нового поколения
________________________________________________
Background. Desmoid fibromatosis (DF) is a rare mesenchymal tumor with invasive growth, a high relapse rate, and low incidence (2–4 cases per 1 million people per year). Given the small number of patients with DF and, as a result, the lack of knowledge of this disease, the search for molecular predictors of the disease course and the individualization of treatment and prevention is relevant. Aim. To study tumor cells' molecular genetic and immunohistochemical profile and determine their clinical significance in patients with abdominal and retroperitoneal DF. Materials and methods. A comprehensive analysis of clinical and laboratory data of 31 patients with abdominal and retroperitoneal DF, a molecular genetic and morphological study of tumor samples was performed, including next-generation sequencing (NGS) using the Onconetix oncology panel and an immunohistochemical study using antibodies to β-catenin and estrogen and progesterone receptors. Results. NGS testing showed somatic mutations in 28 (90%) of the 31 tumor samples. Somatic mutations in the CTNNB1 gene were detected in 26 (84%) tumor samples: 21 (68%) patients had c.121A>G (p.Thr41Ala, rs121913412), 3 (10%) patients had c.134C>T (p.Ser45Phe, rs121913409), 1 (3%) patient had c.133T>C (p.Ser45Pro, rs121913407), and 1 (3%) patient had c.122C>T (p.Thr41Ile, rs121913413). Two (6%) patients had mutations in the APC gene: c.4381G>T (p.Glu1461Ter, COSM30779) and c.4634C>A (p.Ser1545Ter, rs863225356). In 3 (9%) patients, no mutations were detected in the studied genes. The immunohistochemical study showed the expression of β-catenin in the cytoplasm and nuclei of tumor cells in 16 (51.6%) samples. Nuclear expression of estrogen and progesterone receptors was detected in 6 (19%) and 1 (3.2%) samples, respectively. Of 10 patients with established relapses, sequencing (NGS) showed a c.121A>G mutation (p.Thr41Ala, rs121913412) in 7; 1 patient had a c.134C>T mutation (p.Ser45Phe, rs121913409), and 2 patients had no mutations in tumor samples. Conclusion. The combination of factors such as the retroperitoneal DF, the presence of the c.121A>G mutation (p.Thr41Ala, rs121913412) in the CTNNB1 gene, female gender, and young age, can warrant assigning the patient to the group with an unfavorable DF prognosis.
1. Новикова О.В. Половые гомоны в этиологии, патогенезе и лечении десмоидных фибром: дис. … д-ра мед. наук. М., 2008; с. 197-9 [Novikova OV. Polovie gomony v etiologii, patogeneze i lechenii desmoidnykh fibrom: dis. … d-ra med. nauk. Moscow, 2008; p. 197-9 (in Russian)].
2. Хомяков В.М., Черемисов В.В., Чайка А.В., и др. Опыт хирургического лечения десмоидных фибром абдоминальной и интраабдоминальной локализации. Хирургия. Журнал им. Н.И. Пирогова. 2014;11:17-25 [Khomiakov VM, Cheremisov VV, Chaika AV, et al. Opyt khirurgicheskogo lecheniia desmoidnykh fibrom abdominal’noi i intraabdominal’noi lokalizatsii. Khirurgiia. Zhurnal im. NI Pirogova. 2014;11:17-25 (in Russian)].
3. Fletcher CDM, Unni FM. World Health Organization Classification of Tumours Pathology and Genetics of Tumours of Soft Tissue and Bone. Cancer. 2002;177:1365-76. DOI:10.1016/j.suronc.2004.03.001
4. Colombo C, Belfiore A, Paielli N, et al. β-catenin in desmoid-type fibromatosis: deep insights into the role of T41A and S45F mutations on protein structure and gene expression. Mol Oncol. 2017;11:1495-507 .
5. Timbergen MJM, Colombo C, Renckens M, et al. The prognostic role of β-catenin mutations in desmoid-type fibromatosis undergoing resection only: a meta-analysis of individual patient data. Ann Surg. 2021;273(6):1094-101. DOI:10.1097/SLA.0000000000003698
6. Abraham N, Nabawi AS. The challenging case of a primigravid Bedouin woman with a dormant neck nodule that grew explosively during her pregnancy. J Surg Case Rep. 2019;2019(3):rjz061. DOI:10.1093/ jscr/ rjz061
7. Dalén BP, Geijer M, Kvist H, et al. Clinical and imaging observations of desmoid tumors left without treatment. Acta Orthop. 2006;77(6):932-7. DOI:10.1080/17453670610013259
8. Barbier O, Anract P, Pluot E, et al. Primary or recurring extra-abdominal desmoid fibromatosis: assessment of treatment by observation only. Orthop Traumatol Surg Res. 2010;96(8):884-9. DOI:10.1016/j.otsr.2010.07.007
9. Colombo C, Miceli R, Le Péchoux C, et al. Sporadic extra abdominal wall desmoid-type fibromatosis: surgical resection can be safely limited to a minority of patients. Eur J Cancer. 2015;51(2):186-92. DOI:10.1016/j.ejca.2014.11.019
10. Будурова М.Д., Файнштейн И.А., Турупаев К.А., и др. Рецидивирующий десмоидный забрюшинный фиброматоз: клиническое наблюдение. Современная Онкология. 2020;22(4):125-9 [Budurova MD, Fainshtein IA, Turupaev KA, et al. Recurrent desmoid-type retroperitoneal fibromatosis: clinical observation. Journal of Modern Oncology. 2020;22(4):125-9 (in Russian)]. DOI:10.26442/18151434.2020.4.200424
11. Kasper B, Baumgarten C, Bonvalot S, et al. Management of sporadic desmoid-type fibromatosis: a European consensus approach based on patients' and professionals' expertise – a sarcoma patients EuroNet and European Organisation for Research and Treatment of Cancer/Soft Tissue and Bone Sarcoma Group initiative. Eur J Cancer. 2015;51(2):127-36. DOI:10.1016/j.ejca.2014.11.005
12. Crago AM, Chmielecki J, Rosenberg M, et al. Near universal detection of alterations in CTNNB1 and Wnt pathway regulators in desmoid-type fibromatosis by whole-exome sequencing and genomic analysis. Genes Chromosomes Cancer. 2015;54(10):606-15. DOI:10.1002/gcc.22272
13. Kundu JK, Choi KY, Surh YJ. beta-Catenin-mediated signaling: a novel molecular target for chemoprevention with anti-inflammatory substances. Biochim Biophys Acta. 2006;1765(1):14-24. DOI:10.1016/j.bbcan.2005.08.006
14. van Broekhoven DL, Verhoef C, Grünhagen DJ, et al. Prognostic value of CTNNB1 gene mutation in primary sporadic aggressive fibromatosis. Ann Surg Oncol. 2015;22(5):1464-70. DOI:10.1245/s10434-014-4156-x
15. Colombo C, Miceli R, Lazar AJ, et al. CTNNB1 45F mutation is a molecular prognosticator of increased postoperative primary desmoid tumor recurrence: an independent, multicenter validation study. Cancer. 2013;119(20):3696-702. DOI:10.1002/cncr.28271
16. Dômont J, Salas S, Lacroix L, et al. High frequency of beta-catenin heterozygous mutations in extra-abdominal fibromatosis: a potential molecular tool for disease management. Br J Cancer. 2010;102(6):1032-6. DOI:10.1038/sj.bjc.6605557
17. Lazar AJ, Tuvin D, Hajibashi S, et al. Specific mutations in the beta-catenin gene (CTNNB1) correlate with local recurrence in sporadic desmoid tumors. Am J Pathol. 2008;173(5):1518-27. DOI:10.2353/ajpath.2008.080475
18. Mullen JT, DeLaney TF, Rosenberg AE, et al. β-Catenin mutation status and outcomes in sporadic desmoid tumors. Oncologist. 2013;18(9):1043-9. DOI:10.1634/theoncologist.2012-0449
19. Romero S, Szafranska J, Cabrera E, et al. Role of tumor-associated macrophages and angiogenesis in desmoid-type fibromatosis. Virchows Arch. 2012;461(2):117‑22. DOI:10.1007/s00428-012-1265-4
20. Nishida Y, Tsukushi S, Urakawa H, et al. Low-dose chemotherapy with methotrexate and vinblastine for patients with desmoid tumors: relationship to CTNNB1 mutation status. Int J Clin Oncol. 2015;20(6):1211-7. DOI:10.1007/s10147-015-0829-0
21. Hamada S, Urakawa H, Kozawa E, et al. Characteristics of cultured desmoid cells with different CTNNB1 mutation status. Cancer Med. 2016;5(2):352-60. DOI:10.1002/cam4.582
22. Kasper B, Gruenwald V, Reichardt P, et al. Correlation of CTNNB1 Mutation Status with Progression Arrest Rate in RECIST Progressive Desmoid-Type Fibromatosis Treated with Imatinib: Translational Research Results from a Phase 2 Study of the German Interdisciplinary Sarcoma Group (GISG-01). Ann Surg Oncol. 2016;23(6):1924-7. DOI:10.1245/s10434-016-5132-4
23. Исаева А.В., Зима А.П., Шабалова И.П., и др. β-Катенин: структура, функции и роль в опухолевой трансформации эпителиальных клеток. Вестник РАМН. 2015;70(4):475-83 [Isaeva AV, Zima AP, Shabalova IP, et al. β-Catenin: Structure, Function and Role in Malignant Transformation of Epithelial Cells. Annals of the Russian Academy of Medical Sciences. 2015;70(4):475-83 (in Russian)]. DOI:10.15690/vramn.v70.i4.1415
24. Засадкевич Ю.М. Роль эпителиальных E- и P-кадгеринов в реализации внутриклеточных механизмов регуляции опухолевого роста: автореф. дис. ... канд. мед. наук. Екатеринбург, 2015 [Zasadkevich YuM. Rol' epitelial'nykh E- i P-kadgerinov v realizatsii vnutrikletochnykh mekhanizmov regulyatsii opukholevogo rosta: avtoref. dis. ... kand. med. nauk. Yekaterinburg, 2015 (in Russian)].
25. Hayashida Y, Honda K, Idogawa M, et al. E-cadherin regulates the association between beta-catenin and actinin-4. Cancer Res. 2005;65(19):8836-45. DOI:10.1158/0008-5472.CAN-05-0718
26. Gebert C, Hardes J, Kersting C, et al. Expression of beta-catenin and p53 are prognostic factors in deep aggressive fibromatosis. Histopathology. 2007;50(4):491-7. DOI:10.1111/j.1365-2559.2007.02619.x
27. Jilong Y, Jian W, Xiaoyan Z, et al. Analysis of APC/beta-catenin genes mutations and Wnt signalling pathway in desmoid-type fibromatosis. Pathology. 2007;39(3):319-25. DOI:10.1080/00313020701329823
28. Lips DJ, Barker N, Clevers H, Hennipman A. The role of APC and beta-catenin in the aetiology of aggressive fibromatosis (desmoid tumors). Eur J Surg Oncol. 2009;35(1):3-10. DOI:10.1016/j.ejso.2008.07.003
29. Denys H, Jadidizadeh A, Amini Nik S, et al. Identification of IGFBP-6 as a significantly downregulated gene by beta-catenin in desmoid tumors. Oncogene. 2004;23(3):654-64. DOI:10.1038/sj.onc.1207160
30. Carlson JW, Fletcher CD. Immunohistochemistry for beta-catenin in the differential diagnosis of spindle cell lesions: analysis of a series and review of the literature. Histopathology. 2007;51(4):509-14. DOI:10.1111/j.1365-2559.2007.02794.x
31. Kim HS, Kim J, Nam KH, Kim WH. Clinical significance of midkine expression in sporadic desmoid tumors. Oncol Lett. 2016;11(3):1677-84. DOI:10.3892/ol.2016.4129
32. Eastley N, McCulloch T, Esler C, et al. Extra-abdominal desmoid fibromatosis: A review of management, current guidance and unanswered questions. Eur J Surg Oncol. 2016;42(7):1071-83. DOI:10.1016/j.ejso.2016.02.012
33. Nieuwenhuis MH, Lefevre JH, Bülow S, et al. Family history, surgery, and APC mutation are risk factors for desmoid tumors in familial adenomatous polyposis: an international cohort study. Dis Colon Rectum. 2011;54(10):1229-34. DOI:10.1097/DCR.0b013e318227e4e8
34. Burke AP, Sobin LH, Shekitka KM, et al. Intra-abdominal fibromatosis. A pathologic analysis of 130 tumors with comparison of clinical subgroups. Am J Surg Pathol. 1990;14(4):335-41.
35. Seoud M, Abbas J, Kaspar H, et al. Long-term survival following aggressive surgery and radiotherapy for pelvic fibromatosis. Int J Gynecol Cancer. 2005;15(6):1112-4.
36. Enzo MV, Rastrelli M, Rossi CR, et al. The Wnt/β-catenin pathway in human fibrotic-like diseases and its eligibility as a therapeutic target. Mol Cell Ther. 2015;3:1. DOI:10.1186/s40591-015-0038-2
37. Santti K, Ihalainen H, Rönty M, et al. Estrogen receptor beta expression correlates with proliferation in desmoid tumors. J Surg Oncol. 2019;119(7):873-9. DOI:10.1002/jso.25407
38. Santos GA, Cunha IW, Rocha RM, et al. Evaluation of estrogen receptor alpha, estrogen receptor beta, progesterone receptor, and cKIT expression in desmoids tumors and their role in determining treatment options. Biosci Trends. 2010;4(1):25-30.
39. Leithner A, Gapp M, Radl R, et al. Immunohistochemical analysis of desmoid tumours. J Clin Pathol. 2005;58(11):1152-6.
40. Ishizuka M, Hatori M, Dohi O, et al. Expression profles of sex steroid receptors in desmoid tumors. Tohoku J Exp Med. 2006;210(3):189-98. DOI:10.1620/ tjem.210.189
41. Brautigam K, Lindner J, Budczies J, et al. PARP-1 expression as a prognostic factor in desmoid-type fbromatosis. Ann Diagn Pathol. 2020;44:151442. DOI:10.1016/j.anndiagpath.2019.151442
42. Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell. 2010;141(1):52-67. DOI:10.1016/j.cell.2010.03.015
43. Colombo C, Foo WC, Whiting D, et al. FAP-related desmoid tumors: a series of 44 patients evaluated in a cancer referral center. Histol Histopathol. 2012;27:641-9.
44. Doyle LA, Hornick JL. Immunohistology of neoplasms of soft tissue and bone. In: Eds. DJ Dabbs. Diagnostic Immunohistochemistry: theranostic and genomic applications (4th edition). Elsevier, 2014; p. 73-129.
________________________________________________
1. Novikova OV. Polovie gomony v etiologii, patogeneze i lechenii desmoidnykh fibrom: dis. … d-ra med. nauk. Moscow, 2008; p. 197-9 (in Russian).
2. Khomiakov VM, Cheremisov VV, Chaika AV, et al. Opyt khirurgicheskogo lecheniia desmoidnykh fibrom abdominal’noi i intraabdominal’noi lokalizatsii. Khirurgiia. Zhurnal im. NI Pirogova. 2014;11:17-25 (in Russian).
3. Fletcher CDM, Unni FM. World Health Organization Classification of Tumours Pathology and Genetics of Tumours of Soft Tissue and Bone. Cancer. 2002;177:1365-76. DOI:10.1016/j.suronc.2004.03.001
4. Colombo C, Belfiore A, Paielli N, et al. β-catenin in desmoid-type fibromatosis: deep insights into the role of T41A and S45F mutations on protein structure and gene expression. Mol Oncol. 2017;11:1495-507 .
5. Timbergen MJM, Colombo C, Renckens M, et al. The prognostic role of β-catenin mutations in desmoid-type fibromatosis undergoing resection only: a meta-analysis of individual patient data. Ann Surg. 2021;273(6):1094-101. DOI:10.1097/SLA.0000000000003698
6. Abraham N, Nabawi AS. The challenging case of a primigravid Bedouin woman with a dormant neck nodule that grew explosively during her pregnancy. J Surg Case Rep. 2019;2019(3):rjz061. DOI:10.1093/ jscr/ rjz061
7. Dalén BP, Geijer M, Kvist H, et al. Clinical and imaging observations of desmoid tumors left without treatment. Acta Orthop. 2006;77(6):932-7. DOI:10.1080/17453670610013259
8. Barbier O, Anract P, Pluot E, et al. Primary or recurring extra-abdominal desmoid fibromatosis: assessment of treatment by observation only. Orthop Traumatol Surg Res. 2010;96(8):884-9. DOI:10.1016/j.otsr.2010.07.007
9. Colombo C, Miceli R, Le Péchoux C, et al. Sporadic extra abdominal wall desmoid-type fibromatosis: surgical resection can be safely limited to a minority of patients. Eur J Cancer. 2015;51(2):186-92. DOI:10.1016/j.ejca.2014.11.019
10. Budurova MD, Fainshtein IA, Turupaev KA, et al. Recurrent desmoid-type retroperitoneal fibromatosis: clinical observation. Journal of Modern Oncology. 2020;22(4):125-9 (in Russian). DOI:10.26442/18151434.2020.4.200424
11. Kasper B, Baumgarten C, Bonvalot S, et al. Management of sporadic desmoid-type fibromatosis: a European consensus approach based on patients' and professionals' expertise – a sarcoma patients EuroNet and European Organisation for Research and Treatment of Cancer/Soft Tissue and Bone Sarcoma Group initiative. Eur J Cancer. 2015;51(2):127-36. DOI:10.1016/j.ejca.2014.11.005
12. Crago AM, Chmielecki J, Rosenberg M, et al. Near universal detection of alterations in CTNNB1 and Wnt pathway regulators in desmoid-type fibromatosis by whole-exome sequencing and genomic analysis. Genes Chromosomes Cancer. 2015;54(10):606-15. DOI:10.1002/gcc.22272
13. Kundu JK, Choi KY, Surh YJ. beta-Catenin-mediated signaling: a novel molecular target for chemoprevention with anti-inflammatory substances. Biochim Biophys Acta. 2006;1765(1):14-24. DOI:10.1016/j.bbcan.2005.08.006
14. van Broekhoven DL, Verhoef C, Grünhagen DJ, et al. Prognostic value of CTNNB1 gene mutation in primary sporadic aggressive fibromatosis. Ann Surg Oncol. 2015;22(5):1464-70. DOI:10.1245/s10434-014-4156-x
15. Colombo C, Miceli R, Lazar AJ, et al. CTNNB1 45F mutation is a molecular prognosticator of increased postoperative primary desmoid tumor recurrence: an independent, multicenter validation study. Cancer. 2013;119(20):3696-702. DOI:10.1002/cncr.28271
16. Dômont J, Salas S, Lacroix L, et al. High frequency of beta-catenin heterozygous mutations in extra-abdominal fibromatosis: a potential molecular tool for disease management. Br J Cancer. 2010;102(6):1032-6. DOI:10.1038/sj.bjc.6605557
17. Lazar AJ, Tuvin D, Hajibashi S, et al. Specific mutations in the beta-catenin gene (CTNNB1) correlate with local recurrence in sporadic desmoid tumors. Am J Pathol. 2008;173(5):1518-27. DOI:10.2353/ajpath.2008.080475
18. Mullen JT, DeLaney TF, Rosenberg AE, et al. β-Catenin mutation status and outcomes in sporadic desmoid tumors. Oncologist. 2013;18(9):1043-9. DOI:10.1634/theoncologist.2012-0449
19. Romero S, Szafranska J, Cabrera E, et al. Role of tumor-associated macrophages and angiogenesis in desmoid-type fibromatosis. Virchows Arch. 2012;461(2):117‑22. DOI:10.1007/s00428-012-1265-4
20. Nishida Y, Tsukushi S, Urakawa H, et al. Low-dose chemotherapy with methotrexate and vinblastine for patients with desmoid tumors: relationship to CTNNB1 mutation status. Int J Clin Oncol. 2015;20(6):1211-7. DOI:10.1007/s10147-015-0829-0
21. Hamada S, Urakawa H, Kozawa E, et al. Characteristics of cultured desmoid cells with different CTNNB1 mutation status. Cancer Med. 2016;5(2):352-60. DOI:10.1002/cam4.582
22. Kasper B, Gruenwald V, Reichardt P, et al. Correlation of CTNNB1 Mutation Status with Progression Arrest Rate in RECIST Progressive Desmoid-Type Fibromatosis Treated with Imatinib: Translational Research Results from a Phase 2 Study of the German Interdisciplinary Sarcoma Group (GISG-01). Ann Surg Oncol. 2016;23(6):1924-7. DOI:10.1245/s10434-016-5132-4
23. Isaeva AV, Zima AP, Shabalova IP, et al. β-Catenin: Structure, Function and Role in Malignant Transformation of Epithelial Cells. Annals of the Russian Academy of Medical Sciences. 2015;70(4):475-83 (in Russian). DOI:10.15690/vramn.v70.i4.1415
24. Zasadkevich YuM. Rol' epitelial'nykh E- i P-kadgerinov v realizatsii vnutrikletochnykh mekhanizmov regulyatsii opukholevogo rosta: avtoref. dis. ... kand. med. nauk. Yekaterinburg, 2015 (in Russian).
25. Hayashida Y, Honda K, Idogawa M, et al. E-cadherin regulates the association between beta-catenin and actinin-4. Cancer Res. 2005;65(19):8836-45. DOI:10.1158/0008-5472.CAN-05-0718
26. Gebert C, Hardes J, Kersting C, et al. Expression of beta-catenin and p53 are prognostic factors in deep aggressive fibromatosis. Histopathology. 2007;50(4):491-7. DOI:10.1111/j.1365-2559.2007.02619.x
27. Jilong Y, Jian W, Xiaoyan Z, et al. Analysis of APC/beta-catenin genes mutations and Wnt signalling pathway in desmoid-type fibromatosis. Pathology. 2007;39(3):319-25. DOI:10.1080/00313020701329823
28. Lips DJ, Barker N, Clevers H, Hennipman A. The role of APC and beta-catenin in the aetiology of aggressive fibromatosis (desmoid tumors). Eur J Surg Oncol. 2009;35(1):3-10. DOI:10.1016/j.ejso.2008.07.003
29. Denys H, Jadidizadeh A, Amini Nik S, et al. Identification of IGFBP-6 as a significantly downregulated gene by beta-catenin in desmoid tumors. Oncogene. 2004;23(3):654-64. DOI:10.1038/sj.onc.1207160
30. Carlson JW, Fletcher CD. Immunohistochemistry for beta-catenin in the differential diagnosis of spindle cell lesions: analysis of a series and review of the literature. Histopathology. 2007;51(4):509-14. DOI:10.1111/j.1365-2559.2007.02794.x
31. Kim HS, Kim J, Nam KH, Kim WH. Clinical significance of midkine expression in sporadic desmoid tumors. Oncol Lett. 2016;11(3):1677-84. DOI:10.3892/ol.2016.4129
32. Eastley N, McCulloch T, Esler C, et al. Extra-abdominal desmoid fibromatosis: A review of management, current guidance and unanswered questions. Eur J Surg Oncol. 2016;42(7):1071-83. DOI:10.1016/j.ejso.2016.02.012
33. Nieuwenhuis MH, Lefevre JH, Bülow S, et al. Family history, surgery, and APC mutation are risk factors for desmoid tumors in familial adenomatous polyposis: an international cohort study. Dis Colon Rectum. 2011;54(10):1229-34. DOI:10.1097/DCR.0b013e318227e4e8
34. Burke AP, Sobin LH, Shekitka KM, et al. Intra-abdominal fibromatosis. A pathologic analysis of 130 tumors with comparison of clinical subgroups. Am J Surg Pathol. 1990;14(4):335-41.
35. Seoud M, Abbas J, Kaspar H, et al. Long-term survival following aggressive surgery and radiotherapy for pelvic fibromatosis. Int J Gynecol Cancer. 2005;15(6):1112-4.
36. Enzo MV, Rastrelli M, Rossi CR, et al. The Wnt/β-catenin pathway in human fibrotic-like diseases and its eligibility as a therapeutic target. Mol Cell Ther. 2015;3:1. DOI:10.1186/s40591-015-0038-2
37. Santti K, Ihalainen H, Rönty M, et al. Estrogen receptor beta expression correlates with proliferation in desmoid tumors. J Surg Oncol. 2019;119(7):873-9. DOI:10.1002/jso.25407
38. Santos GA, Cunha IW, Rocha RM, et al. Evaluation of estrogen receptor alpha, estrogen receptor beta, progesterone receptor, and cKIT expression in desmoids tumors and their role in determining treatment options. Biosci Trends. 2010;4(1):25-30.
39. Leithner A, Gapp M, Radl R, et al. Immunohistochemical analysis of desmoid tumours. J Clin Pathol. 2005;58(11):1152-6.
40. Ishizuka M, Hatori M, Dohi O, et al. Expression profles of sex steroid receptors in desmoid tumors. Tohoku J Exp Med. 2006;210(3):189-98. DOI:10.1620/ tjem.210.189
41. Brautigam K, Lindner J, Budczies J, et al. PARP-1 expression as a prognostic factor in desmoid-type fbromatosis. Ann Diagn Pathol. 2020;44:151442. DOI:10.1016/j.anndiagpath.2019.151442
42. Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell. 2010;141(1):52-67. DOI:10.1016/j.cell.2010.03.015
43. Colombo C, Foo WC, Whiting D, et al. FAP-related desmoid tumors: a series of 44 patients evaluated in a cancer referral center. Histol Histopathol. 2012;27:641-9.
44. Doyle LA, Hornick JL. Immunohistology of neoplasms of soft tissue and bone. In: Eds. DJ Dabbs. Diagnostic Immunohistochemistry: theranostic and genomic applications (4th edition). Elsevier, 2014; p. 73-129.
1 ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н.Н. Блохина» Минздрава России, Москва, Россия;
2 ФГБОУ ВО «Московский государственный медико-стоматологический университет им. А.И. Евдокимова» Минздрава России, Москва, Россия;
3 Московский научно-исследовательский онкологический институт им. П.А. Герцена – филиал ФГБУ «Национальный медицинский исследовательский центр радиологии» Минздрава России, Москва, Россия;
4 АО «Центр генетики и репродуктивной медицины "ГЕНЕТИКО"», Москва, Россия;
5 ГБУЗ «Городская клиническая онкологическая больница №1» Департамента здравоохранения г. Москвы, Москва, Россия
*Kir-turupaev@yandex.ru
________________________________________________
Kirill A. Turupaev*1,2, Marina D. Budurova2,3, Margarita G. Filippova1, Artur A. Isayev4, Yana V. Gridneva5, Darya N. Khmelkova4, Margarita A. Gayryan4, Irina V. Mironova4, Maxim P. Nikulin1,2, Alena I. Puchkova1, Vera V. Delektorskaya1
1 Blokhin National Medical Research Center of Oncology, Moscow, Russia;
2 Yevdokimov Moscow State University of Medicine and Dentistry, Moscow, Russia;
3 Hertsen Moscow Oncology Research Institute – branch of the National Medical Research Radiological Centre, Moscow, Russia;
4 Center for Genetics and Reproductive Medicine “GENETICO”, Moscow, Russia;
5 City Clinical Oncology Hospital №1, Moscow, Russia
*Kir-turupaev@yandex.ru