Материалы доступны только для специалистов сферы здравоохранения.
Чтобы посмотреть материал полностью
Авторизуйтесь
или зарегистрируйтесь.
Иммунобиология рака молочной железы: теории и перспективы (обзор)
Иммунобиология рака молочной железы: теории и перспективы (обзор)
Колядина И.В., Поддубная И.В. Иммунобиология рака молочной железы: теории и перспективы (обзор). Современная онкология. 2015; 1: 12–18.
________________________________________________
Материалы доступны только для специалистов сферы здравоохранения.
Чтобы посмотреть материал полностью
Авторизуйтесь
или зарегистрируйтесь.
Аннотация
В данном обзоре подробно описаны основные механизмы реализации противоопухолевого иммунитета, представлены значение маркеров генов гистосовместимости HLA I и II класса в антигенной активации лимфоцитов и роль Т-клеточного звена (Т-киллеров CD8+ и Т-хелперов CD4+) и NK-клеток в реализации противоопухолевого клеточного ответа. Описаны уникальные механизмы кооперированного клеточно-гуморального противоопухолевого иммунитета – антителозависимой клеточноопосредованной цитотоксичности – и оценена ее роль в противоопухолевой защите организма. Достоинства системы противоопухолевого иммунитета – это способность Т-лимфоцитов выявлять опухолевые антигены в составе молекул гистосовместимости HLA I и II класса, а NK-клеток – уничтожать опухолевые клетки без экспрессии HLA I класса и участвовать в антителозависимой клеточноопосредованной цитотоксичности. В основе ухода мутированной клетки от иммунного надзора и дальнейшем ее клонировании лежат важные иммунные процессы; прогрессия опухоли может происходить в результате прорыва иммунной защиты организма (несовершенства противоопухолевого иммунитета) либо вследствие «иммунной невидимости» опухоли. Причины несовершенства противоопухолевой иммунной защиты: потеря опухолью презентации молекул гистосовместимости HLA I и II класса, приводящая к невозможности реализации Т-клеточной цитотоксичности, экспрессия HLA-E и HLA-G, приводящая к блокаде активности NK-клеток, наличие супрессорных регуляторных Foxp3(+)-лимфоцитов в опухоли, развитие иммунологической толерантности (устойчивой «неотвечаемости» иммунной системы) при росте и диссеминации опухоли. Представлены перспективные направления изучения прогностической и предсказывающей роли иммунных характеристик опухоли: субопуляционного состава стромальных и интратуморальных TILs, экспрессии маркеров классических генов гистосовместимости HLA I и II класса и неклассических супрессорных молекул HLA-E и HLA-G и инфильтрации опухоли регуляторными Foxp3(+)-лимфоцитами. Изучение клеточных и молекулярных иммунных механизмов поможет лучшему пониманию канцерогенеза и позволит оптимизировать лечебную стратегию при раке молочной железы.
Ключевые слова: иммунология рака молочной железы, гены гистосовместимости HLA I и II класса, экспрессия маркеров HLA-E и HLA-G, опухолевая инфильтрация Foxp3(+)-лимфоцитами, антителозависимая клеточноопосредованная цитотоксичность, противоопухолевый иммунитет.
Key words: breast cancer immunology, HLA class I and II histocompatibility genes, the expression of HLA-E and HLA-G cell markers, tumor-infiltrating Foxp3(+)-lymphocyte, antibody-dependent cell-mediated cytotoxicity, antitumor immunity.
Ключевые слова: иммунология рака молочной железы, гены гистосовместимости HLA I и II класса, экспрессия маркеров HLA-E и HLA-G, опухолевая инфильтрация Foxp3(+)-лимфоцитами, антителозависимая клеточноопосредованная цитотоксичность, противоопухолевый иммунитет.
________________________________________________
Key words: breast cancer immunology, HLA class I and II histocompatibility genes, the expression of HLA-E and HLA-G cell markers, tumor-infiltrating Foxp3(+)-lymphocyte, antibody-dependent cell-mediated cytotoxicity, antitumor immunity.
Полный текст
Список литературы
1. Burnet M. Role of the thymus and related organs in immunity. Br Med J 1962; 2 (5308): 807–11.
2. Algarra I, Garcia-Lora A, Cabrera T et al. The selection of tumor variants with altered expression of classical and nonclassical MHC class I molecules: implications for tumor immune escape. Cancer Immunol Immunother 2004; 53: 904–10.
3. Bates GJ, Fox SB, Han C et al. Quantification of regulatory T cells enables the identification of high-risk breast cancer patients and those at risk of late relapse. J Clin Oncol 2006; 24: 5373–80.
4. Bodmer WF. The HLA system: structure and function. J Clin Pathol 1987; 40 (9): 948–58.
5. Vivier E1, Tomasello E, Baratin M et al. Functions of natural killer cells. Nat Immunol 2008; 9 (5): 503–10.
6. Телетаева Г.М. Цитокины и противоопухолевый иммунитет. Практическая онкология. 2007; 8 (4): 211–8. / Teletaeva G.M. Tsitokiny i protivoopukholevyi immunitet. Prakticheskaia onkologiia. 2007; 8 (4): 211–8. [in Russian]
7. Miyashita M, Sasano H, Tamaki K et al. Tumor-infiltrating CD8+ and FOXP3+ lymphocytes in triple-negative breast cancer: its correlation with pathological complete response to neoadjuvant chemotherapy. Breast Cancer Res Treat 2014; 148 (3): 525–34.
8. Faghih Z, Erfani N, Haghshenas MR et al. Immune profiles of CD4+ lymphocyte subsets in breast cancer tumor draining lymph nodes. Immunol Lett 2014; 158 (1–2): 57–65.
9. De Kruijf EM, Sajet A, van Nes JG et al. HLA-E and HLA-G expression in classical HLA class I-negative tumors is of prognostic value for clinical outcome of early breast cancer patients. J Immunol 2010; 185: 7452–9.
10. O'Callaghan CA, Bell JI. Structure and function of the human MHC class Ib molecules HLA-E, HLA-F and HLA-G. Immunol Rev 1998; 163: 129–38.
11. Bjorkman PJ, Saper MA, Samraoui B. Structure of the human class I histocompatibility antigen, HLA-A2. Nature 1987; 329: 506–12. doi:10.1038/329506a0
12. Bjorkman PJ. MHC restriction in three dimensions: a view of T cell receptor/ligand interactions. Cell 1997; 89: 167.
13. Krensky AM. The HLA system, antigen processing and presentation. Kidney Int Suppl 1997; 58: S2.
14. Srikanth Nagalla, Chou JW, Willingham MC et al. Interactions between immunity, proliferation and molecular subtype in breast cancer prognosis. Genome Biology 2013; 14: R34 http://genomebiology. com/2013/14/4/R34
15. Castellino F, Germain RN. Cooperation between CD4+ and CD8+ T cells: when, where, and how. Annu Rev Immunol 2006; 24: 519–40.
16. Corthay A, Skovseth DK, Lundin KU. Primary Antitumor Immune Response Mediated by CD4+ T Cells. Immunity 2005; 22: 371–83.
17. Shanker A, Verdeil G, Buferne M. CD8 T cells help for innate antitumor immunity. J.Immunol 2007; 179: 6651–62, www.jimmunol.org/content/179/10/6651
18. Bromley SK, Iaboni A, Davis SJ. The immunological synapse and CD28-CD80 interactions. Nat Immunol 2001; 2 (12): 1159–66.
19. Liu F, Lang R, Zhao J et al. CD8(+) cytotoxic T cell and FOXP3(+) regulatory T cell infiltration in relation to breast cancer survival and molecular subtypes. Breast Cancer Res Treat 2011; 130: 645–55.
20. Sakaguchi S. Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat Immunol 2005; 6 (4): 345–52.
21. Trapani JA, Smyth MJ. Functional significance of the perforin/granzyme cell death pathway. Nat Rev Immunol 2002; 2 (10): 735–47.
22. Strand S, Hofmann WJ, Hug H. Lymphocyte apoptosis induced by CD95 (APO−1/Fas) ligand-expressing tumor cells – A mechanism of immune evasion? Nature Medicine 1996; 2: 1361–6. doi:10.1038/nm1296-1361
23. Wu J, Lanier LL. Natural killer cells and cancer. Adv Cancer Res 2003; 90: 127–56.
24. Waldhauer I, Steinle A. NK cells and cancer immunosurveillance. Oncogene 2008; 27: 5932–43. doi:10.1038/onc.2008.267
25. Schlegel UP, Lang P. Natural Killer Cell Mediated Antibody-Dependent Cellular Cytotoxicity in Tumor Immunotherapy with Therapeutic Antibodies Front Immunol. 2013; 4: 76. doi: 10.3389/fimmu.2013.00076
26. Alderson KL, Sondel PM. Clinical cancer therapy by NK cells via antibody-dependent cell-mediated cytotoxicity. J Biomed Biotechnol 2011; 2011:379123. doi: 10.1155/2011/379123.
27. Iannello A, Ahmad A. Role of antibody-dependent cell-mediated cytotoxicity in the efficacy of therapeutic anti-cancer monoclonal antibodies. Cancer Metastasis Rev 2005; 24 (4): 487–99.
28. Alderson KL, Sondel PM. Clinical Cancer Therapy by NK Cells via Antibody-Dependent Cell-Mediated Cytotoxicity. J Biomed Biotech 2011; 2011. ID 379123, http://dx.doi.org/10.1155/2011/379123
29. García-Tuñón I, Mónica Ricote, Antonio Ruiz A. Influence of IFN-gamma and its receptors in human breast cancer. BMC Cancer 2007; 7: 158. doi: 10.1186/1471-2407-7-158
30. Pantschenko AG, Pushkar I, Anderson KH. The interleukin-1 family of cytokines and receptors in human breast cancer: implications for tumor progression. Int J Oncol 2003; 23 (2): 269–84.
31. Hatem Soliman Immunotherapy Strategies in the Treatment of Breast Cancer/ Cancer Control 2013; 20 (1): 17–21.
32. Nagai S, Toi M. Interleukin-4 and breast cancer. Breast Cancer 2000; 7 (3): 181–6.
33. Dethlefsen C, Højfeldt G, Hojman P. The role of intratumoral and systemic IL-6 in breast cancer. Breast Cancer Res Treat 2013; 138 (3): 657–64. doi: 10.1007/s10549-013-2488-z.
34. Rao VS, Alabi A, Dyer CE. IL-10 and IL-12 expression in breast cancer patients and effect of therapy. J Clinical Oncology 2008; 26: 15S (May 20 Suppl.). 14016.
35. Blankenstein T, Coulie PG, Gilboa E. The determinants of tumour immunogenicity Nature Rev Cancer 2012; 12: 307–13. doi:10.1038/nrc3246
36. Escors D. Tumour Immunogenicity, Antigen Presentation, and Immunological Barriers in Cancer Immunotherapy. New J Science 2014. ID 734515, http://dx.doi.org/10.1155/2014/734515
37. Palmisano GL, Pistillo MP, Capanni P. Investigation of HLA class I downregulation in breast cancer by RT-PCR. Hum Immunol 2001; 62 (2): 133–9.
38. Cheng F, Gabrilovich D, Sotomayor EM. Immune tolerance in breast cancer. Breast Dis 2004; 20: 93–103.
39. Zhang Y, Morgan R, Podack ER. B cell regulation of anti-tumor immune response. Immunol Res 2013; 57 (1–3): 115–24.
40. Obiri NI, Siegel JP, Varricchio F, Puri RK. Expression of high-affinity IL-4 receptors on human melanoma, ovarian and breast carcinoma cells. Clin Exp Immunol 1994; 95 (1): 148–55.
41. Morandi А, Isacke M С. Targeting RET–interleukin-6 crosstalk to impair metastatic dissemination in breast cancer. Breast Cancer Res 2014; 16: 301 doi:10.1186/bcr3608
42. Li Y, Gao P, Yang J. Relationship between IL-10 expression and prognosis in patients with primary breast cancer. Tumour Biol 2014; 35 (11): 11533–40. doi: 10.1007/s13277-014-2249-6.
43. Moore Os, Foote Fw. The relatively favorable prognosis of medullary carcinoma of the breast. Cancer 1949; 2: 635–42.
44. Шамилов Ф.А. Динамика субпопуляций интратуморальных лимфоцитов при иммунокорригирующей терапии рака молочной железы. Автореф. дис. ... канд. мед. наук. М., 2014. / Shamilov F.A. Dinamika subpopulyatsiy intratumoral'nykh limfotsitov pri immunokorrigiruyushchey terapii raka molochnoy zhelezy. Avtoref. dis. ... kand. med. nauk. M., 2014. [in Russian]
45. Летягин В.П., Тупицын Н.Н., Артамонова Е.В. Варианты иммунофенотипа рака молочной железы и их клиническое значение для прогноза. Материалы VII Российской онкологической конференции, http://www.rosoncoweb.ru/library/congress/ru/07/05.php / Letyagin V.P., Tupitsyn N.N., Artamonova E.V. Varianty immunofenotipa raka molochnoy zhelezy i ikh klinicheskoe znachenie dlya prognoza. Materialy VII Rossiyskoy onkologicheskoy konferentsii, http://www. rosoncoweb.ru/library/congress/ru/07/05.php [in Russian]
46. Артамонова Е.В. TILs (инфильтрирующие опухоль лимфоциты) при раке молочной железы: биологическая роль и клиническое значение. Сборник материалов большой конференции RUSSCO «Рак молочной железы», 2015; с. 64–71. / Artamonova E.V. TILs (infil'triruyushchie opukhol' limfotsity) pri rake molochnoy zhelezy: biologicheskaya rol' i klinicheskoe znachenie. Sbornik materialov bol'shoy konferentsii RUSSCO «Rak molochnoy zhelezy», 2015; s. 64–71. [in Russian]
47. Loi S, Sirtaine N, Piette F et al. Prognostic and predictive value of tumor-infiltrating lymphocytes in a phase III randomized adjuvant breast cancer trial in node-positive breast cancer comparing the addition of docetaxel to doxorubicin with doxorubicin-based chemotherapy: BIG 02-98. J Clin Oncol 2013; 31: 860–7.
48. Wesolowski R, Carson WE 3rd2. Tumor Infiltrating Lymphocytes – The Next Step in Assessing Outcome and Response to Treatment in Patients with Breast Cancer. J Carcinog Mutagen 2014; 5 (6). pii: 199.
49. Salgado R, Denkert C, Demaria S. The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an International TILs Working Group 2014. Ann Oncol 2015; 26 (2): 259–71.
50. Adams S, Gray RJ, Demaria S еt al. Prognostic value of tumor-infiltrating lymphocytes in triple-negative breast cancers from two phase III randomized adjuvant breast cancer trials: ECOG 2197 and ECOG 1199. J Clin Oncol 2014; 32 (27): 2959–66.
51. Loi S, Michiels S, Salgado R et al. Tumor infiltrating lymphocytes are prognostic in triple negative breast cancer and predictive for trastuzumab benefit in early breast cancer: results from the FinHER trial. Ann Oncol 2014; 25: 1544–50.
52. Denkert C, von Minckwitz G, Brase JC et al. Tumor-infiltrating lymphocytes and response to neoadjuvant chemotherapy with or without Carboplatin in human epidermal growth factor receptor 2-positive and triple-negative primary breast cancers. J Clin Oncol 2015; 33 (9): 983–91.
53. Loi S, Michiels S, Salgado R et al. Abstract S1-05: Tumor infiltrating lymphocytes (TILs) indicate trastuzumab benefit in early-stage HER2-positive breast cancer (HER2+ BC). Cancer Res 2013: S1-05.
54. Gianni L, Bianchini G, Valagussa P et al. Adaptive immune system and immune checkpoints are associated with response to pertuzumab (P) and trastuzumab (H) in the NeoSphere study. Cancer Res 2012: S6-7.
55. De Kruijf EM, van Nes JG, Sajet A, et al. The predictive value of HLA class I tumor cell expression and presence of intratumoral Tregs for chemotherapy in patients with early breast cancer. Clin Cancer Res 2010; 16: 1272–80.
56. Kaneko K, Ishigami S, Kijima Y et al. Clinical implication of HLA class I expression in breast cancer. BMC Cancer 2011; 11: 454.
57. Gudmundsdóttir I, Gunnlaugur Jónasson J. Altered expression of HLA class I antigens in breast cancer: association with prognosis. Int J Cancer 2000; 89 (6): 500–5.
58. Da Silva G, Tarsia Giabardo Alves Silva T, Duarte R et al. Expression of the Classical and Nonclassical HLA Molecules in Breast Cancer International. J Breast Cancer 2013. ID 250435, http://dx.doi.org/ 10.1155/2013/250435
2. Algarra I, Garcia-Lora A, Cabrera T et al. The selection of tumor variants with altered expression of classical and nonclassical MHC class I molecules: implications for tumor immune escape. Cancer Immunol Immunother 2004; 53: 904–10.
3. Bates GJ, Fox SB, Han C et al. Quantification of regulatory T cells enables the identification of high-risk breast cancer patients and those at risk of late relapse. J Clin Oncol 2006; 24: 5373–80.
4. Bodmer WF. The HLA system: structure and function. J Clin Pathol 1987; 40 (9): 948–58.
5. Vivier E1, Tomasello E, Baratin M et al. Functions of natural killer cells. Nat Immunol 2008; 9 (5): 503–10.
6. Teletaeva G.M. Tsitokiny i protivoopukholevyi immunitet. Prakticheskaia onkologiia. 2007; 8 (4): 211–8. [in Russian]
7. Miyashita M, Sasano H, Tamaki K et al. Tumor-infiltrating CD8+ and FOXP3+ lymphocytes in triple-negative breast cancer: its correlation with pathological complete response to neoadjuvant chemotherapy. Breast Cancer Res Treat 2014; 148 (3): 525–34.
8. Faghih Z, Erfani N, Haghshenas MR et al. Immune profiles of CD4+ lymphocyte subsets in breast cancer tumor draining lymph nodes. Immunol Lett 2014; 158 (1–2): 57–65.
9. De Kruijf EM, Sajet A, van Nes JG et al. HLA-E and HLA-G expression in classical HLA class I-negative tumors is of prognostic value for clinical outcome of early breast cancer patients. J Immunol 2010; 185: 7452–9.
10. O'Callaghan CA, Bell JI. Structure and function of the human MHC class Ib molecules HLA-E, HLA-F and HLA-G. Immunol Rev 1998; 163: 129–38.
11. Bjorkman PJ, Saper MA, Samraoui B. Structure of the human class I histocompatibility antigen, HLA-A2. Nature 1987; 329: 506–12. doi:10.1038/329506a0
12. Bjorkman PJ. MHC restriction in three dimensions: a view of T cell receptor/ligand interactions. Cell 1997; 89: 167.
13. Krensky AM. The HLA system, antigen processing and presentation. Kidney Int Suppl 1997; 58: S2.
14. Srikanth Nagalla, Chou JW, Willingham MC et al. Interactions between immunity, proliferation and molecular subtype in breast cancer prognosis. Genome Biology 2013; 14: R34 http://genomebiology. com/2013/14/4/R34
15. Castellino F, Germain RN. Cooperation between CD4+ and CD8+ T cells: when, where, and how. Annu Rev Immunol 2006; 24: 519–40.
16. Corthay A, Skovseth DK, Lundin KU. Primary Antitumor Immune Response Mediated by CD4+ T Cells. Immunity 2005; 22: 371–83.
17. Shanker A, Verdeil G, Buferne M. CD8 T cells help for innate antitumor immunity. J.Immunol 2007; 179: 6651–62, www.jimmunol.org/content/179/10/6651
18. Bromley SK, Iaboni A, Davis SJ. The immunological synapse and CD28-CD80 interactions. Nat Immunol 2001; 2 (12): 1159–66.
19. Liu F, Lang R, Zhao J et al. CD8(+) cytotoxic T cell and FOXP3(+) regulatory T cell infiltration in relation to breast cancer survival and molecular subtypes. Breast Cancer Res Treat 2011; 130: 645–55.
20. Sakaguchi S. Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat Immunol 2005; 6 (4): 345–52.
21. Trapani JA, Smyth MJ. Functional significance of the perforin/granzyme cell death pathway. Nat Rev Immunol 2002; 2 (10): 735–47.
22. Strand S, Hofmann WJ, Hug H. Lymphocyte apoptosis induced by CD95 (APO−1/Fas) ligand-expressing tumor cells – A mechanism of immune evasion? Nature Medicine 1996; 2: 1361–6. doi:10.1038/nm1296-1361
23. Wu J, Lanier LL. Natural killer cells and cancer. Adv Cancer Res 2003; 90: 127–56.
24. Waldhauer I, Steinle A. NK cells and cancer immunosurveillance. Oncogene 2008; 27: 5932–43. doi:10.1038/onc.2008.267
25. Schlegel UP, Lang P. Natural Killer Cell Mediated Antibody-Dependent Cellular Cytotoxicity in Tumor Immunotherapy with Therapeutic Antibodies Front Immunol. 2013; 4: 76. doi: 10.3389/fimmu.2013.00076
26. Alderson KL, Sondel PM. Clinical cancer therapy by NK cells via antibody-dependent cell-mediated cytotoxicity. J Biomed Biotechnol 2011; 2011:379123. doi: 10.1155/2011/379123.
27. Iannello A, Ahmad A. Role of antibody-dependent cell-mediated cytotoxicity in the efficacy of therapeutic anti-cancer monoclonal antibodies. Cancer Metastasis Rev 2005; 24 (4): 487–99.
28. Alderson KL, Sondel PM. Clinical Cancer Therapy by NK Cells via Antibody-Dependent Cell-Mediated Cytotoxicity. J Biomed Biotech 2011; 2011. ID 379123, http://dx.doi.org/10.1155/2011/379123
29. García-Tuñón I, Mónica Ricote, Antonio Ruiz A. Influence of IFN-gamma and its receptors in human breast cancer. BMC Cancer 2007; 7: 158. doi: 10.1186/1471-2407-7-158
30. Pantschenko AG, Pushkar I, Anderson KH. The interleukin-1 family of cytokines and receptors in human breast cancer: implications for tumor progression. Int J Oncol 2003; 23 (2): 269–84.
31. Hatem Soliman Immunotherapy Strategies in the Treatment of Breast Cancer/ Cancer Control 2013; 20 (1): 17–21.
32. Nagai S, Toi M. Interleukin-4 and breast cancer. Breast Cancer 2000; 7 (3): 181–6.
33. Dethlefsen C, Højfeldt G, Hojman P. The role of intratumoral and systemic IL-6 in breast cancer. Breast Cancer Res Treat 2013; 138 (3): 657–64. doi: 10.1007/s10549-013-2488-z.
34. Rao VS, Alabi A, Dyer CE. IL-10 and IL-12 expression in breast cancer patients and effect of therapy. J Clinical Oncology 2008; 26: 15S (May 20 Suppl.). 14016.
35. Blankenstein T, Coulie PG, Gilboa E. The determinants of tumour immunogenicity Nature Rev Cancer 2012; 12: 307–13. doi:10.1038/nrc3246
36. Escors D. Tumour Immunogenicity, Antigen Presentation, and Immunological Barriers in Cancer Immunotherapy. New J Science 2014. ID 734515, http://dx.doi.org/10.1155/2014/734515
37. Palmisano GL, Pistillo MP, Capanni P. Investigation of HLA class I downregulation in breast cancer by RT-PCR. Hum Immunol 2001; 62 (2): 133–9.
38. Cheng F, Gabrilovich D, Sotomayor EM. Immune tolerance in breast cancer. Breast Dis 2004; 20: 93–103.
39. Zhang Y, Morgan R, Podack ER. B cell regulation of anti-tumor immune response. Immunol Res 2013; 57 (1–3): 115–24.
40. Obiri NI, Siegel JP, Varricchio F, Puri RK. Expression of high-affinity IL-4 receptors on human melanoma, ovarian and breast carcinoma cells. Clin Exp Immunol 1994; 95 (1): 148–55.
41. Morandi А, Isacke M С. Targeting RET–interleukin-6 crosstalk to impair metastatic dissemination in breast cancer. Breast Cancer Res 2014; 16: 301 doi:10.1186/bcr3608
42. Li Y, Gao P, Yang J. Relationship between IL-10 expression and prognosis in patients with primary breast cancer. Tumour Biol 2014; 35 (11): 11533–40. doi: 10.1007/s13277-014-2249-6.
43. Moore Os, Foote Fw. The relatively favorable prognosis of medullary carcinoma of the breast. Cancer 1949; 2: 635–42.
44. Shamilov F.A. Dinamika subpopulyatsiy intratumoral'nykh limfotsitov pri immunokorrigiruyushchey terapii raka molochnoy zhelezy. Avtoref. dis. ... kand. med. nauk. M., 2014. [in Russian]
45. Letyagin V.P., Tupitsyn N.N., Artamonova E.V. Varianty immunofenotipa raka molochnoy zhelezy i ikh klinicheskoe znachenie dlya prognoza. Materialy VII Rossiyskoy onkologicheskoy konferentsii, http://www. rosoncoweb.ru/library/congress/ru/07/05.php [in Russian]
46. Artamonova E.V. TILs (infil'triruyushchie opukhol' limfotsity) pri rake molochnoy zhelezy: biologicheskaya rol' i klinicheskoe znachenie. Sbornik materialov bol'shoy konferentsii RUSSCO «Rak molochnoy zhelezy», 2015; s. 64–71. [in Russian]
47. Loi S, Sirtaine N, Piette F et al. Prognostic and predictive value of tumor-infiltrating lymphocytes in a phase III randomized adjuvant breast cancer trial in node-positive breast cancer comparing the addition of docetaxel to doxorubicin with doxorubicin-based chemotherapy: BIG 02-98. J Clin Oncol 2013; 31: 860–7.
48. Wesolowski R, Carson WE 3rd2. Tumor Infiltrating Lymphocytes – The Next Step in Assessing Outcome and Response to Treatment in Patients with Breast Cancer. J Carcinog Mutagen 2014; 5 (6). pii: 199.
49. Salgado R, Denkert C, Demaria S. The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an International TILs Working Group 2014. Ann Oncol 2015; 26 (2): 259–71.
50. Adams S, Gray RJ, Demaria S еt al. Prognostic value of tumor-infiltrating lymphocytes in triple-negative breast cancers from two phase III randomized adjuvant breast cancer trials: ECOG 2197 and ECOG 1199. J Clin Oncol 2014; 32 (27): 2959–66.
51. Loi S, Michiels S, Salgado R et al. Tumor infiltrating lymphocytes are prognostic in triple negative breast cancer and predictive for trastuzumab benefit in early breast cancer: results from the FinHER trial. Ann Oncol 2014; 25: 1544–50.
52. Denkert C, von Minckwitz G, Brase JC et al. Tumor-infiltrating lymphocytes and response to neoadjuvant chemotherapy with or without Carboplatin in human epidermal growth factor receptor 2-positive and triple-negative primary breast cancers. J Clin Oncol 2015; 33 (9): 983–91.
53. Loi S, Michiels S, Salgado R et al. Abstract S1-05: Tumor infiltrating lymphocytes (TILs) indicate trastuzumab benefit in early-stage HER2-positive breast cancer (HER2+ BC). Cancer Res 2013: S1-05.
54. Gianni L, Bianchini G, Valagussa P et al. Adaptive immune system and immune checkpoints are associated with response to pertuzumab (P) and trastuzumab (H) in the NeoSphere study. Cancer Res 2012: S6-7.
55. De Kruijf EM, van Nes JG, Sajet A, et al. The predictive value of HLA class I tumor cell expression and presence of intratumoral Tregs for chemotherapy in patients with early breast cancer. Clin Cancer Res 2010; 16: 1272–80.
56. Kaneko K, Ishigami S, Kijima Y et al. Clinical implication of HLA class I expression in breast cancer. BMC Cancer 2011; 11: 454.
57. Gudmundsdóttir I, Gunnlaugur Jónasson J. Altered expression of HLA class I antigens in breast cancer: association with prognosis. Int J Cancer 2000; 89 (6): 500–5.
58. Da Silva G, Tarsia Giabardo Alves Silva T, Duarte R et al. Expression of the Classical and Nonclassical HLA Molecules in Breast Cancer International. J Breast Cancer 2013. ID 250435, http://dx.doi.org/ 10.1155/2013/250435
2. Algarra I, Garcia-Lora A, Cabrera T et al. The selection of tumor variants with altered expression of classical and nonclassical MHC class I molecules: implications for tumor immune escape. Cancer Immunol Immunother 2004; 53: 904–10.
3. Bates GJ, Fox SB, Han C et al. Quantification of regulatory T cells enables the identification of high-risk breast cancer patients and those at risk of late relapse. J Clin Oncol 2006; 24: 5373–80.
4. Bodmer WF. The HLA system: structure and function. J Clin Pathol 1987; 40 (9): 948–58.
5. Vivier E1, Tomasello E, Baratin M et al. Functions of natural killer cells. Nat Immunol 2008; 9 (5): 503–10.
6. Телетаева Г.М. Цитокины и противоопухолевый иммунитет. Практическая онкология. 2007; 8 (4): 211–8. / Teletaeva G.M. Tsitokiny i protivoopukholevyi immunitet. Prakticheskaia onkologiia. 2007; 8 (4): 211–8. [in Russian]
7. Miyashita M, Sasano H, Tamaki K et al. Tumor-infiltrating CD8+ and FOXP3+ lymphocytes in triple-negative breast cancer: its correlation with pathological complete response to neoadjuvant chemotherapy. Breast Cancer Res Treat 2014; 148 (3): 525–34.
8. Faghih Z, Erfani N, Haghshenas MR et al. Immune profiles of CD4+ lymphocyte subsets in breast cancer tumor draining lymph nodes. Immunol Lett 2014; 158 (1–2): 57–65.
9. De Kruijf EM, Sajet A, van Nes JG et al. HLA-E and HLA-G expression in classical HLA class I-negative tumors is of prognostic value for clinical outcome of early breast cancer patients. J Immunol 2010; 185: 7452–9.
10. O'Callaghan CA, Bell JI. Structure and function of the human MHC class Ib molecules HLA-E, HLA-F and HLA-G. Immunol Rev 1998; 163: 129–38.
11. Bjorkman PJ, Saper MA, Samraoui B. Structure of the human class I histocompatibility antigen, HLA-A2. Nature 1987; 329: 506–12. doi:10.1038/329506a0
12. Bjorkman PJ. MHC restriction in three dimensions: a view of T cell receptor/ligand interactions. Cell 1997; 89: 167.
13. Krensky AM. The HLA system, antigen processing and presentation. Kidney Int Suppl 1997; 58: S2.
14. Srikanth Nagalla, Chou JW, Willingham MC et al. Interactions between immunity, proliferation and molecular subtype in breast cancer prognosis. Genome Biology 2013; 14: R34 http://genomebiology. com/2013/14/4/R34
15. Castellino F, Germain RN. Cooperation between CD4+ and CD8+ T cells: when, where, and how. Annu Rev Immunol 2006; 24: 519–40.
16. Corthay A, Skovseth DK, Lundin KU. Primary Antitumor Immune Response Mediated by CD4+ T Cells. Immunity 2005; 22: 371–83.
17. Shanker A, Verdeil G, Buferne M. CD8 T cells help for innate antitumor immunity. J.Immunol 2007; 179: 6651–62, www.jimmunol.org/content/179/10/6651
18. Bromley SK, Iaboni A, Davis SJ. The immunological synapse and CD28-CD80 interactions. Nat Immunol 2001; 2 (12): 1159–66.
19. Liu F, Lang R, Zhao J et al. CD8(+) cytotoxic T cell and FOXP3(+) regulatory T cell infiltration in relation to breast cancer survival and molecular subtypes. Breast Cancer Res Treat 2011; 130: 645–55.
20. Sakaguchi S. Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat Immunol 2005; 6 (4): 345–52.
21. Trapani JA, Smyth MJ. Functional significance of the perforin/granzyme cell death pathway. Nat Rev Immunol 2002; 2 (10): 735–47.
22. Strand S, Hofmann WJ, Hug H. Lymphocyte apoptosis induced by CD95 (APO−1/Fas) ligand-expressing tumor cells – A mechanism of immune evasion? Nature Medicine 1996; 2: 1361–6. doi:10.1038/nm1296-1361
23. Wu J, Lanier LL. Natural killer cells and cancer. Adv Cancer Res 2003; 90: 127–56.
24. Waldhauer I, Steinle A. NK cells and cancer immunosurveillance. Oncogene 2008; 27: 5932–43. doi:10.1038/onc.2008.267
25. Schlegel UP, Lang P. Natural Killer Cell Mediated Antibody-Dependent Cellular Cytotoxicity in Tumor Immunotherapy with Therapeutic Antibodies Front Immunol. 2013; 4: 76. doi: 10.3389/fimmu.2013.00076
26. Alderson KL, Sondel PM. Clinical cancer therapy by NK cells via antibody-dependent cell-mediated cytotoxicity. J Biomed Biotechnol 2011; 2011:379123. doi: 10.1155/2011/379123.
27. Iannello A, Ahmad A. Role of antibody-dependent cell-mediated cytotoxicity in the efficacy of therapeutic anti-cancer monoclonal antibodies. Cancer Metastasis Rev 2005; 24 (4): 487–99.
28. Alderson KL, Sondel PM. Clinical Cancer Therapy by NK Cells via Antibody-Dependent Cell-Mediated Cytotoxicity. J Biomed Biotech 2011; 2011. ID 379123, http://dx.doi.org/10.1155/2011/379123
29. García-Tuñón I, Mónica Ricote, Antonio Ruiz A. Influence of IFN-gamma and its receptors in human breast cancer. BMC Cancer 2007; 7: 158. doi: 10.1186/1471-2407-7-158
30. Pantschenko AG, Pushkar I, Anderson KH. The interleukin-1 family of cytokines and receptors in human breast cancer: implications for tumor progression. Int J Oncol 2003; 23 (2): 269–84.
31. Hatem Soliman Immunotherapy Strategies in the Treatment of Breast Cancer/ Cancer Control 2013; 20 (1): 17–21.
32. Nagai S, Toi M. Interleukin-4 and breast cancer. Breast Cancer 2000; 7 (3): 181–6.
33. Dethlefsen C, Højfeldt G, Hojman P. The role of intratumoral and systemic IL-6 in breast cancer. Breast Cancer Res Treat 2013; 138 (3): 657–64. doi: 10.1007/s10549-013-2488-z.
34. Rao VS, Alabi A, Dyer CE. IL-10 and IL-12 expression in breast cancer patients and effect of therapy. J Clinical Oncology 2008; 26: 15S (May 20 Suppl.). 14016.
35. Blankenstein T, Coulie PG, Gilboa E. The determinants of tumour immunogenicity Nature Rev Cancer 2012; 12: 307–13. doi:10.1038/nrc3246
36. Escors D. Tumour Immunogenicity, Antigen Presentation, and Immunological Barriers in Cancer Immunotherapy. New J Science 2014. ID 734515, http://dx.doi.org/10.1155/2014/734515
37. Palmisano GL, Pistillo MP, Capanni P. Investigation of HLA class I downregulation in breast cancer by RT-PCR. Hum Immunol 2001; 62 (2): 133–9.
38. Cheng F, Gabrilovich D, Sotomayor EM. Immune tolerance in breast cancer. Breast Dis 2004; 20: 93–103.
39. Zhang Y, Morgan R, Podack ER. B cell regulation of anti-tumor immune response. Immunol Res 2013; 57 (1–3): 115–24.
40. Obiri NI, Siegel JP, Varricchio F, Puri RK. Expression of high-affinity IL-4 receptors on human melanoma, ovarian and breast carcinoma cells. Clin Exp Immunol 1994; 95 (1): 148–55.
41. Morandi А, Isacke M С. Targeting RET–interleukin-6 crosstalk to impair metastatic dissemination in breast cancer. Breast Cancer Res 2014; 16: 301 doi:10.1186/bcr3608
42. Li Y, Gao P, Yang J. Relationship between IL-10 expression and prognosis in patients with primary breast cancer. Tumour Biol 2014; 35 (11): 11533–40. doi: 10.1007/s13277-014-2249-6.
43. Moore Os, Foote Fw. The relatively favorable prognosis of medullary carcinoma of the breast. Cancer 1949; 2: 635–42.
44. Шамилов Ф.А. Динамика субпопуляций интратуморальных лимфоцитов при иммунокорригирующей терапии рака молочной железы. Автореф. дис. ... канд. мед. наук. М., 2014. / Shamilov F.A. Dinamika subpopulyatsiy intratumoral'nykh limfotsitov pri immunokorrigiruyushchey terapii raka molochnoy zhelezy. Avtoref. dis. ... kand. med. nauk. M., 2014. [in Russian]
45. Летягин В.П., Тупицын Н.Н., Артамонова Е.В. Варианты иммунофенотипа рака молочной железы и их клиническое значение для прогноза. Материалы VII Российской онкологической конференции, http://www.rosoncoweb.ru/library/congress/ru/07/05.php / Letyagin V.P., Tupitsyn N.N., Artamonova E.V. Varianty immunofenotipa raka molochnoy zhelezy i ikh klinicheskoe znachenie dlya prognoza. Materialy VII Rossiyskoy onkologicheskoy konferentsii, http://www. rosoncoweb.ru/library/congress/ru/07/05.php [in Russian]
46. Артамонова Е.В. TILs (инфильтрирующие опухоль лимфоциты) при раке молочной железы: биологическая роль и клиническое значение. Сборник материалов большой конференции RUSSCO «Рак молочной железы», 2015; с. 64–71. / Artamonova E.V. TILs (infil'triruyushchie opukhol' limfotsity) pri rake molochnoy zhelezy: biologicheskaya rol' i klinicheskoe znachenie. Sbornik materialov bol'shoy konferentsii RUSSCO «Rak molochnoy zhelezy», 2015; s. 64–71. [in Russian]
47. Loi S, Sirtaine N, Piette F et al. Prognostic and predictive value of tumor-infiltrating lymphocytes in a phase III randomized adjuvant breast cancer trial in node-positive breast cancer comparing the addition of docetaxel to doxorubicin with doxorubicin-based chemotherapy: BIG 02-98. J Clin Oncol 2013; 31: 860–7.
48. Wesolowski R, Carson WE 3rd2. Tumor Infiltrating Lymphocytes – The Next Step in Assessing Outcome and Response to Treatment in Patients with Breast Cancer. J Carcinog Mutagen 2014; 5 (6). pii: 199.
49. Salgado R, Denkert C, Demaria S. The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an International TILs Working Group 2014. Ann Oncol 2015; 26 (2): 259–71.
50. Adams S, Gray RJ, Demaria S еt al. Prognostic value of tumor-infiltrating lymphocytes in triple-negative breast cancers from two phase III randomized adjuvant breast cancer trials: ECOG 2197 and ECOG 1199. J Clin Oncol 2014; 32 (27): 2959–66.
51. Loi S, Michiels S, Salgado R et al. Tumor infiltrating lymphocytes are prognostic in triple negative breast cancer and predictive for trastuzumab benefit in early breast cancer: results from the FinHER trial. Ann Oncol 2014; 25: 1544–50.
52. Denkert C, von Minckwitz G, Brase JC et al. Tumor-infiltrating lymphocytes and response to neoadjuvant chemotherapy with or without Carboplatin in human epidermal growth factor receptor 2-positive and triple-negative primary breast cancers. J Clin Oncol 2015; 33 (9): 983–91.
53. Loi S, Michiels S, Salgado R et al. Abstract S1-05: Tumor infiltrating lymphocytes (TILs) indicate trastuzumab benefit in early-stage HER2-positive breast cancer (HER2+ BC). Cancer Res 2013: S1-05.
54. Gianni L, Bianchini G, Valagussa P et al. Adaptive immune system and immune checkpoints are associated with response to pertuzumab (P) and trastuzumab (H) in the NeoSphere study. Cancer Res 2012: S6-7.
55. De Kruijf EM, van Nes JG, Sajet A, et al. The predictive value of HLA class I tumor cell expression and presence of intratumoral Tregs for chemotherapy in patients with early breast cancer. Clin Cancer Res 2010; 16: 1272–80.
56. Kaneko K, Ishigami S, Kijima Y et al. Clinical implication of HLA class I expression in breast cancer. BMC Cancer 2011; 11: 454.
57. Gudmundsdóttir I, Gunnlaugur Jónasson J. Altered expression of HLA class I antigens in breast cancer: association with prognosis. Int J Cancer 2000; 89 (6): 500–5.
58. Da Silva G, Tarsia Giabardo Alves Silva T, Duarte R et al. Expression of the Classical and Nonclassical HLA Molecules in Breast Cancer International. J Breast Cancer 2013. ID 250435, http://dx.doi.org/ 10.1155/2013/250435
________________________________________________
2. Algarra I, Garcia-Lora A, Cabrera T et al. The selection of tumor variants with altered expression of classical and nonclassical MHC class I molecules: implications for tumor immune escape. Cancer Immunol Immunother 2004; 53: 904–10.
3. Bates GJ, Fox SB, Han C et al. Quantification of regulatory T cells enables the identification of high-risk breast cancer patients and those at risk of late relapse. J Clin Oncol 2006; 24: 5373–80.
4. Bodmer WF. The HLA system: structure and function. J Clin Pathol 1987; 40 (9): 948–58.
5. Vivier E1, Tomasello E, Baratin M et al. Functions of natural killer cells. Nat Immunol 2008; 9 (5): 503–10.
6. Teletaeva G.M. Tsitokiny i protivoopukholevyi immunitet. Prakticheskaia onkologiia. 2007; 8 (4): 211–8. [in Russian]
7. Miyashita M, Sasano H, Tamaki K et al. Tumor-infiltrating CD8+ and FOXP3+ lymphocytes in triple-negative breast cancer: its correlation with pathological complete response to neoadjuvant chemotherapy. Breast Cancer Res Treat 2014; 148 (3): 525–34.
8. Faghih Z, Erfani N, Haghshenas MR et al. Immune profiles of CD4+ lymphocyte subsets in breast cancer tumor draining lymph nodes. Immunol Lett 2014; 158 (1–2): 57–65.
9. De Kruijf EM, Sajet A, van Nes JG et al. HLA-E and HLA-G expression in classical HLA class I-negative tumors is of prognostic value for clinical outcome of early breast cancer patients. J Immunol 2010; 185: 7452–9.
10. O'Callaghan CA, Bell JI. Structure and function of the human MHC class Ib molecules HLA-E, HLA-F and HLA-G. Immunol Rev 1998; 163: 129–38.
11. Bjorkman PJ, Saper MA, Samraoui B. Structure of the human class I histocompatibility antigen, HLA-A2. Nature 1987; 329: 506–12. doi:10.1038/329506a0
12. Bjorkman PJ. MHC restriction in three dimensions: a view of T cell receptor/ligand interactions. Cell 1997; 89: 167.
13. Krensky AM. The HLA system, antigen processing and presentation. Kidney Int Suppl 1997; 58: S2.
14. Srikanth Nagalla, Chou JW, Willingham MC et al. Interactions between immunity, proliferation and molecular subtype in breast cancer prognosis. Genome Biology 2013; 14: R34 http://genomebiology. com/2013/14/4/R34
15. Castellino F, Germain RN. Cooperation between CD4+ and CD8+ T cells: when, where, and how. Annu Rev Immunol 2006; 24: 519–40.
16. Corthay A, Skovseth DK, Lundin KU. Primary Antitumor Immune Response Mediated by CD4+ T Cells. Immunity 2005; 22: 371–83.
17. Shanker A, Verdeil G, Buferne M. CD8 T cells help for innate antitumor immunity. J.Immunol 2007; 179: 6651–62, www.jimmunol.org/content/179/10/6651
18. Bromley SK, Iaboni A, Davis SJ. The immunological synapse and CD28-CD80 interactions. Nat Immunol 2001; 2 (12): 1159–66.
19. Liu F, Lang R, Zhao J et al. CD8(+) cytotoxic T cell and FOXP3(+) regulatory T cell infiltration in relation to breast cancer survival and molecular subtypes. Breast Cancer Res Treat 2011; 130: 645–55.
20. Sakaguchi S. Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat Immunol 2005; 6 (4): 345–52.
21. Trapani JA, Smyth MJ. Functional significance of the perforin/granzyme cell death pathway. Nat Rev Immunol 2002; 2 (10): 735–47.
22. Strand S, Hofmann WJ, Hug H. Lymphocyte apoptosis induced by CD95 (APO−1/Fas) ligand-expressing tumor cells – A mechanism of immune evasion? Nature Medicine 1996; 2: 1361–6. doi:10.1038/nm1296-1361
23. Wu J, Lanier LL. Natural killer cells and cancer. Adv Cancer Res 2003; 90: 127–56.
24. Waldhauer I, Steinle A. NK cells and cancer immunosurveillance. Oncogene 2008; 27: 5932–43. doi:10.1038/onc.2008.267
25. Schlegel UP, Lang P. Natural Killer Cell Mediated Antibody-Dependent Cellular Cytotoxicity in Tumor Immunotherapy with Therapeutic Antibodies Front Immunol. 2013; 4: 76. doi: 10.3389/fimmu.2013.00076
26. Alderson KL, Sondel PM. Clinical cancer therapy by NK cells via antibody-dependent cell-mediated cytotoxicity. J Biomed Biotechnol 2011; 2011:379123. doi: 10.1155/2011/379123.
27. Iannello A, Ahmad A. Role of antibody-dependent cell-mediated cytotoxicity in the efficacy of therapeutic anti-cancer monoclonal antibodies. Cancer Metastasis Rev 2005; 24 (4): 487–99.
28. Alderson KL, Sondel PM. Clinical Cancer Therapy by NK Cells via Antibody-Dependent Cell-Mediated Cytotoxicity. J Biomed Biotech 2011; 2011. ID 379123, http://dx.doi.org/10.1155/2011/379123
29. García-Tuñón I, Mónica Ricote, Antonio Ruiz A. Influence of IFN-gamma and its receptors in human breast cancer. BMC Cancer 2007; 7: 158. doi: 10.1186/1471-2407-7-158
30. Pantschenko AG, Pushkar I, Anderson KH. The interleukin-1 family of cytokines and receptors in human breast cancer: implications for tumor progression. Int J Oncol 2003; 23 (2): 269–84.
31. Hatem Soliman Immunotherapy Strategies in the Treatment of Breast Cancer/ Cancer Control 2013; 20 (1): 17–21.
32. Nagai S, Toi M. Interleukin-4 and breast cancer. Breast Cancer 2000; 7 (3): 181–6.
33. Dethlefsen C, Højfeldt G, Hojman P. The role of intratumoral and systemic IL-6 in breast cancer. Breast Cancer Res Treat 2013; 138 (3): 657–64. doi: 10.1007/s10549-013-2488-z.
34. Rao VS, Alabi A, Dyer CE. IL-10 and IL-12 expression in breast cancer patients and effect of therapy. J Clinical Oncology 2008; 26: 15S (May 20 Suppl.). 14016.
35. Blankenstein T, Coulie PG, Gilboa E. The determinants of tumour immunogenicity Nature Rev Cancer 2012; 12: 307–13. doi:10.1038/nrc3246
36. Escors D. Tumour Immunogenicity, Antigen Presentation, and Immunological Barriers in Cancer Immunotherapy. New J Science 2014. ID 734515, http://dx.doi.org/10.1155/2014/734515
37. Palmisano GL, Pistillo MP, Capanni P. Investigation of HLA class I downregulation in breast cancer by RT-PCR. Hum Immunol 2001; 62 (2): 133–9.
38. Cheng F, Gabrilovich D, Sotomayor EM. Immune tolerance in breast cancer. Breast Dis 2004; 20: 93–103.
39. Zhang Y, Morgan R, Podack ER. B cell regulation of anti-tumor immune response. Immunol Res 2013; 57 (1–3): 115–24.
40. Obiri NI, Siegel JP, Varricchio F, Puri RK. Expression of high-affinity IL-4 receptors on human melanoma, ovarian and breast carcinoma cells. Clin Exp Immunol 1994; 95 (1): 148–55.
41. Morandi А, Isacke M С. Targeting RET–interleukin-6 crosstalk to impair metastatic dissemination in breast cancer. Breast Cancer Res 2014; 16: 301 doi:10.1186/bcr3608
42. Li Y, Gao P, Yang J. Relationship between IL-10 expression and prognosis in patients with primary breast cancer. Tumour Biol 2014; 35 (11): 11533–40. doi: 10.1007/s13277-014-2249-6.
43. Moore Os, Foote Fw. The relatively favorable prognosis of medullary carcinoma of the breast. Cancer 1949; 2: 635–42.
44. Shamilov F.A. Dinamika subpopulyatsiy intratumoral'nykh limfotsitov pri immunokorrigiruyushchey terapii raka molochnoy zhelezy. Avtoref. dis. ... kand. med. nauk. M., 2014. [in Russian]
45. Letyagin V.P., Tupitsyn N.N., Artamonova E.V. Varianty immunofenotipa raka molochnoy zhelezy i ikh klinicheskoe znachenie dlya prognoza. Materialy VII Rossiyskoy onkologicheskoy konferentsii, http://www. rosoncoweb.ru/library/congress/ru/07/05.php [in Russian]
46. Artamonova E.V. TILs (infil'triruyushchie opukhol' limfotsity) pri rake molochnoy zhelezy: biologicheskaya rol' i klinicheskoe znachenie. Sbornik materialov bol'shoy konferentsii RUSSCO «Rak molochnoy zhelezy», 2015; s. 64–71. [in Russian]
47. Loi S, Sirtaine N, Piette F et al. Prognostic and predictive value of tumor-infiltrating lymphocytes in a phase III randomized adjuvant breast cancer trial in node-positive breast cancer comparing the addition of docetaxel to doxorubicin with doxorubicin-based chemotherapy: BIG 02-98. J Clin Oncol 2013; 31: 860–7.
48. Wesolowski R, Carson WE 3rd2. Tumor Infiltrating Lymphocytes – The Next Step in Assessing Outcome and Response to Treatment in Patients with Breast Cancer. J Carcinog Mutagen 2014; 5 (6). pii: 199.
49. Salgado R, Denkert C, Demaria S. The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an International TILs Working Group 2014. Ann Oncol 2015; 26 (2): 259–71.
50. Adams S, Gray RJ, Demaria S еt al. Prognostic value of tumor-infiltrating lymphocytes in triple-negative breast cancers from two phase III randomized adjuvant breast cancer trials: ECOG 2197 and ECOG 1199. J Clin Oncol 2014; 32 (27): 2959–66.
51. Loi S, Michiels S, Salgado R et al. Tumor infiltrating lymphocytes are prognostic in triple negative breast cancer and predictive for trastuzumab benefit in early breast cancer: results from the FinHER trial. Ann Oncol 2014; 25: 1544–50.
52. Denkert C, von Minckwitz G, Brase JC et al. Tumor-infiltrating lymphocytes and response to neoadjuvant chemotherapy with or without Carboplatin in human epidermal growth factor receptor 2-positive and triple-negative primary breast cancers. J Clin Oncol 2015; 33 (9): 983–91.
53. Loi S, Michiels S, Salgado R et al. Abstract S1-05: Tumor infiltrating lymphocytes (TILs) indicate trastuzumab benefit in early-stage HER2-positive breast cancer (HER2+ BC). Cancer Res 2013: S1-05.
54. Gianni L, Bianchini G, Valagussa P et al. Adaptive immune system and immune checkpoints are associated with response to pertuzumab (P) and trastuzumab (H) in the NeoSphere study. Cancer Res 2012: S6-7.
55. De Kruijf EM, van Nes JG, Sajet A, et al. The predictive value of HLA class I tumor cell expression and presence of intratumoral Tregs for chemotherapy in patients with early breast cancer. Clin Cancer Res 2010; 16: 1272–80.
56. Kaneko K, Ishigami S, Kijima Y et al. Clinical implication of HLA class I expression in breast cancer. BMC Cancer 2011; 11: 454.
57. Gudmundsdóttir I, Gunnlaugur Jónasson J. Altered expression of HLA class I antigens in breast cancer: association with prognosis. Int J Cancer 2000; 89 (6): 500–5.
58. Da Silva G, Tarsia Giabardo Alves Silva T, Duarte R et al. Expression of the Classical and Nonclassical HLA Molecules in Breast Cancer International. J Breast Cancer 2013. ID 250435, http://dx.doi.org/ 10.1155/2013/250435
Авторы
И.В.Колядина*, И.В.Поддубная
ГБОУ ДПО Российская медицинская академия последипломного образования Минздрава России. 125993, Россия, Москва, ул. Баррикадная, д. 2/1;
ФГБНУ Российский онкологический научный центр им. Н.Н.Блохина. 115478, Россия, Москва, Каширское ш., д. 23
*irinakolyadina@yandex.ru
Russian Medical Academy for Postgraduate Education of the Ministry of Health of the Russian Federation. 125993, Russian Federation, Moscow, ul. Barrikadnaia, d. 2/1;
N.N.Blokhin Russian Cancer Research Center. 115478, Russian Federation, Moscow, Kashirskoe sh., d. 23
*irinakolyadina@yandex.ru
ГБОУ ДПО Российская медицинская академия последипломного образования Минздрава России. 125993, Россия, Москва, ул. Баррикадная, д. 2/1;
ФГБНУ Российский онкологический научный центр им. Н.Н.Блохина. 115478, Россия, Москва, Каширское ш., д. 23
*irinakolyadina@yandex.ru
________________________________________________
Russian Medical Academy for Postgraduate Education of the Ministry of Health of the Russian Federation. 125993, Russian Federation, Moscow, ul. Barrikadnaia, d. 2/1;
N.N.Blokhin Russian Cancer Research Center. 115478, Russian Federation, Moscow, Kashirskoe sh., d. 23
*irinakolyadina@yandex.ru
Цель портала OmniDoctor – предоставление профессиональной информации врачам, провизорам и фармацевтам.
