В данном обзоре подробно описаны основные механизмы реализации противоопухолевого иммунитета, представлены значение маркеров генов гистосовместимости HLA I и II класса в антигенной активации лимфоцитов и роль Т-клеточного звена (Т-киллеров CD8+ и Т-хелперов CD4+) и NK-клеток в реализации противоопухолевого клеточного ответа. Описаны уникальные механизмы кооперированного клеточно-гуморального противоопухолевого иммунитета – антителозависимой клеточноопосредованной цитотоксичности – и оценена ее роль в противоопухолевой защите организма. Достоинства системы противоопухолевого иммунитета – это способность Т-лимфоцитов выявлять опухолевые антигены в составе молекул гистосовместимости HLA I и II класса, а NK-клеток – уничтожать опухолевые клетки без экспрессии HLA I класса и участвовать в антителозависимой клеточноопосредованной цитотоксичности. В основе ухода мутированной клетки от иммунного надзора и дальнейшем ее клонировании лежат важные иммунные процессы; прогрессия опухоли может происходить в результате прорыва иммунной защиты организма (несовершенства противоопухолевого иммунитета) либо вследствие «иммунной невидимости» опухоли. Причины несовершенства противоопухолевой иммунной защиты: потеря опухолью презентации молекул гистосовместимости HLA I и II класса, приводящая к невозможности реализации Т-клеточной цитотоксичности, экспрессия HLA-E и HLA-G, приводящая к блокаде активности NK-клеток, наличие супрессорных регуляторных Foxp3(+)-лимфоцитов в опухоли, развитие иммунологической толерантности (устойчивой «неотвечаемости» иммунной системы) при росте и диссеминации опухоли. Представлены перспективные направления изучения прогностической и предсказывающей роли иммунных характеристик опухоли: субопуляционного состава стромальных и интратуморальных TILs, экспрессии маркеров классических генов гистосовместимости HLA I и II класса и неклассических супрессорных молекул HLA-E и HLA-G и инфильтрации опухоли регуляторными Foxp3(+)-лимфоцитами. Изучение клеточных и молекулярных иммунных механизмов поможет лучшему пониманию канцерогенеза и позволит оптимизировать лечебную стратегию при раке молочной железы.
Ключевые слова: иммунология рака молочной железы, гены гистосовместимости HLA I и II класса, экспрессия маркеров HLA-E и HLA-G, опухолевая инфильтрация Foxp3(+)-лимфоцитами, антителозависимая клеточноопосредованная цитотоксичность, противоопухолевый иммунитет.
________________________________________________
This review deals with the detail presentation of the antitumor immunity basic mechanisms, of the interpretation of HLA class I and II histocompatibility genes – markers of the antigen-activated lymphocytes in the antigenic activation of lymphocytes and the role of T-cells (CD8+ T-killer cells and CD4+ T-helper cells) and NK cells in the realization of antitumor responses. We have described the unique mechanisms of cooperative humoral and cellular antitumor immunity – antibody-dependent cell-mediated cytotoxicity, and have evaluated its role in antitumor protecting the body against cancer. Advantages of the antitumor immunity is the possibility of T-lymphocytes to recognize tumor antigens in histocompatibility molecules of HLA-class I and II and-NK-cells to kill tumor cells without expression of HLA-class I and to acting in antibody-dependent cell-mediated cytotoxicity. The mutated cells can avoid the immune surveillance and cells cloning, the basis of these mechanisms is important immune processes; tumor progression can occur as a result of immune system damage (imperfect antitumor immunity) or as a result of tumor "immune invisibility". The causes of imperfect antitumor immunity are: the loss of tumor presentation histocompatibility molecules of HLA-class I and II, leading to the inability to show T-cell cytotoxicity, the expression of HLA-E and HLA-G, leading to blockade of NK-cells activity, the presence of suppressor Foxp3 + regulatory lymphocytes in tumor, the development of immunological tolerance (sustainable "unresponsiveness" of the immune system) during tumor growth and dissemination. We have showed the perspective study directions of prognostic and predicting roles of the immune tumor characteristics: subpopulations of stromal and intratumoral TILs, the markers expression HLA class I and II histocompatibility genes and non-classical suppressor molecules of HLA-E and HLA-G and tumor-infiltrating Foxp3(+)-lymphocytes. The study of the cellular and molecular basis of immune mechanisms will help us better understand the carcinogenesis and will optimize the therapeutic strategy for BC.
Key words: breast cancer immunology, HLA class I and II histocompatibility genes, the expression of HLA-E and HLA-G cell markers, tumor-infiltrating Foxp3(+)-lymphocyte, antibody-dependent cell-mediated cytotoxicity, antitumor immunity.
1. Burnet M. Role of the thymus and related organs in immunity. Br Med J 1962; 2 (5308): 807–11.
2. Algarra I, Garcia-Lora A, Cabrera T et al. The selection of tumor variants with altered expression of classical and nonclassical MHC class I molecules: implications for tumor immune escape. Cancer Immunol Immunother 2004; 53: 904–10.
3. Bates GJ, Fox SB, Han C et al. Quantification of regulatory T cells enables the identification of high-risk breast cancer patients and those at risk of late relapse. J Clin Oncol 2006; 24: 5373–80.
4. Bodmer WF. The HLA system: structure and function. J Clin Pathol 1987; 40 (9): 948–58.
5. Vivier E1, Tomasello E, Baratin M et al. Functions of natural killer cells. Nat Immunol 2008; 9 (5): 503–10.
6. Телетаева Г.М. Цитокины и противоопухолевый иммунитет. Практическая онкология. 2007; 8 (4): 211–8. / Teletaeva G.M. Tsitokiny i protivoopukholevyi immunitet. Prakticheskaia onkologiia. 2007; 8 (4): 211–8. [in Russian]
7. Miyashita M, Sasano H, Tamaki K et al. Tumor-infiltrating CD8+ and FOXP3+ lymphocytes in triple-negative breast cancer: its correlation with pathological complete response to neoadjuvant chemotherapy. Breast Cancer Res Treat 2014; 148 (3): 525–34.
8. Faghih Z, Erfani N, Haghshenas MR et al. Immune profiles of CD4+ lymphocyte subsets in breast cancer tumor draining lymph nodes. Immunol Lett 2014; 158 (1–2): 57–65.
9. De Kruijf EM, Sajet A, van Nes JG et al. HLA-E and HLA-G expression in classical HLA class I-negative tumors is of prognostic value for clinical outcome of early breast cancer patients. J Immunol 2010; 185: 7452–9.
10. O'Callaghan CA, Bell JI. Structure and function of the human MHC class Ib molecules HLA-E, HLA-F and HLA-G. Immunol Rev 1998; 163: 129–38.
11. Bjorkman PJ, Saper MA, Samraoui B. Structure of the human class I histocompatibility antigen, HLA-A2. Nature 1987; 329: 506–12. doi:10.1038/329506a0
12. Bjorkman PJ. MHC restriction in three dimensions: a view of T cell receptor/ligand interactions. Cell 1997; 89: 167.
13. Krensky AM. The HLA system, antigen processing and presentation. Kidney Int Suppl 1997; 58: S2.
14. Srikanth Nagalla, Chou JW, Willingham MC et al. Interactions between immunity, proliferation and molecular subtype in breast cancer prognosis. Genome Biology 2013; 14: R34 http://genomebiology. com/2013/14/4/R34
15. Castellino F, Germain RN. Cooperation between CD4+ and CD8+ T cells: when, where, and how. Annu Rev Immunol 2006; 24: 519–40.
16. Corthay A, Skovseth DK, Lundin KU. Primary Antitumor Immune Response Mediated by CD4+ T Cells. Immunity 2005; 22: 371–83.
17. Shanker A, Verdeil G, Buferne M. CD8 T cells help for innate antitumor immunity. J.Immunol 2007; 179: 6651–62, www.jimmunol.org/content/179/10/6651
18. Bromley SK, Iaboni A, Davis SJ. The immunological synapse and CD28-CD80 interactions. Nat Immunol 2001; 2 (12): 1159–66.
19. Liu F, Lang R, Zhao J et al. CD8(+) cytotoxic T cell and FOXP3(+) regulatory T cell infiltration in relation to breast cancer survival and molecular subtypes. Breast Cancer Res Treat 2011; 130: 645–55.
20. Sakaguchi S. Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat Immunol 2005; 6 (4): 345–52.
21. Trapani JA, Smyth MJ. Functional significance of the perforin/granzyme cell death pathway. Nat Rev Immunol 2002; 2 (10): 735–47.
22. Strand S, Hofmann WJ, Hug H. Lymphocyte apoptosis induced by CD95 (APO−1/Fas) ligand-expressing tumor cells – A mechanism of immune evasion? Nature Medicine 1996; 2: 1361–6. doi:10.1038/nm1296-1361
23. Wu J, Lanier LL. Natural killer cells and cancer. Adv Cancer Res 2003; 90: 127–56.
24. Waldhauer I, Steinle A. NK cells and cancer immunosurveillance. Oncogene 2008; 27: 5932–43. doi:10.1038/onc.2008.267
25. Schlegel UP, Lang P. Natural Killer Cell Mediated Antibody-Dependent Cellular Cytotoxicity in Tumor Immunotherapy with Therapeutic Antibodies Front Immunol. 2013; 4: 76. doi: 10.3389/fimmu.2013.00076
26. Alderson KL, Sondel PM. Clinical cancer therapy by NK cells via antibody-dependent cell-mediated cytotoxicity. J Biomed Biotechnol 2011; 2011:379123. doi: 10.1155/2011/379123.
27. Iannello A, Ahmad A. Role of antibody-dependent cell-mediated cytotoxicity in the efficacy of therapeutic anti-cancer monoclonal antibodies. Cancer Metastasis Rev 2005; 24 (4): 487–99.
28. Alderson KL, Sondel PM. Clinical Cancer Therapy by NK Cells via Antibody-Dependent Cell-Mediated Cytotoxicity. J Biomed Biotech 2011; 2011. ID 379123, http://dx.doi.org/10.1155/2011/379123
29. García-Tuñón I, Mónica Ricote, Antonio Ruiz A. Influence of IFN-gamma and its receptors in human breast cancer. BMC Cancer 2007; 7: 158. doi: 10.1186/1471-2407-7-158
30. Pantschenko AG, Pushkar I, Anderson KH. The interleukin-1 family of cytokines and receptors in human breast cancer: implications for tumor progression. Int J Oncol 2003; 23 (2): 269–84.
31. Hatem Soliman Immunotherapy Strategies in the Treatment of Breast Cancer/ Cancer Control 2013; 20 (1): 17–21.
32. Nagai S, Toi M. Interleukin-4 and breast cancer. Breast Cancer 2000; 7 (3): 181–6.
33. Dethlefsen C, Højfeldt G, Hojman P. The role of intratumoral and systemic IL-6 in breast cancer. Breast Cancer Res Treat 2013; 138 (3): 657–64. doi: 10.1007/s10549-013-2488-z.
34. Rao VS, Alabi A, Dyer CE. IL-10 and IL-12 expression in breast cancer patients and effect of therapy. J Clinical Oncology 2008; 26: 15S (May 20 Suppl.). 14016.
35. Blankenstein T, Coulie PG, Gilboa E. The determinants of tumour immunogenicity Nature Rev Cancer 2012; 12: 307–13. doi:10.1038/nrc3246
36. Escors D. Tumour Immunogenicity, Antigen Presentation, and Immunological Barriers in Cancer Immunotherapy. New J Science 2014. ID 734515, http://dx.doi.org/10.1155/2014/734515
37. Palmisano GL, Pistillo MP, Capanni P. Investigation of HLA class I downregulation in breast cancer by RT-PCR. Hum Immunol 2001; 62 (2): 133–9.
38. Cheng F, Gabrilovich D, Sotomayor EM. Immune tolerance in breast cancer. Breast Dis 2004; 20: 93–103.
39. Zhang Y, Morgan R, Podack ER. B cell regulation of anti-tumor immune response. Immunol Res 2013; 57 (1–3): 115–24.
40. Obiri NI, Siegel JP, Varricchio F, Puri RK. Expression of high-affinity IL-4 receptors on human melanoma, ovarian and breast carcinoma cells. Clin Exp Immunol 1994; 95 (1): 148–55.
41. Morandi А, Isacke M С. Targeting RET–interleukin-6 crosstalk to impair metastatic dissemination in breast cancer. Breast Cancer Res 2014; 16: 301 doi:10.1186/bcr3608
42. Li Y, Gao P, Yang J. Relationship between IL-10 expression and prognosis in patients with primary breast cancer. Tumour Biol 2014; 35 (11): 11533–40. doi: 10.1007/s13277-014-2249-6.
43. Moore Os, Foote Fw. The relatively favorable prognosis of medullary carcinoma of the breast. Cancer 1949; 2: 635–42.
44. Шамилов Ф.А. Динамика субпопуляций интратуморальных лимфоцитов при иммунокорригирующей терапии рака молочной железы. Автореф. дис. ... канд. мед. наук. М., 2014. / Shamilov F.A. Dinamika subpopulyatsiy intratumoral'nykh limfotsitov pri immunokorrigiruyushchey terapii raka molochnoy zhelezy. Avtoref. dis. ... kand. med. nauk. M., 2014. [in Russian]
45. Летягин В.П., Тупицын Н.Н., Артамонова Е.В. Варианты иммунофенотипа рака молочной железы и их клиническое значение для прогноза. Материалы VII Российской онкологической конференции, http://www.rosoncoweb.ru/library/congress/ru/07/05.php / Letyagin V.P., Tupitsyn N.N., Artamonova E.V. Varianty immunofenotipa raka molochnoy zhelezy i ikh klinicheskoe znachenie dlya prognoza. Materialy VII Rossiyskoy onkologicheskoy konferentsii, http://www. rosoncoweb.ru/library/congress/ru/07/05.php [in Russian]
46. Артамонова Е.В. TILs (инфильтрирующие опухоль лимфоциты) при раке молочной железы: биологическая роль и клиническое значение. Сборник материалов большой конференции RUSSCO «Рак молочной железы», 2015; с. 64–71. / Artamonova E.V. TILs (infil'triruyushchie opukhol' limfotsity) pri rake molochnoy zhelezy: biologicheskaya rol' i klinicheskoe znachenie. Sbornik materialov bol'shoy konferentsii RUSSCO «Rak molochnoy zhelezy», 2015; s. 64–71. [in Russian]
47. Loi S, Sirtaine N, Piette F et al. Prognostic and predictive value of tumor-infiltrating lymphocytes in a phase III randomized adjuvant breast cancer trial in node-positive breast cancer comparing the addition of docetaxel to doxorubicin with doxorubicin-based chemotherapy: BIG 02-98. J Clin Oncol 2013; 31: 860–7.
48. Wesolowski R, Carson WE 3rd2. Tumor Infiltrating Lymphocytes – The Next Step in Assessing Outcome and Response to Treatment in Patients with Breast Cancer. J Carcinog Mutagen 2014; 5 (6). pii: 199.
49. Salgado R, Denkert C, Demaria S. The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an International TILs Working Group 2014. Ann Oncol 2015; 26 (2): 259–71.
50. Adams S, Gray RJ, Demaria S еt al. Prognostic value of tumor-infiltrating lymphocytes in triple-negative breast cancers from two phase III randomized adjuvant breast cancer trials: ECOG 2197 and ECOG 1199. J Clin Oncol 2014; 32 (27): 2959–66.
51. Loi S, Michiels S, Salgado R et al. Tumor infiltrating lymphocytes are prognostic in triple negative breast cancer and predictive for trastuzumab benefit in early breast cancer: results from the FinHER trial. Ann Oncol 2014; 25: 1544–50.
52. Denkert C, von Minckwitz G, Brase JC et al. Tumor-infiltrating lymphocytes and response to neoadjuvant chemotherapy with or without Carboplatin in human epidermal growth factor receptor 2-positive and triple-negative primary breast cancers. J Clin Oncol 2015; 33 (9): 983–91.
53. Loi S, Michiels S, Salgado R et al. Abstract S1-05: Tumor infiltrating lymphocytes (TILs) indicate trastuzumab benefit in early-stage HER2-positive breast cancer (HER2+ BC). Cancer Res 2013: S1-05.
54. Gianni L, Bianchini G, Valagussa P et al. Adaptive immune system and immune checkpoints are associated with response to pertuzumab (P) and trastuzumab (H) in the NeoSphere study. Cancer Res 2012: S6-7.
55. De Kruijf EM, van Nes JG, Sajet A, et al. The predictive value of HLA class I tumor cell expression and presence of intratumoral Tregs for chemotherapy in patients with early breast cancer. Clin Cancer Res 2010; 16: 1272–80.
56. Kaneko K, Ishigami S, Kijima Y et al. Clinical implication of HLA class I expression in breast cancer. BMC Cancer 2011; 11: 454.
57. Gudmundsdóttir I, Gunnlaugur Jónasson J. Altered expression of HLA class I antigens in breast cancer: association with prognosis. Int J Cancer 2000; 89 (6): 500–5.
58. Da Silva G, Tarsia Giabardo Alves Silva T, Duarte R et al. Expression of the Classical and Nonclassical HLA Molecules in Breast Cancer International. J Breast Cancer 2013. ID 250435, http://dx.doi.org/ 10.1155/2013/250435
________________________________________________
1. Burnet M. Role of the thymus and related organs in immunity. Br Med J 1962; 2 (5308): 807–11.
2. Algarra I, Garcia-Lora A, Cabrera T et al. The selection of tumor variants with altered expression of classical and nonclassical MHC class I molecules: implications for tumor immune escape. Cancer Immunol Immunother 2004; 53: 904–10.
3. Bates GJ, Fox SB, Han C et al. Quantification of regulatory T cells enables the identification of high-risk breast cancer patients and those at risk of late relapse. J Clin Oncol 2006; 24: 5373–80.
4. Bodmer WF. The HLA system: structure and function. J Clin Pathol 1987; 40 (9): 948–58.
5. Vivier E1, Tomasello E, Baratin M et al. Functions of natural killer cells. Nat Immunol 2008; 9 (5): 503–10.
6. Teletaeva G.M. Tsitokiny i protivoopukholevyi immunitet. Prakticheskaia onkologiia. 2007; 8 (4): 211–8. [in Russian]
7. Miyashita M, Sasano H, Tamaki K et al. Tumor-infiltrating CD8+ and FOXP3+ lymphocytes in triple-negative breast cancer: its correlation with pathological complete response to neoadjuvant chemotherapy. Breast Cancer Res Treat 2014; 148 (3): 525–34.
8. Faghih Z, Erfani N, Haghshenas MR et al. Immune profiles of CD4+ lymphocyte subsets in breast cancer tumor draining lymph nodes. Immunol Lett 2014; 158 (1–2): 57–65.
9. De Kruijf EM, Sajet A, van Nes JG et al. HLA-E and HLA-G expression in classical HLA class I-negative tumors is of prognostic value for clinical outcome of early breast cancer patients. J Immunol 2010; 185: 7452–9.
10. O'Callaghan CA, Bell JI. Structure and function of the human MHC class Ib molecules HLA-E, HLA-F and HLA-G. Immunol Rev 1998; 163: 129–38.
11. Bjorkman PJ, Saper MA, Samraoui B. Structure of the human class I histocompatibility antigen, HLA-A2. Nature 1987; 329: 506–12. doi:10.1038/329506a0
12. Bjorkman PJ. MHC restriction in three dimensions: a view of T cell receptor/ligand interactions. Cell 1997; 89: 167.
13. Krensky AM. The HLA system, antigen processing and presentation. Kidney Int Suppl 1997; 58: S2.
14. Srikanth Nagalla, Chou JW, Willingham MC et al. Interactions between immunity, proliferation and molecular subtype in breast cancer prognosis. Genome Biology 2013; 14: R34 http://genomebiology. com/2013/14/4/R34
15. Castellino F, Germain RN. Cooperation between CD4+ and CD8+ T cells: when, where, and how. Annu Rev Immunol 2006; 24: 519–40.
16. Corthay A, Skovseth DK, Lundin KU. Primary Antitumor Immune Response Mediated by CD4+ T Cells. Immunity 2005; 22: 371–83.
17. Shanker A, Verdeil G, Buferne M. CD8 T cells help for innate antitumor immunity. J.Immunol 2007; 179: 6651–62, www.jimmunol.org/content/179/10/6651
18. Bromley SK, Iaboni A, Davis SJ. The immunological synapse and CD28-CD80 interactions. Nat Immunol 2001; 2 (12): 1159–66.
19. Liu F, Lang R, Zhao J et al. CD8(+) cytotoxic T cell and FOXP3(+) regulatory T cell infiltration in relation to breast cancer survival and molecular subtypes. Breast Cancer Res Treat 2011; 130: 645–55.
20. Sakaguchi S. Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat Immunol 2005; 6 (4): 345–52.
21. Trapani JA, Smyth MJ. Functional significance of the perforin/granzyme cell death pathway. Nat Rev Immunol 2002; 2 (10): 735–47.
22. Strand S, Hofmann WJ, Hug H. Lymphocyte apoptosis induced by CD95 (APO−1/Fas) ligand-expressing tumor cells – A mechanism of immune evasion? Nature Medicine 1996; 2: 1361–6. doi:10.1038/nm1296-1361
23. Wu J, Lanier LL. Natural killer cells and cancer. Adv Cancer Res 2003; 90: 127–56.
24. Waldhauer I, Steinle A. NK cells and cancer immunosurveillance. Oncogene 2008; 27: 5932–43. doi:10.1038/onc.2008.267
25. Schlegel UP, Lang P. Natural Killer Cell Mediated Antibody-Dependent Cellular Cytotoxicity in Tumor Immunotherapy with Therapeutic Antibodies Front Immunol. 2013; 4: 76. doi: 10.3389/fimmu.2013.00076
26. Alderson KL, Sondel PM. Clinical cancer therapy by NK cells via antibody-dependent cell-mediated cytotoxicity. J Biomed Biotechnol 2011; 2011:379123. doi: 10.1155/2011/379123.
27. Iannello A, Ahmad A. Role of antibody-dependent cell-mediated cytotoxicity in the efficacy of therapeutic anti-cancer monoclonal antibodies. Cancer Metastasis Rev 2005; 24 (4): 487–99.
28. Alderson KL, Sondel PM. Clinical Cancer Therapy by NK Cells via Antibody-Dependent Cell-Mediated Cytotoxicity. J Biomed Biotech 2011; 2011. ID 379123, http://dx.doi.org/10.1155/2011/379123
29. García-Tuñón I, Mónica Ricote, Antonio Ruiz A. Influence of IFN-gamma and its receptors in human breast cancer. BMC Cancer 2007; 7: 158. doi: 10.1186/1471-2407-7-158
30. Pantschenko AG, Pushkar I, Anderson KH. The interleukin-1 family of cytokines and receptors in human breast cancer: implications for tumor progression. Int J Oncol 2003; 23 (2): 269–84.
31. Hatem Soliman Immunotherapy Strategies in the Treatment of Breast Cancer/ Cancer Control 2013; 20 (1): 17–21.
32. Nagai S, Toi M. Interleukin-4 and breast cancer. Breast Cancer 2000; 7 (3): 181–6.
33. Dethlefsen C, Højfeldt G, Hojman P. The role of intratumoral and systemic IL-6 in breast cancer. Breast Cancer Res Treat 2013; 138 (3): 657–64. doi: 10.1007/s10549-013-2488-z.
34. Rao VS, Alabi A, Dyer CE. IL-10 and IL-12 expression in breast cancer patients and effect of therapy. J Clinical Oncology 2008; 26: 15S (May 20 Suppl.). 14016.
35. Blankenstein T, Coulie PG, Gilboa E. The determinants of tumour immunogenicity Nature Rev Cancer 2012; 12: 307–13. doi:10.1038/nrc3246
36. Escors D. Tumour Immunogenicity, Antigen Presentation, and Immunological Barriers in Cancer Immunotherapy. New J Science 2014. ID 734515, http://dx.doi.org/10.1155/2014/734515
37. Palmisano GL, Pistillo MP, Capanni P. Investigation of HLA class I downregulation in breast cancer by RT-PCR. Hum Immunol 2001; 62 (2): 133–9.
38. Cheng F, Gabrilovich D, Sotomayor EM. Immune tolerance in breast cancer. Breast Dis 2004; 20: 93–103.
39. Zhang Y, Morgan R, Podack ER. B cell regulation of anti-tumor immune response. Immunol Res 2013; 57 (1–3): 115–24.
40. Obiri NI, Siegel JP, Varricchio F, Puri RK. Expression of high-affinity IL-4 receptors on human melanoma, ovarian and breast carcinoma cells. Clin Exp Immunol 1994; 95 (1): 148–55.
41. Morandi А, Isacke M С. Targeting RET–interleukin-6 crosstalk to impair metastatic dissemination in breast cancer. Breast Cancer Res 2014; 16: 301 doi:10.1186/bcr3608
42. Li Y, Gao P, Yang J. Relationship between IL-10 expression and prognosis in patients with primary breast cancer. Tumour Biol 2014; 35 (11): 11533–40. doi: 10.1007/s13277-014-2249-6.
43. Moore Os, Foote Fw. The relatively favorable prognosis of medullary carcinoma of the breast. Cancer 1949; 2: 635–42.
44. Shamilov F.A. Dinamika subpopulyatsiy intratumoral'nykh limfotsitov pri immunokorrigiruyushchey terapii raka molochnoy zhelezy. Avtoref. dis. ... kand. med. nauk. M., 2014. [in Russian]
45. Letyagin V.P., Tupitsyn N.N., Artamonova E.V. Varianty immunofenotipa raka molochnoy zhelezy i ikh klinicheskoe znachenie dlya prognoza. Materialy VII Rossiyskoy onkologicheskoy konferentsii, http://www. rosoncoweb.ru/library/congress/ru/07/05.php [in Russian]
46. Artamonova E.V. TILs (infil'triruyushchie opukhol' limfotsity) pri rake molochnoy zhelezy: biologicheskaya rol' i klinicheskoe znachenie. Sbornik materialov bol'shoy konferentsii RUSSCO «Rak molochnoy zhelezy», 2015; s. 64–71. [in Russian]
47. Loi S, Sirtaine N, Piette F et al. Prognostic and predictive value of tumor-infiltrating lymphocytes in a phase III randomized adjuvant breast cancer trial in node-positive breast cancer comparing the addition of docetaxel to doxorubicin with doxorubicin-based chemotherapy: BIG 02-98. J Clin Oncol 2013; 31: 860–7.
48. Wesolowski R, Carson WE 3rd2. Tumor Infiltrating Lymphocytes – The Next Step in Assessing Outcome and Response to Treatment in Patients with Breast Cancer. J Carcinog Mutagen 2014; 5 (6). pii: 199.
49. Salgado R, Denkert C, Demaria S. The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an International TILs Working Group 2014. Ann Oncol 2015; 26 (2): 259–71.
50. Adams S, Gray RJ, Demaria S еt al. Prognostic value of tumor-infiltrating lymphocytes in triple-negative breast cancers from two phase III randomized adjuvant breast cancer trials: ECOG 2197 and ECOG 1199. J Clin Oncol 2014; 32 (27): 2959–66.
51. Loi S, Michiels S, Salgado R et al. Tumor infiltrating lymphocytes are prognostic in triple negative breast cancer and predictive for trastuzumab benefit in early breast cancer: results from the FinHER trial. Ann Oncol 2014; 25: 1544–50.
52. Denkert C, von Minckwitz G, Brase JC et al. Tumor-infiltrating lymphocytes and response to neoadjuvant chemotherapy with or without Carboplatin in human epidermal growth factor receptor 2-positive and triple-negative primary breast cancers. J Clin Oncol 2015; 33 (9): 983–91.
53. Loi S, Michiels S, Salgado R et al. Abstract S1-05: Tumor infiltrating lymphocytes (TILs) indicate trastuzumab benefit in early-stage HER2-positive breast cancer (HER2+ BC). Cancer Res 2013: S1-05.
54. Gianni L, Bianchini G, Valagussa P et al. Adaptive immune system and immune checkpoints are associated with response to pertuzumab (P) and trastuzumab (H) in the NeoSphere study. Cancer Res 2012: S6-7.
55. De Kruijf EM, van Nes JG, Sajet A, et al. The predictive value of HLA class I tumor cell expression and presence of intratumoral Tregs for chemotherapy in patients with early breast cancer. Clin Cancer Res 2010; 16: 1272–80.
56. Kaneko K, Ishigami S, Kijima Y et al. Clinical implication of HLA class I expression in breast cancer. BMC Cancer 2011; 11: 454.
57. Gudmundsdóttir I, Gunnlaugur Jónasson J. Altered expression of HLA class I antigens in breast cancer: association with prognosis. Int J Cancer 2000; 89 (6): 500–5.
58. Da Silva G, Tarsia Giabardo Alves Silva T, Duarte R et al. Expression of the Classical and Nonclassical HLA Molecules in Breast Cancer International. J Breast Cancer 2013. ID 250435, http://dx.doi.org/ 10.1155/2013/250435
Авторы
И.В.Колядина*, И.В.Поддубная
ГБОУ ДПО Российская медицинская академия последипломного образования Минздрава России. 125993, Россия, Москва, ул. Баррикадная, д. 2/1;
ФГБНУ Российский онкологический научный центр им. Н.Н.Блохина. 115478, Россия, Москва, Каширское ш., д. 23
*irinakolyadina@yandex.ru
________________________________________________
I.V.Kolyadina*, I.V.Poddubnaya
Russian Medical Academy for Postgraduate Education of the Ministry of Health of the Russian Federation. 125993, Russian Federation, Moscow, ul. Barrikadnaia, d. 2/1;
N.N.Blokhin Russian Cancer Research Center. 115478, Russian Federation, Moscow, Kashirskoe sh., d. 23
*irinakolyadina@yandex.ru