Fedyanin M, Rumyantsev AA, Tryakin AA. Venous thrombosis during systemic antitumor therapy: risks, prognosis, treatment. A review. Journal of Modern Oncology. 2024;26(1):12–19. DOI: 10.26442/18151434.2024.1.202618
Венозные тромбозы во время системной противоопухолевой терапии: риски, прогноз, лечение
Fedyanin M, Rumyantsev AA, Tryakin AA. Venous thrombosis during systemic antitumor therapy: risks, prognosis, treatment. A review. Journal of Modern Oncology. 2024;26(1):12–19. DOI: 10.26442/18151434.2024.1.202618
Венозные тромбоэмболические осложнения (ВТЭО и ТЭО) у онкологических пациентов представляются сложным и многокомпонентным процессом, в котором задействованы различные немодифицируемые и модифицируемые факторы, повышающие или снижающие риски патологического тромбообразования. Парадигма профилактики и лечения ВТЭО у онкологических пациентов претерпела существенные изменения после появления новых пероральных антикоагулянтов, но выбор индивидуального препарата остается по-прежнему нетривиальной задачей для практикующих врачей. Целью данного обзора явились рассмотрение механизмов развития ВТЭО у онкологических пациентов, сравнение различных шкал в эффективности предсказания развития ВТЭО, сравнение эффективности и переносимости терапии антикоагулянтами в различных клинических ситуациях.
Venous thromboembolic events (VTE and TE) in cancer are a complex and multicomponent process involving various non-modifiable and modifiable factors that increase or reduce the risk of abnormal thrombus formation. The paradigm of prevention and treatment of VTE in cancer patients has significantly changed with the introduction of new oral anticoagulants; however, the choice of a particular agent remains challenging for practitioners. This review aims to address the VTE development mechanisms in cancer patients, compare different scales in predicting VTE occurrence, and compare the effectiveness and tolerability of anticoagulant therapy in various clinical situations.
1. Trousseau A. Phlegmasia alba dolens. In: Lectures on Clinical Medicine, delivered at the Hôtel-Dieu, Paris. London: New Sydenham Society, 1872.
2. Dickson BC. Venous thrombosis: On the history of Virchow’s triad. Univ Tor Med J. 2004;81:166‑71.
3. Chiu JJ, Chien S. Effects of disturbed flow on vascular endothelium: Pathophysiological basis and clinical perspectives. Physiol Rev. 2011;91(1):327‑87. DOI:10.1152/physrev.00047.2009
4. Khorana AA, Francis CW, Culakova E, et al. Frequency, risk factors, and trends for venous thromboembolism among hospitalized cancer patients. Cancer. 2007;110(10):2339‑46. DOI:10.1002/cncr.23062
5. White C, Noble SIR, Watson M, et al. Prevalence, symptom burden, and natural history of deep vein thrombosis in people with advanced cancer in specialist palliative care units (HIDDen): A prospective longitudinal observational study. Lancet Haematol. 2019;6(2): e79‑e88. DOI:10.1016/S2352‑3026(18)30215‑1
6. Khorana AA, Kuderer NM, Culakova E, et al. Development and validation of a predictive model for chemotherapy-associated thrombosis. Blood. 2008;111(10):4902‑7. DOI:10.1182/blood‑2007‑10‑116327
7. Warny M, Helby J, Birgens HS, et al. Arterial and venous thrombosis by high platelet count and high hematocrit: 108 521 individuals from the Copenhagen General Population Study. J Thromb Haemost. 2019;17(11):1898‑911. DOI:10.1111/jth.14574
8. Wahrenbrock M, Borsig L, Le D, et al. Selectin-mucin interactions as a probable molecular explanation for the association of Trousseau syndrome with mucinous adenocarcinomas. J Clin Invest. 2003;112(6):853‑62. DOI:10.1172/JCI18882
9. Lee EC, Cameron SJ. Cancer and thrombotic risk: The platelet paradigm. Front Cardiovasc Med. 2017;4:67. DOI:10.3389/fcvm.2017.00067
10. Stender MT, Frøkjaer JB, Larsen TB, et al. Preoperative plasma D-dimer is a predictor of postoperative deep venous thrombosis in colorectal cancer patients. Dis Colon Rectum. 2009;52(3):446‑51. DOI:10.1007/DCR.0b013e318197e2b2
11. Ay C, Vormittag R, Dunkler D, et al. D-dimer and prothrombin fragment 1+2 predict venous thromboembolism in patients with cancer: results from the Vienna Cancer and Thrombosis Study. J Clin Oncol. 2009;27(25):4124‑9. DOI:10.1200/JCO.2008.21.7752
12. Hamza MS, Mousa SA. Cancer-Associated Thrombosis: Risk Factors, Molecular Mechanisms, Future Management. Clin Appl Thromb Hemost. 2020;26:1076029620954282. DOI:10.1177/1076029620954282
13. Davis PJ, Mousa SA, Schechter GP, et al. ATP, thyroid hormone receptor on integrin αvβ3 and cancer metastasis. Horm Cancer. 2020;11(1):13‑6. DOI:10.1007/s12672‑019‑00371‑4
14. Blom JW, Vanderschoot JP, Oostindiër MJ, et al. Incidence of venous thrombosis in a large cohort of 66 329 cancer patients: Results of a record linkage study. J Thromb Haemost. 2006;4(3):529‑35. DOI:10.1111/j.1538‑7836.2006.01804.x
15. Canonico M, Plu-Bureau G, Lowe GD, Scarabin PY. Hormone replacement therapy and risk of venous thromboembolism in postmenopausal women: Systematic review and meta-nalysis. BMJ. 2008;336(7655):1227‑31. DOI:10.1136/bmj.39555.441944.BE
16. Caine YG, Bauer KA, Barzegar S, et al. Coagulation activation following estrogen administration to postmenopausal women. Thromb Haemost. 1992;68(4):392‑5. PMID:1333098
17. Rott H. Contraception, venous thrombosis and biological plausability. Minerva Med. 2013;104(2):161‑7. PMID:23514992
18. Nealen ML, Vijayan KV, Bolton E, Bray PF. Human platelets contain a glycosylated estrogen receptor. Circ Res. 2001;88(4):438‑42. DOI:10.1161/01.res.88.4.438
19. Dupuis M, Severin S, Noirrit-Esclassan E, et al. Effects of estrogens on platelets and megakaryocytes. Int J Mol Sci. 2019;20(12):3111. DOI:10.3390/ijms20123111
20. Levi M, Middeldorp S, Büller HR. Oral contraceptives and hormonal replacement therapy cause an imbalance in coagulation and fibrinolysis which may explain the increased risk of venous thromboembolism. Cardiovasc Res. 1999;41(1):21‑4. DOI:10.1016/s0008‑6363(98)00210‑7
21. Khorana AA, Connolly GC. Assessing risk of venous thromboembolism in the patient with cancer. J Clin Oncol. 2009;27(29):4839‑47. DOI:10.1200/JCO.2009.22.3271
22. Esmon CT. The protein C pathway. Chest. 2003;124(3 Suppl.):26S‑32S. DOI:10.1378/chest.124.3_suppl.26s
23. Chew HK, Wun T, Harvey D, et al. Incidence of venous thromboembolism and its effect on survival among patients with common cancers. Arch Intern Med. 2006;166(4):458‑64. DOI:10.1001/archinte.166.4.458
24. Noble S. The challenges of managing cancer related venous thromboembolism in the palliative care setting. Postgrad Med J. 2007;83(985):671‑4. DOI:10.1136/pgmj.2007.061622
25. Otani K, Ishihara S, Hata K, et al. Colorectal cancer with venous tumor thrombosis. Asian J Surg. 2018;41(3):197‑202. DOI:10.1016/j.asjsur.2016.07.013
26. Nakase H, Kawanami C, Itoh T, et al. Diffuse colon cancer with tumor thrombus in the portal vein. Gastrointest Endosc. 2002;55(2):239‑40. DOI:10.1067/mge.2001.118963
27. Chew HK, Davies AM, Wun T, et al. The incidence of venous thromboembolism among patients with primary lung cancer. J Thromb Haemost. 2008;6(4):601‑8. DOI:10.1111/j.1538‑7836.2008.02908.x
28. Blom JW, Doggen CJ, Osanto S, Rosendaal FR. Malignancies, prothrombotic mutations, and the risk of venous thrombosis. JAMA. 2005;293(6):715‑22. DOI:10.1001/jama.293.6.715
29. Ma Z, Zhang, T, Wang, R, et al. Tissue factor-factor VIIa complex induces epithelial ovarian cancer cell invasion and metastasis through a monocytes-dependent mechanism. Int J Gynecol Cancer. 2011;21(4):616‑24. DOI:10.1097/IGC.0b013e3182150e98
30. Rak J, Yu JL, Luyendyk J, Mackman N. Oncogenes, Trousseau syndrome, and cancer-related changes in the coagulome of mice and humans. Cancer Res. 2006;66(22):10643‑6. DOI:10.1158/0008‑5472.CAN‑06‑2350
31. Ades S, Kumar S, Alam M, et al. Tumor oncogene (KRAS) status and risk of venous thrombosis in patients with metastatic colorectal cancer. J Thromb Haemost. 2015;13(6):998‑1003. DOI:10.1111/jth.12910
32. Rak J, Klement G. Impact of oncogenes and tumour suppressor genes on deregulation of haemostasis and angiogenesis in cancer. Cancer Metastasis Rev. 2000;19(1‑2):93‑6. DOI:10.1023/a:1026516920119
33. López-Ocejo O, Viloria-Petit A, Bequet-Romero M, et al. Oncogenes and tumor angiogenesis: The HPV‑16 E6 oncoprotein activates the vascular endothelial growth factor (VEGF) gene promoter in a p53 independent manner. Oncogene. 2000;19(40):4611‑20. DOI:10.1038/sj.onc.1203817
34. Nadir Y, Brenner B, Zetser A, et al. Heparanase nduces tissue factor expression in vascular endothelial and cancer cells. J Thromb Haemost. 2006;4(11):2443‑51. DOI:10.1111/j.1538‑7836.2006.02212.x
35. Nasser NJ, Sarig G, Brenner B, et al. Heparanase neutralizes the anticoagulation properties of heparin and low-molecular-weight heparin. J Thromb Haemost. 2006;4(3):560‑5. DOI:10.1111/j.1538‑7836.2006.01792.x
36. Nasser NJ, Na’amad M, Weinberg I, Gabizon AA. Pharmacokinetics of low molecular weight heparin in patients with malignant tumors. Anticancer Drugs. 2015;26(1):106‑11. DOI:10.1097/CAD.0000000000000176
37. Fisher B, Costantino J, Redmond C, et al. A randomized clinical trial evaluating tamoxifen in the treatment of patients with node-negative breast cancer who have estrogen-receptor-positive tumors. N Engl J Med. 1989;320(8):479‑84. DOI:10.1056/NEJM198902233200802
38. Fisher B, Dignam J, Wolmark N, et al. Tamoxifen and chemotherapy for lymph node-negative, estrogen receptor-positive breast cancer. J Natl Cancer Inst. 1997;89(22):1673‑82. DOI:10.1093/jnci/89.22.1673
39. Watson NW, Wander SA, Shatzel JJ, Al-Samkari H. Venous and arterial thrombosis associated with abemaciclib therapy for metastatic breast cancer. Cancer. 2022;128(17):3224‑32. DOI:10.1002/cncr.34367
40. Heit JA, Silverstein MD, Mohr DN, et al. Risk factors for deep vein thrombosis and pulmonary embolism. Arch Intern Med. 2000;160(6):809‑15. DOI:10.1001/archinte.160.6.809
41. Cool RM, Herrington JD, Wong L. Recurrent peripheral arterial thrombosis induced by cisplatin and etoposide. Pharmacotherapy. 2002;22(9):1200‑4. DOI:10.1592/phco.22.13.1200.33524
42. Lyman GH, Khorana AA, Falanga A, et al. American Society of Clinical Oncology guideline: Recommendations for venous thromboembolism prophylaxis and treatment in patients with cancer. J Clin Oncol. 2007;25(34):5490‑505. DOI:10.1200/JCO.2007.14.1283
43. Abdel-Razeq H, Mansour A, Abdulelah H, et al. Thromboembolic events in cancer patients on active treatment with cisplatin-based chemotherapy: Another look! Thromb J. 2018;16:2. DOI:10.1186/s12959‑018‑0161‑9
44. Khorana AA, Dalal M, Lin J, Connolly GC. Incidence and predictors of venous thromboembolism (VTE) among ambulatory high-risk cancer patients undergoing chemotherapy in the United States. Cancer. 2013;119(3):648‑55. DOI:10.1002/cncr.27772
45. Moore RA, Adel N, Riedel E, et al. High incidence of thromboembolic events in patients treated with cisplatin-based chemotherapy: A large retrospective analysis. J Clin Oncol. 2011;29(25):3466‑73. DOI:10.1200/JCO.2011.35.5669
46. Seng S, Liu Z, Chiu SK, et al. Risk of venous thromboembolism in patients with cancer treated with Cisplatin: A systematic review and meta-analysis. J Clin Oncol. 2012;30(35):4416‑26. DOI:10.1200/JCO.2012.42.4358
47. Starling N, Rao S, Cunningham D, et al. Thromboembolism in patients with advanced gastroesophageal cancer treated withanthracycline, platinum, and fluoropyrimidine combination chemotherapy: A report from the UK National Cancer Research Institute Upper Gastrointestinal Clinical Studies Group. J Clin Oncol. 2009;27(23):3786‑93. DOI:10.1200/JCO.2008.19.4274
48. Lauritsen J, Hansen MK, Bandak M, et al. Cardiovascular risk factors and disease after male germ cell cancer. J Clin Oncol. 2020;38(6):584‑92. DOI:10.1200/JCO.19.01180
49. Anderson KC. Lenalidomide and thalidomide: Mechanisms of action-similarities and differences. Semin Hematol. 2005;42(4 Suppl. 4): S3‑8. DOI:10.1053/j.seminhematol.2005.10.001
50. Rajkumar SV, Blood E, Vesole D, et al. Phase III clinical trial of thalidomide plus dexamethasone compared with dexamethasone alone in newly diagnosed multiple myeloma: A clinical trial coordinated by the Eastern Cooperative Oncology Group. J Clin Oncol. 2006;24(3):431‑6. DOI:10.1200/JCO.2005.03.0221
51. Gugliotta L, Mazzucconi MG, Leone G, et al. Incidence of thrombotic complications in adult patients with acute lymphoblastic leukaemia receiving L-asparaginase during induction therapy: A retrospective study. Eur J Haematol. 1992;49(2):63‑6. DOI:10.1111/j.1600‑0609.1992.tb00032.x
52. Caruso V, Iacoviello L, Di Castelnuovo A, et al. Thrombotic complications in childhood acute lymphoblastic leukemia: A meta-analysis of 17 prospective studies comprising 1752 pediatric patients. Blood. 2006;108(7):2216‑22. DOI:10.1182/blood‑2006‑04‑015511
53. Qureshi A, Mitchell C, Richards S, et al. Asparaginase-related venous thrombosis in UKALL 2003‑re-exposure to asparaginase is feasible and safe. Br J Haematol. 2010;149(3):410‑3. DOI:10.1111/j.1365‑2141.2010.08132.x
54. Jänne PA, Yang JC, Kim DW, et al. AZD9291 in EGFR inhibitor-resistant non-small-cell lung cancer. N Engl J Med. 2015;372(18):1689‑99. DOI:10.1056/NEJMoa1411817
55. Cabanillas ME, Schlumberger M, Jarzab B, et al. A phase 2 trial of lenvatinib (E7080) in advanced, progressive, radioiodine-refractory, differentiated thyroid cancer: A clinical outcomes and biomarker assessment. Cancer. 2015;121(16):2749‑56. DOI:10.1002/cncr.29395
56. Shiroyama T, Hayama M, Satoh S, et al. Successful retreatment with osimertinib after osimertinib-induced acute pulmonary embolism in a patient with lung adenocarcinoma: A case report. Respir Med Case Rep. 2016;20:25‑7. DOI:10.1016/j.rmcr.2016.11.009
57. Hurwitz H, Fehrenbacher L, Novotny W, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med. 2004;350(23):2335‑42. DOI:10.1056/NEJMoa032691
58. Scappaticci FA, Skillings JR, Holden SN, et al. Arterial thromboembolic events in patients with metastatic carcinoma treated with chemotherapy and bevacizumab. J Natl Cancer Inst. 2007;99(16):1232‑9. DOI:10.1093/jnci/djm086
59. Ranpura V, Hapani S, Chuang J, Wu S. Risk of cardiac ischemia and arterial thromboembolic events with the angiogenesis inhibitor bevacizumab in cancer patients: A meta-analysis of randomized controlled trials. Acta Oncol. 2010;49(3):287‑97. DOI:10.3109/02841860903524396
60. Alahmari AK, Almalki ZS, Alahmari AK, Guo JJ. Thromboembolic events associated with bevacizumab plus chemotherapy for patients with colorectal cancer: A meta-analysis of randomized controlled trials. Am Health Drug Benefits. 2016;9(4):221‑32. PMID:27688834
61. Spratlin, JL, Mulder KE, Mackey JR. Ramucirumab (IMC‑1121B): A novel attack on angiogenesis. Future Oncol. 2010;6(7):1085‑94. DOI:10.2217/fon.10.75
62. Tabernero J, Yoshino T, Cohn AL, et al. Ramucirumab versus placebo in combination with second-line FOLFIRI in patients with metastatic colorectal carcinoma that progressed during or after first-line therapy with bevacizumab, oxaliplatin, and a fluoropyrimidine (RAISE): A randomised, double-blind, multicentre, phase 3 study. Lancet Oncol. 2015;16(5):499‑508. DOI:10.1016/S1470‑2045(15)70127‑0
63. Guy JB, Bertoletti L, Magné N, et al. Venous thromboembolism in radiation therapy cancer patients: Findings from the RIETE registry. Crit Rev Oncol Hematol. 2017;113:83‑9. DOI:10.1016/j.critrevonc.2017.03.006
64. Byrne M, Reynolds JV, O’Donnell JS, et al. Long-term activation of the pro-coagulant response after neoadjuvant chemoradiation and major cancer surgery. Br J Cancer. 2010;102(1):73‑9. DOI:10.1038/sj.bjc.6605463
65. Boerma M, Kruse JJ, van Loenen M, et al. increased deposition of von willebrand factor in the rat heart after local ionizing irradiation. Strahlenther Onkol. 2004;180(2):109‑16. DOI:10.1007/s00066‑004‑1138‑0
66. Ellis ML, Okano S, McCann A, et al. Catheter-related thrombosis incidence and risk factors in adult cancer patients with central venous access devices. Intern Med J. 2020;50(12):1475‑82. DOI:10.1111/imj.14780
67. Fankhauser CD, Tran B, Pedregal M, et al. Risk-benefit analysis of prophylactic anticoagulation for patients with metastatic germ cell tumours undergoing first-line chemotherapy. Eur Urol Focus. 2021;7(5):1130‑6. DOI:10.1016/j.euf.2020.09.017
68. Chopra V, Anand S, Hickner A, et al. Risk of venous thromboembolism associated with peripherally inserted central catheters: A systematic review and meta-analysis. Lancet. 2013;382(9889):311‑25. DOI:10.1016/S0140‑6736(13)60592‑9
69. Xu XR, Zhang D, Oswald BE, et al. Platelets are versatile cells: New discoveries in hemostasis, thrombosis, immune responses, tumor metastasis and beyond. Crit Rev Clin Lab Sci. 2016;53(6):409‑30. DOI:10.1080/10408363.2016.1200008
70. De Candia E. Mechanisms of platelet activation by thrombin: A short history. Thromb Res. 2012;129(3):250‑6. DOI:10.1016/j.thromres.2011.11.001
71. Menter DG, Tucker SC, Kopetz S, et al. Platelets and cancer: A casual or causal relationship: Revisited. Cancer Metastasis Rev. 2014;33(1):231‑69. DOI:10.1007/s10555‑014‑9498‑0
72. Mege D, Panicot-Dubois L, Dubois C. Mechanisms of cancer-associated thrombosis. Hemasphere. 2019;3(Suppl.):19‑21. DOI:10.1097/HS9.0000000000000239
73. Mukai M, Oka T. Mechanism and management of cancer-associated thrombosis. J Cardiol. 2018;72(2):89‑93. DOI:10.1016/j.jjcc.2018.02.011
74. Taubman MB. Tissue factor in cancer angiogenesis and coagulopathy. In: Khorana AA, Francis CW, Eds. Cancer-Associated Thrombosis: New Findings in Translational Science, Prevention, and Treatment. New York: Informa Healthcare, 2007.
75. Peshkova AD, Le Minh G, Tutwiler V, et al. Activated monocytes enhance platelet-driven contraction of blood clots via tissue factor expression. Sci Rep. 2017;7(1):5149. DOI:10.1038/s41598‑017‑05601‑9
76. Abdol Razak NB, Jones G, Bhandari M, et al. Cancer-associated thrombosis: An overview of mechanisms, risk factors, and treatment. Cancers (Basel). 2018;10(10):380. DOI:10.3390/cancers10100380
77. Zwicker JI, Liebman HA, Neuberg D, et al. Tumor-derived tissue factor-bearing microparticles are associated with venous thromboembolic events in malignancy. Clin Cancer Res. 2009;15(22):6830‑40. DOI:10.1158/1078‑0432.CCR‑09‑0371
78. Hillen HF. Thrombosis in cancer patients. Ann Oncol. 2000;11(Suppl. 3):273‑6.
DOI:10.1093/annonc/11.suppl_3.273
79. Dosquet C, Weill D, Wautier JL. Cytokines and thrombosis. J Cardiovasc Pharmacol. 1995;25(Suppl. 2): S13‑9. DOI:10.1097/00005344‑199500252‑00004
80. Puhlmann M, Weinreich DM, Farma JM, et al. Interleukin‑1beta induced vascular permeability is dependent on induction of endothelial tissue factor (TF) activity. J Transl Med. 2005;3:37. DOI:10.1186/1479‑5876‑3–37
81. Zucchella M, Pacchiarini L, Meloni F, et al. Effect of interferon alpha, interferon gamma and tumor necrosis factor on the procoagulant activity of human cancer cells. Haematologica. 1993;78(5):282‑6. PMID:8314156
82. Grignani G, Maiolo A. Cytokines and hemostasis. Haematologica. 2000;85(9):967‑72. PMID:10980636
83. Thålin C, Hisada Y, Lundström S, et al. Neutrophil extracellular traps. Arterioscler Thromb Vasc Biol. 2019;39(9):1724‑38. DOI:10.1161/ATVBAHA.119.312463
84. Von Brühl ML, Stark K, Steinhart A, et al. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J Exp Med. 2012;209(4):819‑35. DOI:10.1084/jem.20112322
85. Lam FW, Cruz MA, Parikh K, Rumbaut RE. Histones stimulate von Willebrand factor release in vitro and in vivo. Haematologica. 2016;101(7):e277‑9. DOI:10.3324/haematol.2015.140632
86. Mauracher LM, Posch F, Martinod K, et al. Citrullinated histone H3, a biomarker of neutrophil extracellular trap formation, predicts the risk of venous thromboembolism in cancer patients. J Thromb Haemost. 2018;16(3):508‑18. DOI:10.1111/jth.13951
87. Agnelli G, Gussoni G, Bianchini C, et al. Nadroparin for the prevention of thromboembolic events in ambulatory patients with metastatic or locally advanced solid cancer receiving chemotherapy: A randomised, placebo-controlled, double blind study. Lancet Oncol. 2009;10(10):943‑9. DOI:10.1016/S1470‑2045(09)70232‑3
88. Agnelli G, George DJ, Kakkar AK, et al. Semuloparin for thromboprophylaxis in patients receiving chemotherapy for cancer. N Engl J Med. 2012;366(7):601‑9.
DOI:10.1056/NEJMoa1108898
89. Ay C, Dunkler D, Marosi C, et al. Prediction of venous thromboembolism in cancer patients. Blood. 2010;116(24):5377‑82. DOI:10.1182/blood‑2010‑02‑270116
90. Roselli M, Riondino S, Mariotti S, et al. Clinical models and biochemical predictors of VTE in lung cancer. Cancer Metastasis Rev. 2014;33(2‑3):771‑89. DOI:10.1007/s10555‑014‑9500‑x
91. Mansfield AS, Tafur AJ, Wang CE, et al. Predictors of active cancer thromboembolic outcomes: Validation of the Khorana score among patients with lung cancer. J Thromb Haemost. 2016;14(9):1773‑8. DOI:10.1111/jth.13378
92. Connolly GC, Francis CW. Cancer-associated thrombosis. Hematol. Am. Soc. Hematol. Educ. Program. 2013, 684‑691.
93. van Es N, Di Nisio M, Cesarman G, et al. Comparison of risk prediction scores for venous thromboembolism in cancer patients: A prospective cohort study. Haematologica. 2017;102(9):1494‑1501. DOI:10.3324/haematol.2017.169060
94. Verso M, Agnelli G, Barni S, et al. A modified Khorana risk assessment score for venous thromboembolism in cancer patients receiving chemotherapy: The PROTECHT score. Intern Emerg Med. 2012;7(3):291‑2. DOI:10.1007/s11739‑012‑0784‑y
95. Alexander M, Burbury K. A systematic review of biomarkers for the prediction of thromboembolism in lung cancer – Results, practical issues and proposed strategies for future risk prediction models. Thromb Res. 2016;148:63‑9. DOI:10.1016/j.thromres.2016.10.020
96. van Es N, Franke VF, Middeldorp S, et al. The Khorana score for the prediction of venous thromboembolism in patients with pancreatic cancer. Thromb Res. 2017;150:30‑2. DOI:10.1016/j.thromres.2016.12.013
97. Riondino S, Ferroni P, Zanzotto FM, et al. Predicting VTE in cancer patients: Candidate biomarkers and risk assessment models. Cancers (Basel). 2019;11(1):95. DOI:10.3390/cancers11010095
98. Li A, La J, May SB, et al. Derivation and validation of a clinical risk assessment model for cancer-associated thrombosis in two unique US health care systems. J Clin Oncol. 2023;41(16):2926‑38. DOI:10.1200/JCO.22.01542
99. Muñoz A, Ay C, Grilz E, et al. A clinical-genetic risk score for predicting cancer-associated venous thromboembolism: A development and validation study involving two independent prospective cohorts. J Clin Oncol. 2023;41(16):2911‑25. DOI:10.1200/JCO.22.00255
100. Muñoz Martín AJ, Ortega I, Font C, et al. Multivariable clinical-genetic risk model for predicting venous thromboembolic events in patients with cancer. Br J Cancer. 2018;118(8):1056‑61. DOI:10.1038/s41416‑018‑0027‑8
101. Soria JM, Morange PE, Vila J, et al. Multilocus genetic risk scores for venous thromboembolism risk assessment. J Am Heart Assoc. 2014;3(5):e001060. DOI:10.1161/JAHA.114.001060
102. Pabinger I, Ay C, Dunkler D, et al. Factor V Leiden mutation increases the risk for venous thromboembolism in cancer patients – Results from the Vienna Cancer and Thrombosis Study (CATS). J Thromb Haemost. 2015;13(1):17‑22. DOI:10.1111/jth.12778
103. Guman NAM, van Geffen RJ, Mulder FI, et al. Evaluation of the Khorana, PROTECHT, and 5-SNP scores for prediction of thromboembolism in patients with cancer. J Thromb Haemost. 2021;19(12):2974‑83. DOI:10.1111/jth.15503
104. Kirkilesis GI, Kakkos SK, Tsolakis IA. Editor’s choice – A systematic review and meta-analysis of the efficacy and safety of anticoagulation in the treatment of venous thromboembolism in patients with cancer. Eur J Vasc Endovasc Surg. 2019;57(5):685‑701. DOI:10.1016/j.ejvs.2018.11.004
105. Lee AYY. Anticoagulant therapy for venous thromboembolism in cancer. N Engl J Med. 2020;382(17):1650‑2. DOI:10.1056/NEJMe2004220
106. McBane RD 2nd, Wysokinski WE, Le-Rademacher JG, et al. Apixaban and dalteparin in active malignancy-associated venous thromboembolism: the ADAM VTE trial. J Am Heart Assoc. 2024;13(3):e031880. DOI:10.1161/JAHA.123.031880
107. Riaz IB, Harry EF, Naqvi SAA, et al. Direct oral anticoagulants compared with dalteparin for treatment of cancer-associated thrombosis: A living, interactive systematic review and network meta-analysis. Mayo Clin Proc. 2022;97(2):308‑24. DOI:10.1016/j.mayocp.2020.10.041
108. Hakeam HA, Al-Sanea N. Effect of major gastrointestinal tract surgery on the absorption and efficacy of direct acting oral anticoagulants (DOACs). J Thromb Thrombolysis. 2017;43(3):343‑51. DOI:10.1007/s11239‑016‑1465‑x
109. Byon W, Nepal S, Schuster AE, et al. Regional gastrointestinal absorption of apixaban in healthy subjects. J Clin Pharmacol. 2018;58(7):965‑71. DOI:10.1002/jcph.1097
110. Cohen AT, Hill NR, Luo X, et al. A systematic review of network meta-analyses among patients with nonvalvular atrial fibrillation: A comparison of efficacy and safety following treatment with direct oral anticoagulants. Int J Cardiol. 2018;269:174‑81. DOI:10.1016/j.ijcard.2018.06.114
111. Baker WL, Phung OJ. Systematic review and adjusted indirect comparison meta-analysis of oral anticoagulants in atrial fibrillation. Circ. Cardiovasc. Qual. Outcomes. 2012;5:711‑9.
112. Fu W, Guo H, Guo J, et al. Relative efficacy and safety of direct oral anticoagulants in patients with atrial fibrillation by network meta-analysis. J Cardiovasc Med (Hagerstown). 2014;15(12):873‑9. DOI:10.2459/JCM.0000000000000206
113. Mitchell SA, Simon TA, Raza S, et al. The efficacy and safety of oral anticoagulants in warfarin-suitable patients with nonvalvular atrial fibrillation: Systematic review and meta-analysis. Clin Appl Thromb Hemost. 2013;19(6):619‑31. DOI:10.1177/1076029613486539
114. Verdecchia P, Angeli F, Lip GY, et al. Edoxaban in the evolving scenario of non-vitamin K antagonist oral anticoagulants imputed placebo analysis and multiple treatment comparisons. PLoS One. 2014;9(6):e100478. DOI:10.1371/journal.pone.0100478
115. Riaz IB, Harry EF, Naqvi SAA, et al. Direct oral anticoagulants compared with dalteparin for treatment of cancer-associated thrombosis: A living, interactive systematic review and network meta-analysis. Mayo Clin Proc. 2022;97(2):308‑24. DOI:10.1016/j.mayocp.2020.10.041
116. Angelini DE, Radivoyevitch T, McCrae KR, Khorana AA. Bleeding incidence and risk factors among cancer patients treated with anticoagulation. Am J Hematol. 2019;94(7):780‑5. DOI:10.1002/ajh.25494
117. Kraaijpoel N, Di Nisio M, Mulder FI, et al. Clinical impact of bleeding in cancer-associated venous thromboembolism: Results from the Hokusai VTE Cancer Study. Thromb Haemost. 2018;118(8):1439‑49. DOI:10.1055/s‑0038‑1667001
118. Young AM, Marshall A, Thirlwall J, et al. Comparison of an oral factor Xa inhibitor with low molecular weight heparin in patients with cancer with venous thromboembolism: Results of a randomized trial (SEL ECT-D). J Clin Oncol. 2018;36(20):2017‑23. DOI:10.1200/JCO.2018.78.8034
119. Ageno W, Vedovati MC, Cohen A, et al. Bleeding with apixaban and dalteparin in patients with cancer-associated venous thromboembolism: Results fr om the Caravaggio Study. Thromb Haemost. 2021;121(5):616‑24. DOI:10.1055/s‑0040‑1720975
120. Cohen AT, Keshishian A, Lee T, et al. Effectiveness and safety of apixaban, LMWH, and warfarin among high-risk subgroups of VTE patients with active cancer. Curr Med Res Opin. 2021;37(9):1467‑82. DOI:10.1080/03007995.2021.1932448
121. Agnelli G, Becattini C, Meyer G, et al. Apixaban for the treatment of venous thromboembolism associated with cancer. N Engl J Med. 2020;382(17):1599-607. DOI:10.1056/NEJMoa1915103
122. NCCN Clinical Practice Guidelines in Oncology. Available at: https://web.archive.org/web/20121109143827/http://www.nccn.org/professionals/physician_gls/f_guideli.... Accessed: 20.06.2023.
123. National Institute for Health and Care Excellence: Guidelines. Venous thromboembolic diseases: diagnosis, management and thrombophilia testing. London: National Institute for Health and Care Excellence (NICE), 2020.
124. Lyman GH, Carrier M, Ay C, et al. American Society of Hematology 2021 guidelines for management of venous thromboembolism: Prevention and treatment in patients with cancer. Blood Adv. 2021;5(4):927‑74. DOI:10.1182/bloodadvances.2020003442
________________________________________________
1. Trousseau A. Phlegmasia alba dolens. In: Lectures on Clinical Medicine, delivered at the Hôtel-Dieu, Paris. London: New Sydenham Society, 1872.
2. Dickson BC. Venous thrombosis: On the history of Virchow’s triad. Univ Tor Med J. 2004;81:166‑71.
3. Chiu JJ, Chien S. Effects of disturbed flow on vascular endothelium: Pathophysiological basis and clinical perspectives. Physiol Rev. 2011;91(1):327‑87. DOI:10.1152/physrev.00047.2009
4. Khorana AA, Francis CW, Culakova E, et al. Frequency, risk factors, and trends for venous thromboembolism among hospitalized cancer patients. Cancer. 2007;110(10):2339‑46. DOI:10.1002/cncr.23062
5. White C, Noble SIR, Watson M, et al. Prevalence, symptom burden, and natural history of deep vein thrombosis in people with advanced cancer in specialist palliative care units (HIDDen): A prospective longitudinal observational study. Lancet Haematol. 2019;6(2): e79‑e88. DOI:10.1016/S2352‑3026(18)30215‑1
6. Khorana AA, Kuderer NM, Culakova E, et al. Development and validation of a predictive model for chemotherapy-associated thrombosis. Blood. 2008;111(10):4902‑7. DOI:10.1182/blood‑2007‑10‑116327
7. Warny M, Helby J, Birgens HS, et al. Arterial and venous thrombosis by high platelet count and high hematocrit: 108 521 individuals from the Copenhagen General Population Study. J Thromb Haemost. 2019;17(11):1898‑911. DOI:10.1111/jth.14574
8. Wahrenbrock M, Borsig L, Le D, et al. Selectin-mucin interactions as a probable molecular explanation for the association of Trousseau syndrome with mucinous adenocarcinomas. J Clin Invest. 2003;112(6):853‑62. DOI:10.1172/JCI18882
9. Lee EC, Cameron SJ. Cancer and thrombotic risk: The platelet paradigm. Front Cardiovasc Med. 2017;4:67. DOI:10.3389/fcvm.2017.00067
10. Stender MT, Frøkjaer JB, Larsen TB, et al. Preoperative plasma D-dimer is a predictor of postoperative deep venous thrombosis in colorectal cancer patients. Dis Colon Rectum. 2009;52(3):446‑51. DOI:10.1007/DCR.0b013e318197e2b2
11. Ay C, Vormittag R, Dunkler D, et al. D-dimer and prothrombin fragment 1+2 predict venous thromboembolism in patients with cancer: results from the Vienna Cancer and Thrombosis Study. J Clin Oncol. 2009;27(25):4124‑9. DOI:10.1200/JCO.2008.21.7752
12. Hamza MS, Mousa SA. Cancer-Associated Thrombosis: Risk Factors, Molecular Mechanisms, Future Management. Clin Appl Thromb Hemost. 2020;26:1076029620954282. DOI:10.1177/1076029620954282
13. Davis PJ, Mousa SA, Schechter GP, et al. ATP, thyroid hormone receptor on integrin αvβ3 and cancer metastasis. Horm Cancer. 2020;11(1):13‑6. DOI:10.1007/s12672‑019‑00371‑4
14. Blom JW, Vanderschoot JP, Oostindiër MJ, et al. Incidence of venous thrombosis in a large cohort of 66 329 cancer patients: Results of a record linkage study. J Thromb Haemost. 2006;4(3):529‑35. DOI:10.1111/j.1538‑7836.2006.01804.x
15. Canonico M, Plu-Bureau G, Lowe GD, Scarabin PY. Hormone replacement therapy and risk of venous thromboembolism in postmenopausal women: Systematic review and meta-nalysis. BMJ. 2008;336(7655):1227‑31. DOI:10.1136/bmj.39555.441944.BE
16. Caine YG, Bauer KA, Barzegar S, et al. Coagulation activation following estrogen administration to postmenopausal women. Thromb Haemost. 1992;68(4):392‑5. PMID:1333098
17. Rott H. Contraception, venous thrombosis and biological plausability. Minerva Med. 2013;104(2):161‑7. PMID:23514992
18. Nealen ML, Vijayan KV, Bolton E, Bray PF. Human platelets contain a glycosylated estrogen receptor. Circ Res. 2001;88(4):438‑42. DOI:10.1161/01.res.88.4.438
19. Dupuis M, Severin S, Noirrit-Esclassan E, et al. Effects of estrogens on platelets and megakaryocytes. Int J Mol Sci. 2019;20(12):3111. DOI:10.3390/ijms20123111
20. Levi M, Middeldorp S, Büller HR. Oral contraceptives and hormonal replacement therapy cause an imbalance in coagulation and fibrinolysis which may explain the increased risk of venous thromboembolism. Cardiovasc Res. 1999;41(1):21‑4. DOI:10.1016/s0008‑6363(98)00210‑7
21. Khorana AA, Connolly GC. Assessing risk of venous thromboembolism in the patient with cancer. J Clin Oncol. 2009;27(29):4839‑47. DOI:10.1200/JCO.2009.22.3271
22. Esmon CT. The protein C pathway. Chest. 2003;124(3 Suppl.):26S‑32S. DOI:10.1378/chest.124.3_suppl.26s
23. Chew HK, Wun T, Harvey D, et al. Incidence of venous thromboembolism and its effect on survival among patients with common cancers. Arch Intern Med. 2006;166(4):458‑64. DOI:10.1001/archinte.166.4.458
24. Noble S. The challenges of managing cancer related venous thromboembolism in the palliative care setting. Postgrad Med J. 2007;83(985):671‑4. DOI:10.1136/pgmj.2007.061622
25. Otani K, Ishihara S, Hata K, et al. Colorectal cancer with venous tumor thrombosis. Asian J Surg. 2018;41(3):197‑202. DOI:10.1016/j.asjsur.2016.07.013
26. Nakase H, Kawanami C, Itoh T, et al. Diffuse colon cancer with tumor thrombus in the portal vein. Gastrointest Endosc. 2002;55(2):239‑40. DOI:10.1067/mge.2001.118963
27. Chew HK, Davies AM, Wun T, et al. The incidence of venous thromboembolism among patients with primary lung cancer. J Thromb Haemost. 2008;6(4):601‑8. DOI:10.1111/j.1538‑7836.2008.02908.x
28. Blom JW, Doggen CJ, Osanto S, Rosendaal FR. Malignancies, prothrombotic mutations, and the risk of venous thrombosis. JAMA. 2005;293(6):715‑22. DOI:10.1001/jama.293.6.715
29. Ma Z, Zhang, T, Wang, R, et al. Tissue factor-factor VIIa complex induces epithelial ovarian cancer cell invasion and metastasis through a monocytes-dependent mechanism. Int J Gynecol Cancer. 2011;21(4):616‑24. DOI:10.1097/IGC.0b013e3182150e98
30. Rak J, Yu JL, Luyendyk J, Mackman N. Oncogenes, Trousseau syndrome, and cancer-related changes in the coagulome of mice and humans. Cancer Res. 2006;66(22):10643‑6. DOI:10.1158/0008‑5472.CAN‑06‑2350
31. Ades S, Kumar S, Alam M, et al. Tumor oncogene (KRAS) status and risk of venous thrombosis in patients with metastatic colorectal cancer. J Thromb Haemost. 2015;13(6):998‑1003. DOI:10.1111/jth.12910
32. Rak J, Klement G. Impact of oncogenes and tumour suppressor genes on deregulation of haemostasis and angiogenesis in cancer. Cancer Metastasis Rev. 2000;19(1‑2):93‑6. DOI:10.1023/a:1026516920119
33. López-Ocejo O, Viloria-Petit A, Bequet-Romero M, et al. Oncogenes and tumor angiogenesis: The HPV‑16 E6 oncoprotein activates the vascular endothelial growth factor (VEGF) gene promoter in a p53 independent manner. Oncogene. 2000;19(40):4611‑20. DOI:10.1038/sj.onc.1203817
34. Nadir Y, Brenner B, Zetser A, et al. Heparanase nduces tissue factor expression in vascular endothelial and cancer cells. J Thromb Haemost. 2006;4(11):2443‑51. DOI:10.1111/j.1538‑7836.2006.02212.x
35. Nasser NJ, Sarig G, Brenner B, et al. Heparanase neutralizes the anticoagulation properties of heparin and low-molecular-weight heparin. J Thromb Haemost. 2006;4(3):560‑5. DOI:10.1111/j.1538‑7836.2006.01792.x
36. Nasser NJ, Na’amad M, Weinberg I, Gabizon AA. Pharmacokinetics of low molecular weight heparin in patients with malignant tumors. Anticancer Drugs. 2015;26(1):106‑11. DOI:10.1097/CAD.0000000000000176
37. Fisher B, Costantino J, Redmond C, et al. A randomized clinical trial evaluating tamoxifen in the treatment of patients with node-negative breast cancer who have estrogen-receptor-positive tumors. N Engl J Med. 1989;320(8):479‑84. DOI:10.1056/NEJM198902233200802
38. Fisher B, Dignam J, Wolmark N, et al. Tamoxifen and chemotherapy for lymph node-negative, estrogen receptor-positive breast cancer. J Natl Cancer Inst. 1997;89(22):1673‑82. DOI:10.1093/jnci/89.22.1673
39. Watson NW, Wander SA, Shatzel JJ, Al-Samkari H. Venous and arterial thrombosis associated with abemaciclib therapy for metastatic breast cancer. Cancer. 2022;128(17):3224‑32. DOI:10.1002/cncr.34367
40. Heit JA, Silverstein MD, Mohr DN, et al. Risk factors for deep vein thrombosis and pulmonary embolism. Arch Intern Med. 2000;160(6):809‑15. DOI:10.1001/archinte.160.6.809
41. Cool RM, Herrington JD, Wong L. Recurrent peripheral arterial thrombosis induced by cisplatin and etoposide. Pharmacotherapy. 2002;22(9):1200‑4. DOI:10.1592/phco.22.13.1200.33524
42. Lyman GH, Khorana AA, Falanga A, et al. American Society of Clinical Oncology guideline: Recommendations for venous thromboembolism prophylaxis and treatment in patients with cancer. J Clin Oncol. 2007;25(34):5490‑505. DOI:10.1200/JCO.2007.14.1283
43. Abdel-Razeq H, Mansour A, Abdulelah H, et al. Thromboembolic events in cancer patients on active treatment with cisplatin-based chemotherapy: Another look! Thromb J. 2018;16:2. DOI:10.1186/s12959‑018‑0161‑9
44. Khorana AA, Dalal M, Lin J, Connolly GC. Incidence and predictors of venous thromboembolism (VTE) among ambulatory high-risk cancer patients undergoing chemotherapy in the United States. Cancer. 2013;119(3):648‑55. DOI:10.1002/cncr.27772
45. Moore RA, Adel N, Riedel E, et al. High incidence of thromboembolic events in patients treated with cisplatin-based chemotherapy: A large retrospective analysis. J Clin Oncol. 2011;29(25):3466‑73. DOI:10.1200/JCO.2011.35.5669
46. Seng S, Liu Z, Chiu SK, et al. Risk of venous thromboembolism in patients with cancer treated with Cisplatin: A systematic review and meta-analysis. J Clin Oncol. 2012;30(35):4416‑26. DOI:10.1200/JCO.2012.42.4358
47. Starling N, Rao S, Cunningham D, et al. Thromboembolism in patients with advanced gastroesophageal cancer treated withanthracycline, platinum, and fluoropyrimidine combination chemotherapy: A report from the UK National Cancer Research Institute Upper Gastrointestinal Clinical Studies Group. J Clin Oncol. 2009;27(23):3786‑93. DOI:10.1200/JCO.2008.19.4274
48. Lauritsen J, Hansen MK, Bandak M, et al. Cardiovascular risk factors and disease after male germ cell cancer. J Clin Oncol. 2020;38(6):584‑92. DOI:10.1200/JCO.19.01180
49. Anderson KC. Lenalidomide and thalidomide: Mechanisms of action-similarities and differences. Semin Hematol. 2005;42(4 Suppl. 4): S3‑8. DOI:10.1053/j.seminhematol.2005.10.001
50. Rajkumar SV, Blood E, Vesole D, et al. Phase III clinical trial of thalidomide plus dexamethasone compared with dexamethasone alone in newly diagnosed multiple myeloma: A clinical trial coordinated by the Eastern Cooperative Oncology Group. J Clin Oncol. 2006;24(3):431‑6. DOI:10.1200/JCO.2005.03.0221
51. Gugliotta L, Mazzucconi MG, Leone G, et al. Incidence of thrombotic complications in adult patients with acute lymphoblastic leukaemia receiving L-asparaginase during induction therapy: A retrospective study. Eur J Haematol. 1992;49(2):63‑6. DOI:10.1111/j.1600‑0609.1992.tb00032.x
52. Caruso V, Iacoviello L, Di Castelnuovo A, et al. Thrombotic complications in childhood acute lymphoblastic leukemia: A meta-analysis of 17 prospective studies comprising 1752 pediatric patients. Blood. 2006;108(7):2216‑22. DOI:10.1182/blood‑2006‑04‑015511
53. Qureshi A, Mitchell C, Richards S, et al. Asparaginase-related venous thrombosis in UKALL 2003‑re-exposure to asparaginase is feasible and safe. Br J Haematol. 2010;149(3):410‑3. DOI:10.1111/j.1365‑2141.2010.08132.x
54. Jänne PA, Yang JC, Kim DW, et al. AZD9291 in EGFR inhibitor-resistant non-small-cell lung cancer. N Engl J Med. 2015;372(18):1689‑99. DOI:10.1056/NEJMoa1411817
55. Cabanillas ME, Schlumberger M, Jarzab B, et al. A phase 2 trial of lenvatinib (E7080) in advanced, progressive, radioiodine-refractory, differentiated thyroid cancer: A clinical outcomes and biomarker assessment. Cancer. 2015;121(16):2749‑56. DOI:10.1002/cncr.29395
56. Shiroyama T, Hayama M, Satoh S, et al. Successful retreatment with osimertinib after osimertinib-induced acute pulmonary embolism in a patient with lung adenocarcinoma: A case report. Respir Med Case Rep. 2016;20:25‑7. DOI:10.1016/j.rmcr.2016.11.009
57. Hurwitz H, Fehrenbacher L, Novotny W, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med. 2004;350(23):2335‑42. DOI:10.1056/NEJMoa032691
58. Scappaticci FA, Skillings JR, Holden SN, et al. Arterial thromboembolic events in patients with metastatic carcinoma treated with chemotherapy and bevacizumab. J Natl Cancer Inst. 2007;99(16):1232‑9. DOI:10.1093/jnci/djm086
59. Ranpura V, Hapani S, Chuang J, Wu S. Risk of cardiac ischemia and arterial thromboembolic events with the angiogenesis inhibitor bevacizumab in cancer patients: A meta-analysis of randomized controlled trials. Acta Oncol. 2010;49(3):287‑97. DOI:10.3109/02841860903524396
60. Alahmari AK, Almalki ZS, Alahmari AK, Guo JJ. Thromboembolic events associated with bevacizumab plus chemotherapy for patients with colorectal cancer: A meta-analysis of randomized controlled trials. Am Health Drug Benefits. 2016;9(4):221‑32. PMID:27688834
61. Spratlin, JL, Mulder KE, Mackey JR. Ramucirumab (IMC‑1121B): A novel attack on angiogenesis. Future Oncol. 2010;6(7):1085‑94. DOI:10.2217/fon.10.75
62. Tabernero J, Yoshino T, Cohn AL, et al. Ramucirumab versus placebo in combination with second-line FOLFIRI in patients with metastatic colorectal carcinoma that progressed during or after first-line therapy with bevacizumab, oxaliplatin, and a fluoropyrimidine (RAISE): A randomised, double-blind, multicentre, phase 3 study. Lancet Oncol. 2015;16(5):499‑508. DOI:10.1016/S1470‑2045(15)70127‑0
63. Guy JB, Bertoletti L, Magné N, et al. Venous thromboembolism in radiation therapy cancer patients: Findings from the RIETE registry. Crit Rev Oncol Hematol. 2017;113:83‑9. DOI:10.1016/j.critrevonc.2017.03.006
64. Byrne M, Reynolds JV, O’Donnell JS, et al. Long-term activation of the pro-coagulant response after neoadjuvant chemoradiation and major cancer surgery. Br J Cancer. 2010;102(1):73‑9. DOI:10.1038/sj.bjc.6605463
65. Boerma M, Kruse JJ, van Loenen M, et al. increased deposition of von willebrand factor in the rat heart after local ionizing irradiation. Strahlenther Onkol. 2004;180(2):109‑16. DOI:10.1007/s00066‑004‑1138‑0
66. Ellis ML, Okano S, McCann A, et al. Catheter-related thrombosis incidence and risk factors in adult cancer patients with central venous access devices. Intern Med J. 2020;50(12):1475‑82. DOI:10.1111/imj.14780
67. Fankhauser CD, Tran B, Pedregal M, et al. Risk-benefit analysis of prophylactic anticoagulation for patients with metastatic germ cell tumours undergoing first-line chemotherapy. Eur Urol Focus. 2021;7(5):1130‑6. DOI:10.1016/j.euf.2020.09.017
68. Chopra V, Anand S, Hickner A, et al. Risk of venous thromboembolism associated with peripherally inserted central catheters: A systematic review and meta-analysis. Lancet. 2013;382(9889):311‑25. DOI:10.1016/S0140‑6736(13)60592‑9
69. Xu XR, Zhang D, Oswald BE, et al. Platelets are versatile cells: New discoveries in hemostasis, thrombosis, immune responses, tumor metastasis and beyond. Crit Rev Clin Lab Sci. 2016;53(6):409‑30. DOI:10.1080/10408363.2016.1200008
70. De Candia E. Mechanisms of platelet activation by thrombin: A short history. Thromb Res. 2012;129(3):250‑6. DOI:10.1016/j.thromres.2011.11.001
71. Menter DG, Tucker SC, Kopetz S, et al. Platelets and cancer: A casual or causal relationship: Revisited. Cancer Metastasis Rev. 2014;33(1):231‑69. DOI:10.1007/s10555‑014‑9498‑0
72. Mege D, Panicot-Dubois L, Dubois C. Mechanisms of cancer-associated thrombosis. Hemasphere. 2019;3(Suppl.):19‑21. DOI:10.1097/HS9.0000000000000239
73. Mukai M, Oka T. Mechanism and management of cancer-associated thrombosis. J Cardiol. 2018;72(2):89‑93. DOI:10.1016/j.jjcc.2018.02.011
74. Taubman MB. Tissue factor in cancer angiogenesis and coagulopathy. In: Khorana AA, Francis CW, Eds. Cancer-Associated Thrombosis: New Findings in Translational Science, Prevention, and Treatment. New York: Informa Healthcare, 2007.
75. Peshkova AD, Le Minh G, Tutwiler V, et al. Activated monocytes enhance platelet-driven contraction of blood clots via tissue factor expression. Sci Rep. 2017;7(1):5149. DOI:10.1038/s41598‑017‑05601‑9
76. Abdol Razak NB, Jones G, Bhandari M, et al. Cancer-associated thrombosis: An overview of mechanisms, risk factors, and treatment. Cancers (Basel). 2018;10(10):380. DOI:10.3390/cancers10100380
77. Zwicker JI, Liebman HA, Neuberg D, et al. Tumor-derived tissue factor-bearing microparticles are associated with venous thromboembolic events in malignancy. Clin Cancer Res. 2009;15(22):6830‑40. DOI:10.1158/1078‑0432.CCR‑09‑0371
78. Hillen HF. Thrombosis in cancer patients. Ann Oncol. 2000;11(Suppl. 3):273‑6.
DOI:10.1093/annonc/11.suppl_3.273
79. Dosquet C, Weill D, Wautier JL. Cytokines and thrombosis. J Cardiovasc Pharmacol. 1995;25(Suppl. 2): S13‑9. DOI:10.1097/00005344‑199500252‑00004
80. Puhlmann M, Weinreich DM, Farma JM, et al. Interleukin‑1beta induced vascular permeability is dependent on induction of endothelial tissue factor (TF) activity. J Transl Med. 2005;3:37. DOI:10.1186/1479‑5876‑3–37
81. Zucchella M, Pacchiarini L, Meloni F, et al. Effect of interferon alpha, interferon gamma and tumor necrosis factor on the procoagulant activity of human cancer cells. Haematologica. 1993;78(5):282‑6. PMID:8314156
82. Grignani G, Maiolo A. Cytokines and hemostasis. Haematologica. 2000;85(9):967‑72. PMID:10980636
83. Thålin C, Hisada Y, Lundström S, et al. Neutrophil extracellular traps. Arterioscler Thromb Vasc Biol. 2019;39(9):1724‑38. DOI:10.1161/ATVBAHA.119.312463
84. Von Brühl ML, Stark K, Steinhart A, et al. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J Exp Med. 2012;209(4):819‑35. DOI:10.1084/jem.20112322
85. Lam FW, Cruz MA, Parikh K, Rumbaut RE. Histones stimulate von Willebrand factor release in vitro and in vivo. Haematologica. 2016;101(7):e277‑9. DOI:10.3324/haematol.2015.140632
86. Mauracher LM, Posch F, Martinod K, et al. Citrullinated histone H3, a biomarker of neutrophil extracellular trap formation, predicts the risk of venous thromboembolism in cancer patients. J Thromb Haemost. 2018;16(3):508‑18. DOI:10.1111/jth.13951
87. Agnelli G, Gussoni G, Bianchini C, et al. Nadroparin for the prevention of thromboembolic events in ambulatory patients with metastatic or locally advanced solid cancer receiving chemotherapy: A randomised, placebo-controlled, double blind study. Lancet Oncol. 2009;10(10):943‑9. DOI:10.1016/S1470‑2045(09)70232‑3
88. Agnelli G, George DJ, Kakkar AK, et al. Semuloparin for thromboprophylaxis in patients receiving chemotherapy for cancer. N Engl J Med. 2012;366(7):601‑9.
DOI:10.1056/NEJMoa1108898
89. Ay C, Dunkler D, Marosi C, et al. Prediction of venous thromboembolism in cancer patients. Blood. 2010;116(24):5377‑82. DOI:10.1182/blood‑2010‑02‑270116
90. Roselli M, Riondino S, Mariotti S, et al. Clinical models and biochemical predictors of VTE in lung cancer. Cancer Metastasis Rev. 2014;33(2‑3):771‑89. DOI:10.1007/s10555‑014‑9500‑x
91. Mansfield AS, Tafur AJ, Wang CE, et al. Predictors of active cancer thromboembolic outcomes: Validation of the Khorana score among patients with lung cancer. J Thromb Haemost. 2016;14(9):1773‑8. DOI:10.1111/jth.13378
92. Connolly GC, Francis CW. Cancer-associated thrombosis. Hematol. Am. Soc. Hematol. Educ. Program. 2013, 684‑691.
93. van Es N, Di Nisio M, Cesarman G, et al. Comparison of risk prediction scores for venous thromboembolism in cancer patients: A prospective cohort study. Haematologica. 2017;102(9):1494‑1501. DOI:10.3324/haematol.2017.169060
94. Verso M, Agnelli G, Barni S, et al. A modified Khorana risk assessment score for venous thromboembolism in cancer patients receiving chemotherapy: The PROTECHT score. Intern Emerg Med. 2012;7(3):291‑2. DOI:10.1007/s11739‑012‑0784‑y
95. Alexander M, Burbury K. A systematic review of biomarkers for the prediction of thromboembolism in lung cancer – Results, practical issues and proposed strategies for future risk prediction models. Thromb Res. 2016;148:63‑9. DOI:10.1016/j.thromres.2016.10.020
96. van Es N, Franke VF, Middeldorp S, et al. The Khorana score for the prediction of venous thromboembolism in patients with pancreatic cancer. Thromb Res. 2017;150:30‑2. DOI:10.1016/j.thromres.2016.12.013
97. Riondino S, Ferroni P, Zanzotto FM, et al. Predicting VTE in cancer patients: Candidate biomarkers and risk assessment models. Cancers (Basel). 2019;11(1):95. DOI:10.3390/cancers11010095
98. Li A, La J, May SB, et al. Derivation and validation of a clinical risk assessment model for cancer-associated thrombosis in two unique US health care systems. J Clin Oncol. 2023;41(16):2926‑38. DOI:10.1200/JCO.22.01542
99. Muñoz A, Ay C, Grilz E, et al. A clinical-genetic risk score for predicting cancer-associated venous thromboembolism: A development and validation study involving two independent prospective cohorts. J Clin Oncol. 2023;41(16):2911‑25. DOI:10.1200/JCO.22.00255
100. Muñoz Martín AJ, Ortega I, Font C, et al. Multivariable clinical-genetic risk model for predicting venous thromboembolic events in patients with cancer. Br J Cancer. 2018;118(8):1056‑61. DOI:10.1038/s41416‑018‑0027‑8
101. Soria JM, Morange PE, Vila J, et al. Multilocus genetic risk scores for venous thromboembolism risk assessment. J Am Heart Assoc. 2014;3(5):e001060. DOI:10.1161/JAHA.114.001060
102. Pabinger I, Ay C, Dunkler D, et al. Factor V Leiden mutation increases the risk for venous thromboembolism in cancer patients – Results from the Vienna Cancer and Thrombosis Study (CATS). J Thromb Haemost. 2015;13(1):17‑22. DOI:10.1111/jth.12778
103. Guman NAM, van Geffen RJ, Mulder FI, et al. Evaluation of the Khorana, PROTECHT, and 5-SNP scores for prediction of thromboembolism in patients with cancer. J Thromb Haemost. 2021;19(12):2974‑83. DOI:10.1111/jth.15503
104. Kirkilesis GI, Kakkos SK, Tsolakis IA. Editor’s choice – A systematic review and meta-analysis of the efficacy and safety of anticoagulation in the treatment of venous thromboembolism in patients with cancer. Eur J Vasc Endovasc Surg. 2019;57(5):685‑701. DOI:10.1016/j.ejvs.2018.11.004
105. Lee AYY. Anticoagulant therapy for venous thromboembolism in cancer. N Engl J Med. 2020;382(17):1650‑2. DOI:10.1056/NEJMe2004220
106. McBane RD 2nd, Wysokinski WE, Le-Rademacher JG, et al. Apixaban and dalteparin in active malignancy-associated venous thromboembolism: the ADAM VTE trial. J Am Heart Assoc. 2024;13(3):e031880. DOI:10.1161/JAHA.123.031880
107. Riaz IB, Harry EF, Naqvi SAA, et al. Direct oral anticoagulants compared with dalteparin for treatment of cancer-associated thrombosis: A living, interactive systematic review and network meta-analysis. Mayo Clin Proc. 2022;97(2):308‑24. DOI:10.1016/j.mayocp.2020.10.041
108. Hakeam HA, Al-Sanea N. Effect of major gastrointestinal tract surgery on the absorption and efficacy of direct acting oral anticoagulants (DOACs). J Thromb Thrombolysis. 2017;43(3):343‑51. DOI:10.1007/s11239‑016‑1465‑x
109. Byon W, Nepal S, Schuster AE, et al. Regional gastrointestinal absorption of apixaban in healthy subjects. J Clin Pharmacol. 2018;58(7):965‑71. DOI:10.1002/jcph.1097
110. Cohen AT, Hill NR, Luo X, et al. A systematic review of network meta-analyses among patients with nonvalvular atrial fibrillation: A comparison of efficacy and safety following treatment with direct oral anticoagulants. Int J Cardiol. 2018;269:174‑81. DOI:10.1016/j.ijcard.2018.06.114
111. Baker WL, Phung OJ. Systematic review and adjusted indirect comparison meta-analysis of oral anticoagulants in atrial fibrillation. Circ. Cardiovasc. Qual. Outcomes. 2012;5:711‑9.
112. Fu W, Guo H, Guo J, et al. Relative efficacy and safety of direct oral anticoagulants in patients with atrial fibrillation by network meta-analysis. J Cardiovasc Med (Hagerstown). 2014;15(12):873‑9. DOI:10.2459/JCM.0000000000000206
113. Mitchell SA, Simon TA, Raza S, et al. The efficacy and safety of oral anticoagulants in warfarin-suitable patients with nonvalvular atrial fibrillation: Systematic review and meta-analysis. Clin Appl Thromb Hemost. 2013;19(6):619‑31. DOI:10.1177/1076029613486539
114. Verdecchia P, Angeli F, Lip GY, et al. Edoxaban in the evolving scenario of non-vitamin K antagonist oral anticoagulants imputed placebo analysis and multiple treatment comparisons. PLoS One. 2014;9(6):e100478. DOI:10.1371/journal.pone.0100478
115. Riaz IB, Harry EF, Naqvi SAA, et al. Direct oral anticoagulants compared with dalteparin for treatment of cancer-associated thrombosis: A living, interactive systematic review and network meta-analysis. Mayo Clin Proc. 2022;97(2):308‑24. DOI:10.1016/j.mayocp.2020.10.041
116. Angelini DE, Radivoyevitch T, McCrae KR, Khorana AA. Bleeding incidence and risk factors among cancer patients treated with anticoagulation. Am J Hematol. 2019;94(7):780‑5. DOI:10.1002/ajh.25494
117. Kraaijpoel N, Di Nisio M, Mulder FI, et al. Clinical impact of bleeding in cancer-associated venous thromboembolism: Results from the Hokusai VTE Cancer Study. Thromb Haemost. 2018;118(8):1439‑49. DOI:10.1055/s‑0038‑1667001
118. Young AM, Marshall A, Thirlwall J, et al. Comparison of an oral factor Xa inhibitor with low molecular weight heparin in patients with cancer with venous thromboembolism: Results of a randomized trial (SEL ECT-D). J Clin Oncol. 2018;36(20):2017‑23. DOI:10.1200/JCO.2018.78.8034
119. Ageno W, Vedovati MC, Cohen A, et al. Bleeding with apixaban and dalteparin in patients with cancer-associated venous thromboembolism: Results fr om the Caravaggio Study. Thromb Haemost. 2021;121(5):616‑24. DOI:10.1055/s‑0040‑1720975
120. Cohen AT, Keshishian A, Lee T, et al. Effectiveness and safety of apixaban, LMWH, and warfarin among high-risk subgroups of VTE patients with active cancer. Curr Med Res Opin. 2021;37(9):1467‑82. DOI:10.1080/03007995.2021.1932448
121. Agnelli G, Becattini C, Meyer G, et al. Apixaban for the treatment of venous thromboembolism associated with cancer. N Engl J Med. 2020;382(17):1599-607. DOI:10.1056/NEJMoa1915103
122. NCCN Clinical Practice Guidelines in Oncology. Available at: https://web.archive.org/web/20121109143827/http://www.nccn.org/professionals/physician_gls/f_guideli.... Accessed: 20.06.2023.
123. National Institute for Health and Care Excellence: Guidelines. Venous thromboembolic diseases: diagnosis, management and thrombophilia testing. London: National Institute for Health and Care Excellence (NICE), 2020.
124. Lyman GH, Carrier M, Ay C, et al. American Society of Hematology 2021 guidelines for management of venous thromboembolism: Prevention and treatment in patients with cancer. Blood Adv. 2021;5(4):927‑74. DOI:10.1182/bloodadvances.2020003442
Авторы
М.Ю. Федянин*1–3, А.А. Румянцев3, А.А. Трякин3
1ФГБУ «Национальный медико-хирургический центр им. Н.И. Пирогова» Минздрава России, Москва, Россия; 2ГБУЗ «Московский многопрофильный клинический центр “Коммунарка”» Департамента здравоохранения г. Москвы, Москва, Россия; 3ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н.Н. Блохина» Минздрава России, Москва, Россия
*fedianinmu@mail.ru
________________________________________________
Mikhail Fedyanin*1–3, Alexey A. Rumyantsev3, Alexey A. Tryakin3
1Pirogov National Medical and Surgical Center, Moscow, Russia; 2Moscow Multidisciplinary Clinical Center “Kommunarka”, Moscow, Russia; 3Blokhin National Medical Research Center of Oncology, Moscow, Russia
*fedianinmu@mail.ru