Материалы доступны только для специалистов сферы здравоохранения. Авторизуйтесь или зарегистрируйтесь.
Современный взгляд на механизмы образования мочевых камней и принципы общей метафилактики мочекаменной болезни
________________________________________________
Saenko V.S., Pesegov S.V., Vovdenko S.V. A modern view of the mechanisms of urinary stone formation and the principles of general metaphylaxis of urolithiasis. Handbook for Practitioners Doctors. 2018; 1: 33–38.
Материалы доступны только для специалистов сферы здравоохранения. Авторизуйтесь или зарегистрируйтесь.
Ключевые слова: мочекаменная болезнь, камнеобразование, метафилактика.
________________________________________________
Urolithiasis is a widespread disease all over the world. Modern epidemiological trends indicate an increase in the prevalence and incidence of urolithiasis ubiquitous. The peculiarity of the course of the disease is a recurrent nature. Currently, most researchers are inclined to the two dominant mechanisms of initiation of stone formation. Priority measures for the prevention of primary or recurrent urinary stone formation are the reduction or elimination of oxidative stress, a decrease in the intracanular saturation of the minerals involved in the formation of stone, the dilution of emerging urine in the narrow and wide segments of the Henle loop, a decrease in nucleation activity, aggregation and crystal growth, followed by the formation of a stone effect on the urinary pH level of urinary citrate and the use of phytotherapy.
Key words: urolithiasis, stone formation, metaphylaxis.
2. Pearle MS. Prevention of nephrolithiasis. Curr Opin Nephrol Hypertens 2001; 10: 203–9.
3. Pearle MS, Calhoun EA, Curhan GC; Urologic Diseases of America Project. Urologic diseases in America project: urolithiasis. J Urol 2005; 173: 848–57.
4. Ramello A, Vitale C, Marangella D. Epidemiology of nephrolithiasis. J. Nephrol 2000; 13 (Suppl. 3): S.45–50.
5. Curhan GC, Willet WC, Rimm EB, Stampfer MJ. A prospective study of dietary calcium and other nutrients and the risk of symptomatic kidney stones. N Engl J Med 1993; 328: 833–8.
6. Meyer JL, Smith LH. Growth of calcium oxalate crystals. II. Inhibition by natural urinary crystal growth inhibitors. Invest Urol 1975; 13: 36–9.
7. Andin FR, Lats S, Laude N; Urolithiasis – an interdisciplinary diagnostic. Therapeutic and secondary preventive challenge. Dtsch Arztebl Int 2015; 112: 83–91.
8. J Endourol 2017 Jan.
9. Turnbaugh P, Ley R, Mahowald M et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006; 444. DOI: 10.1038/nature05414
10. Spor A, Koren O, Ley R. Unravelling the effects of the environment and host genotype on the gut microbiome. Nat Rev Microbiol 2011; 9 (4): 279-90. DOI: 10.1038/nrmicro2540
11. Bach JF. The effect of infections on susceptibility to autoimmune and allergic diseases. N Engl J Med 2002; 347 (12): 911–20.
12. Bere K, Mues M, Koutrolos M et al. Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Letter. DOI: 10.1038/nature 10554
13. Berer K, Krishnamoorthy G. Microbial view of central nervous system autoimmunity. FEBS Lett 2014; 588 (22): 4207–13. DOI: 10.1016/j.febslet.2014.04.007
14. Allison MJ, Dawson KA, Mayberry WR, Foss JG. Oxalobacter formigenes gen. nov., sp. nov.: oxalate-degrading anaerobes that inhabit the gastrointestinal tract. Arch Microbiol 1985; 141: 1–7.
15. Kwak С et al. Urinary Oxalate level and the Enteric Bacterium Oxalobacter formingenes in Patients with Calcium Oxalate Urolithiasis. Euro Urol 200; 44: 475–81.
16. Sidhu HL, Enatska L, Ogden S et al. Evaluating children in the Ukraine for colonization with the intestinal bacterium Oxalobacter formingenes, using a polymerase chain reacton detection system. Mol Diagn 199; 2: 89–97.
17. John C. Lieske Probiotics for prevention of urinary stones. http://dx.doi.org/10.21037/atm.2016.11.86
18. Mehta M, Goldfarb DS, Nazzal L. The role of the microbiome in kidney stone formation. Int J Surg 2016; 36 (Pt. D): 607–12. DOI: 10.1016/j.ijsu.2016.11.024
19. Sadaf H, Raza SI, Hassan SW. Role of gut microbiota against calcium oxalate. Microb Pathog 2017; 109: 287–91. DOI: 10.1016/j.micpath.2017.06.009
20. Miller AW, Dale C, Dearing MD. 2017. The induction of oxalate metabolism in vivo is more effective with functional microbial communities than with functional microbial species. https://doi.org/10.1128/mSystems.00088-17
21. Menghan Liu, Hyunwook Koh, Zachary D.Kurtz et al. Oxalobacter formigenes-associated host features and microbial community structures examined using the American Gut Project. Microbiome 2017; 5: 108. DOI: 10.1186/s40168-017-0316-0 PMCID: PMC5571629
22. Ottman N, Smidt H, de Vos WM, Belzer C. The function of our microbiota: who is out there and what do they do? Front Cell Inf Microbiol 2012; 2: 104. http://doi.org/10.3389/fcimb.2012.00104
23. Kok DJ. Clinical implications of physicochemistry of stone formation. Endocr Metab Clin N Am 2002; 31: 855–67.
24. Rendall A. The origin and growth of renal calculi. Ann Surg 1937; 105: 1009–27.
25. Evan AP, Lingerman JE, Coe FL et al. Renall’s plaque of patients with nephrolithiasis begins in basement membranes of thin loops of Henle. J Clin Invest 2003; 111: 607–16.
26. Evan A, Lingeman J, Coe FL, Worcester E. Randall's plaque: pathogenesis and role in calcium oxalate nephrolithiasis. Kidney Int 2006; 69: 1313–8.
27. Kim SC, Coe FL, Tinmouth WW et al. Stone formation is proportional to papillary surface coverage be rendall’s plaque. J Urol 2005; 173: 117–9, dis. 119.
28. Matlaga Br, Williams Jr Jc, Kim SC et al. Еndoscopic evidence of cflculi attachment to Rendall’s plaque. L Urol 2006; 175: 1720–4, dis. 1724.
29. Williams JrJc, Matlaga Br, Kim SC et al. Calcium oxalate calculi found attached to the renal papilla: preliminary for early mechanisms in stone formation. J Endourol 2006; 20: 885–90.
30. Evan AP, Lingerman JE, Coe FL, Worcester EM. Role of interstitial apapite plaque in the pathogenesis of the common calcium oxalate stone. Semin Nephrol 2008; 28: 111–9.
31. Stoller VL, Meng MV, Abrahams HM, Kane JP. The primary stone event; a new hypothesis involving a vascular etiology. J Urol 2004; 171: 1920–4.
32. Sampaio FJ, Aragao AH. Anatomical relationship between the intrarenal arteries and the kidney collecting system. J Urol 1990; 143: 679–81.
33. Bushinsky DA, Monk RD. Electolyte quintet: calcium. Lancet 1998; 352: 306–11.
34. Evan A, Lingeman J, Coe FL, Worcester E. Randall’s plaque: Pathogenesis and role in calcium oxalate nephrolithiasis. Kidney Int 2006; 69: 1313–8. [PubMed]
35. Evan AP, Coe FL, Lingeman JE et al. Mechanism of formation of human calcium oxalate renal stones on Randall’s plaque. Anat Rec 2007; 290: 1315–23. [PubMed]
36. Evan AP, Worcester EM, Coe FL et al. Mechanisms of human kidney stone formation. Urolithiasis 2015; 43 (Suppl. 1): 19–32. [PubMed]
37. Tsuji H, Wang W, Sunil J et al. Involvement of renin-angiotensin-aldosterone system in calcium oxalate crystal induced activation of NADPH oxidase and renal cell injury. World J Urol 2016; 34 (1): 89–95.
38. Khan SR. Crystal/cell interaction and nephrolithiasis. Arch Ital Urol Androl 2011; 83: 1–5. [PubMed]
39. Khan SR. Reactive oxygen species as the molecular modulators of calcium oxalate kidney stone formation: evidence from clinical and experimental investigations. Int Braz J Urol 2013; 39: 108–17.
40. Khand FD, Gordge MP, Robertso WG et al. Mitochondrial superoxide production during oxalate-mediated oxidative stress in renal epithelial cells. Free Radic Biol Med 2002; 32 (12): 1339–50.
41. Umekawa T, Tsuji H., Uemura H, Khan SR. Superoxide from NADPH oxidase as second messenger for the expression of osteopontin and monocyte chemoattractant protein-1 in renal epithelial cells exposed to calcium oxalate crystals. BJU Int 2009; 104 (1): 115–20.
42. Khan SR, Khan A, Byer KJ. Temporal changes in the expression of mRNA of NADPH oxidase subunits in renal epithelial cells exposed to oxalate or calcium oxalate crystals. Nephrol Dial Transplantat 2011; 26 (6): 1778–5.
43. Joshi S, Peck AB, Khan SR. NADPH oxidase as a therapeutic target for oxalate induced injury in kidneys. Oxidative Med Cell Longevity 2013, Article ID 462361.
44. Cao L-C, Honeyman TW, Cooney R et al. Mitochondrial dysfunction is a primary event in renal cell oxalate toxicity. Kidney Int 2004; 66 (5): 1890–900.
45. Robertson WG, Peacock M, Nordin BE. Calcium oxalate crystalluria and urine saturation in recurrent renal stone-formers. Clin Sci 1971; 40: 365–74.
46. Abraham PA, Smith ChL. Medical Evaluation and Management of Calcium Nephrolithiasis. Med Clin North Am 1984; 68 (2): 281–99.
47. Buck AC. Risk factors in idiopatic stone disease. Scientific Foundation of Urology: 3 ed. Eds. L.D.Chisholm, W.R.Fair. Oxford, Chicago, 1990; p. 176–92.
48. Someren A. Urologic Pathology with Clinical and Cardiologic Corrections. New York, Toronto, London, 1989.
49. Jones WF, Waterhouse RL, Resnick MI. The evaluation of urinary protein pattern in a stone – forming animal model using two dimensional polyacrylamide gel electrophoresis. J Urol 1991; 145 (4): 868–74.
50. Hess B. Neue pathophysiologische Aspecte der Nephrolithiasis. Schwez Med Wsch 1989; 119 (26): 929–34.
51. Nancollas GH, Smesko SA, Campbello AA et al. Physical chemical studies of calcium oxalate crystallization. Am J Kidney Dis 1991; 17 (4): 392–5.
52. Литвицкий П.Ф. Патофизиология. Учебник. В 2 т. М.: ГЭОТАР-МЕД, 2002. / Litvitskii P.F. Patofiziologiia. Uchebnik. V 2 t. M.: GEOTAR-MED, 2002. [in Russian]
53. Baumann JM, Affolter B. From crystalluria to kidney stones, some physicochemical aspects of calcium nephrolithiasis. World J Nephrol 2014; 3 (4): 256–67. DOI: 10.5527/wjn.v3.i4.256
54. Saw NK, Rao PN, Kavanagh JP. A nidus, crystalluria and aggregation: key ingredients for stone enlargement. Urol Res 2008; 36 (1): 11–5.
55. Haggitt RC, Pitcock JA. Renal medullary calcifications: a light and electron microscopic study. J Urol 1971; 106: 342–7.
56. Kristensen C, Parks JH, Lindheimer M, Coe FL. Reduced glomerular filtration rate and hypercalciuria in primary struvite nephrolithiasis. Kidney Int 1987; 32: 749–53.
57. Evan AP et al. Contrasting histopathology and crystal deposits in kidneys of idiopathic stone formers who produce hydroxy apatite, brushite, or calcium oxalate stones. Anat Rec (Hoboken) 2014; 297: 731–48.
58. Khan SR, Hackett RL. Retention of calcium oxalate crystals in renal tubules. Scanning Microsc 1991; 5: 707–11.
59. Khan SR, Finlayson B, Hackett RL. Experimental calcium oxalate nephrolithiasis in the rat. Role of the renal papilla. Am J Pathol 1982; 107: 59–69.
60. Grases F, Söhnel O. Can Randall's plug composed of calcium oxalate from via the free particle mechanism? BMC Urol 2017; 17: 80. DOI: 10.1186/s12894-017-0274-7
61. Kok DJ, Khan SR. Calcium oxalate nephrolithiasis, a free or fixed particle disease. Kidney Int 1994; 46 (3): 847–54.
62. Robertson WG. Kidney models of calcium oxalate stone formation. Nephron–Physiology 2004; 98 (2): 21–30.
63. Guerra A, Allegri F, Meschi T et al. Effects of urine dilution on quantity, size and aggregation of calcium oxalate crystals induced in vitro by an oxalate load. Clin Chem Lab Med 2005; 43: 585–9.
64. Taylor EN, Curhan GC. Body size and 24-hour urine composition. Am J Kidney Dis 2006; 48: 905–15.
65. Daudon M, Lacour B, Jungers P. Influence of body size on urinary stone composition in men and women. Urol Res 2006; 34: 193–9.
66. Powell CR, Stoller ML, Schwartz BF et al. Impact of body weight on urinary electrolytes in urinary stone formers. Urology 2000; 55: 825–30.
67. Del Valle EE, Negri AL, Spivacow FR et al. Metabolic diagnosis in Stone formers in relation to body mass index. Urol Res 2012; 40: 47–52.
68. Maalouf NM, Sakhaee K, Parks JH et al. Association of urinary pH with body weight in nephrolithiasis. Kidney Int 2004; 65: 1422–5.
69. Перепанова Т.С., Хазан П.Л. Растительный препарат Канефрон Н в лечении и профилактике инфекций мочевых путей. Врачебное сословие. 2005; 4–5: 1–4. / Perepanova T.S., Khazan P.L. Rastitel'nyi preparat Kanefron N v lechenii i profilaktike infektsii mochevykh putei. Vrachebnoe soslovie. 2005; 4–5: 1–4. [in Russian]
70. Амдий Р.Э. и др. Опыт применения Канефрона при лечении острого неосложненного цистита у женщин. Урологические ведомости. 2016; 6 (2): 16–22. / Amdii R.E. i dr. Opyt primeneniia Kanefrona pri lechenii ostrogo neoslozhnennogo tsistita u zhenshchin. Urologicheskie vedomosti. 2016; 6 (2): 16–22. [in Russian]
71. Naber K, Steindl H, Abramov-Sommariva D, Eskoetter H. Non-antibiotic herbal therapy of uncomplicated lover urinary tract infection in wamen – a pilot study. Planta Medica J Med Plant Nat Prod Res 2013; 79: 1079–288.
72. 13th International Congress of the Society for Ethnopharmacology, Graz, Austria, September 2–6, 2012, Efficacy of Canephron N against bacterial adhesion, inflammation and bladder hyperactivity, poster 671.
73. Scheckel et al. Rosmarivic acid antagonizes activator protein-1-dependent activation of cyclooxigenase-2 expression in human cancer and nonmalignant cell lines. J Nutr 2013; 12.
74. Неймарк А.И. PRES 2014. Majorca. / Neymark A.I. PRES 2014. Majorca. [in Russian]
________________________________________________
1. Soucie JM, Thun MJ, Coates RJ et al. Demographic and geographic varialibility of kidney stones in the United States. Kidney Int 1994; 46: 893–9.
2. Pearle MS. Prevention of nephrolithiasis. Curr Opin Nephrol Hypertens 2001; 10: 203–9.
3. Pearle MS, Calhoun EA, Curhan GC; Urologic Diseases of America Project. Urologic diseases in America project: urolithiasis. J Urol 2005; 173: 848–57.
4. Ramello A, Vitale C, Marangella D. Epidemiology of nephrolithiasis. J. Nephrol 2000; 13 (Suppl. 3): S.45–50.
5. Curhan GC, Willet WC, Rimm EB, Stampfer MJ. A prospective study of dietary calcium and other nutrients and the risk of symptomatic kidney stones. N Engl J Med 1993; 328: 833–8.
6. Meyer JL, Smith LH. Growth of calcium oxalate crystals. II. Inhibition by natural urinary crystal growth inhibitors. Invest Urol 1975; 13: 36–9.
7. Andin FR, Lats S, Laude N; Urolithiasis – an interdisciplinary diagnostic. Therapeutic and secondary preventive challenge. Dtsch Arztebl Int 2015; 112: 83–91.
8. J Endourol 2017 Jan.
9. Turnbaugh P, Ley R, Mahowald M et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006; 444. DOI: 10.1038/nature05414
10. Spor A, Koren O, Ley R. Unravelling the effects of the environment and host genotype on the gut microbiome. Nat Rev Microbiol 2011; 9 (4): 279-90. DOI: 10.1038/nrmicro2540
11. Bach JF. The effect of infections on susceptibility to autoimmune and allergic diseases. N Engl J Med 2002; 347 (12): 911–20.
12. Bere K, Mues M, Koutrolos M et al. Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Letter. DOI: 10.1038/nature 10554
13. Berer K, Krishnamoorthy G. Microbial view of central nervous system autoimmunity. FEBS Lett 2014; 588 (22): 4207–13. DOI: 10.1016/j.febslet.2014.04.007
14. Allison MJ, Dawson KA, Mayberry WR, Foss JG. Oxalobacter formigenes gen. nov., sp. nov.: oxalate-degrading anaerobes that inhabit the gastrointestinal tract. Arch Microbiol 1985; 141: 1–7.
15. Kwak С et al. Urinary Oxalate level and the Enteric Bacterium Oxalobacter formingenes in Patients with Calcium Oxalate Urolithiasis. Euro Urol 200; 44: 475–81.
16. Sidhu HL, Enatska L, Ogden S et al. Evaluating children in the Ukraine for colonization with the intestinal bacterium Oxalobacter formingenes, using a polymerase chain reacton detection system. Mol Diagn 199; 2: 89–97.
17. John C. Lieske Probiotics for prevention of urinary stones. http://dx.doi.org/10.21037/atm.2016.11.86
18. Mehta M, Goldfarb DS, Nazzal L. The role of the microbiome in kidney stone formation. Int J Surg 2016; 36 (Pt. D): 607–12. DOI: 10.1016/j.ijsu.2016.11.024
19. Sadaf H, Raza SI, Hassan SW. Role of gut microbiota against calcium oxalate. Microb Pathog 2017; 109: 287–91. DOI: 10.1016/j.micpath.2017.06.009
20. Miller AW, Dale C, Dearing MD. 2017. The induction of oxalate metabolism in vivo is more effective with functional microbial communities than with functional microbial species. https://doi.org/10.1128/mSystems.00088-17
21. Menghan Liu, Hyunwook Koh, Zachary D.Kurtz et al. Oxalobacter formigenes-associated host features and microbial community structures examined using the American Gut Project. Microbiome 2017; 5: 108. DOI: 10.1186/s40168-017-0316-0 PMCID: PMC5571629
22. Ottman N, Smidt H, de Vos WM, Belzer C. The function of our microbiota: who is out there and what do they do? Front Cell Inf Microbiol 2012; 2: 104. http://doi.org/10.3389/fcimb.2012.00104
23. Kok DJ. Clinical implications of physicochemistry of stone formation. Endocr Metab Clin N Am 2002; 31: 855–67.
24. Rendall A. The origin and growth of renal calculi. Ann Surg 1937; 105: 1009–27.
25. Evan AP, Lingerman JE, Coe FL et al. Renall’s plaque of patients with nephrolithiasis begins in basement membranes of thin loops of Henle. J Clin Invest 2003; 111: 607–16.
26. Evan A, Lingeman J, Coe FL, Worcester E. Randall's plaque: pathogenesis and role in calcium oxalate nephrolithiasis. Kidney Int 2006; 69: 1313–8.
27. Kim SC, Coe FL, Tinmouth WW et al. Stone formation is proportional to papillary surface coverage be rendall’s plaque. J Urol 2005; 173: 117–9, dis. 119.
28. Matlaga Br, Williams Jr Jc, Kim SC et al. Еndoscopic evidence of cflculi attachment to Rendall’s plaque. L Urol 2006; 175: 1720–4, dis. 1724.
29. Williams JrJc, Matlaga Br, Kim SC et al. Calcium oxalate calculi found attached to the renal papilla: preliminary for early mechanisms in stone formation. J Endourol 2006; 20: 885–90.
30. Evan AP, Lingerman JE, Coe FL, Worcester EM. Role of interstitial apapite plaque in the pathogenesis of the common calcium oxalate stone. Semin Nephrol 2008; 28: 111–9.
31. Stoller VL, Meng MV, Abrahams HM, Kane JP. The primary stone event; a new hypothesis involving a vascular etiology. J Urol 2004; 171: 1920–4.
32. Sampaio FJ, Aragao AH. Anatomical relationship between the intrarenal arteries and the kidney collecting system. J Urol 1990; 143: 679–81.
33. Bushinsky DA, Monk RD. Electolyte quintet: calcium. Lancet 1998; 352: 306–11.
34. Evan A, Lingeman J, Coe FL, Worcester E. Randall’s plaque: Pathogenesis and role in calcium oxalate nephrolithiasis. Kidney Int 2006; 69: 1313–8. [PubMed]
35. Evan AP, Coe FL, Lingeman JE et al. Mechanism of formation of human calcium oxalate renal stones on Randall’s plaque. Anat Rec 2007; 290: 1315–23. [PubMed]
36. Evan AP, Worcester EM, Coe FL et al. Mechanisms of human kidney stone formation. Urolithiasis 2015; 43 (Suppl. 1): 19–32. [PubMed]
37. Tsuji H, Wang W, Sunil J et al. Involvement of renin-angiotensin-aldosterone system in calcium oxalate crystal induced activation of NADPH oxidase and renal cell injury. World J Urol 2016; 34 (1): 89–95.
38. Khan SR. Crystal/cell interaction and nephrolithiasis. Arch Ital Urol Androl 2011; 83: 1–5. [PubMed]
39. Khan SR. Reactive oxygen species as the molecular modulators of calcium oxalate kidney stone formation: evidence from clinical and experimental investigations. Int Braz J Urol 2013; 39: 108–17.
40. Khand FD, Gordge MP, Robertso WG et al. Mitochondrial superoxide production during oxalate-mediated oxidative stress in renal epithelial cells. Free Radic Biol Med 2002; 32 (12): 1339–50.
41. Umekawa T, Tsuji H., Uemura H, Khan SR. Superoxide from NADPH oxidase as second messenger for the expression of osteopontin and monocyte chemoattractant protein-1 in renal epithelial cells exposed to calcium oxalate crystals. BJU Int 2009; 104 (1): 115–20.
42. Khan SR, Khan A, Byer KJ. Temporal changes in the expression of mRNA of NADPH oxidase subunits in renal epithelial cells exposed to oxalate or calcium oxalate crystals. Nephrol Dial Transplantat 2011; 26 (6): 1778–5.
43. Joshi S, Peck AB, Khan SR. NADPH oxidase as a therapeutic target for oxalate induced injury in kidneys. Oxidative Med Cell Longevity 2013, Article ID 462361.
44. Cao L-C, Honeyman TW, Cooney R et al. Mitochondrial dysfunction is a primary event in renal cell oxalate toxicity. Kidney Int 2004; 66 (5): 1890–900.
45. Robertson WG, Peacock M, Nordin BE. Calcium oxalate crystalluria and urine saturation in recurrent renal stone-formers. Clin Sci 1971; 40: 365–74.
46. Abraham PA, Smith ChL. Medical Evaluation and Management of Calcium Nephrolithiasis. Med Clin North Am 1984; 68 (2): 281–99.
47. Buck AC. Risk factors in idiopatic stone disease. Scientific Foundation of Urology: 3 ed. Eds. L.D.Chisholm, W.R.Fair. Oxford, Chicago, 1990; p. 176–92.
48. Someren A. Urologic Pathology with Clinical and Cardiologic Corrections. New York, Toronto, London, 1989.
49. Jones WF, Waterhouse RL, Resnick MI. The evaluation of urinary protein pattern in a stone – forming animal model using two dimensional polyacrylamide gel electrophoresis. J Urol 1991; 145 (4): 868–74.
50. Hess B. Neue pathophysiologische Aspecte der Nephrolithiasis. Schwez Med Wsch 1989; 119 (26): 929–34.
51. Nancollas GH, Smesko SA, Campbello AA et al. Physical chemical studies of calcium oxalate crystallization. Am J Kidney Dis 1991; 17 (4): 392–5.
52. Litvitskii P.F. Patofiziologiia. Uchebnik. V 2 t. M.: GEOTAR-MED, 2002. [in Russian]
53. Baumann JM, Affolter B. From crystalluria to kidney stones, some physicochemical aspects of calcium nephrolithiasis. World J Nephrol 2014; 3 (4): 256–67. DOI: 10.5527/wjn.v3.i4.256
54. Saw NK, Rao PN, Kavanagh JP. A nidus, crystalluria and aggregation: key ingredients for stone enlargement. Urol Res 2008; 36 (1): 11–5.
55. Haggitt RC, Pitcock JA. Renal medullary calcifications: a light and electron microscopic study. J Urol 1971; 106: 342–7.
56. Kristensen C, Parks JH, Lindheimer M, Coe FL. Reduced glomerular filtration rate and hypercalciuria in primary struvite nephrolithiasis. Kidney Int 1987; 32: 749–53.
57. Evan AP et al. Contrasting histopathology and crystal deposits in kidneys of idiopathic stone formers who produce hydroxy apatite, brushite, or calcium oxalate stones. Anat Rec (Hoboken) 2014; 297: 731–48.
58. Khan SR, Hackett RL. Retention of calcium oxalate crystals in renal tubules. Scanning Microsc 1991; 5: 707–11.
59. Khan SR, Finlayson B, Hackett RL. Experimental calcium oxalate nephrolithiasis in the rat. Role of the renal papilla. Am J Pathol 1982; 107: 59–69.
60. Grases F, Söhnel O. Can Randall's plug composed of calcium oxalate from via the free particle mechanism? BMC Urol 2017; 17: 80. DOI: 10.1186/s12894-017-0274-7
61. Kok DJ, Khan SR. Calcium oxalate nephrolithiasis, a free or fixed particle disease. Kidney Int 1994; 46 (3): 847–54.
62. Robertson WG. Kidney models of calcium oxalate stone formation. Nephron–Physiology 2004; 98 (2): 21–30.
63. Guerra A, Allegri F, Meschi T et al. Effects of urine dilution on quantity, size and aggregation of calcium oxalate crystals induced in vitro by an oxalate load. Clin Chem Lab Med 2005; 43: 585–9.
64. Taylor EN, Curhan GC. Body size and 24-hour urine composition. Am J Kidney Dis 2006; 48: 905–15.
65. Daudon M, Lacour B, Jungers P. Influence of body size on urinary stone composition in men and women. Urol Res 2006; 34: 193–9.
66. Powell CR, Stoller ML, Schwartz BF et al. Impact of body weight on urinary electrolytes in urinary stone formers. Urology 2000; 55: 825–30.
67. Del Valle EE, Negri AL, Spivacow FR et al. Metabolic diagnosis in Stone formers in relation to body mass index. Urol Res 2012; 40: 47–52.
68. Maalouf NM, Sakhaee K, Parks JH et al. Association of urinary pH with body weight in nephrolithiasis. Kidney Int 2004; 65: 1422–5.
69. Perepanova T.S., Khazan P.L. Rastitel'nyi preparat Kanefron N v lechenii i profilaktike infektsii mochevykh putei. Vrachebnoe soslovie. 2005; 4–5: 1–4. [in Russian]
70. Amdii R.E. i dr. Opyt primeneniia Kanefrona pri lechenii ostrogo neoslozhnennogo tsistita u zhenshchin. Urologicheskie vedomosti. 2016; 6 (2): 16–22. [in Russian]
71. Naber K, Steindl H, Abramov-Sommariva D, Eskoetter H. Non-antibiotic herbal therapy of uncomplicated lover urinary tract infection in wamen – a pilot study. Planta Medica J Med Plant Nat Prod Res 2013; 79: 1079–288.
72. 13th International Congress of the Society for Ethnopharmacology, Graz, Austria, September 2–6, 2012, Efficacy of Canephron N against bacterial adhesion, inflammation and bladder hyperactivity, poster 671.
73. Scheckel et al. Rosmarivic acid antagonizes activator protein-1-dependent activation of cyclooxigenase-2 expression in human cancer and nonmalignant cell lines. J Nutr 2013; 12.
74. Neymark A.I. PRES 2014. Majorca. [in Russian]
ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М.Сеченова» Минздрава России. 119991, Россия, Москва, ул. Трубецкая, д. 8, стр. 2
*saenko_vs@mail.ru
________________________________________________
V.S.Saenko*, S.V.Pesegov, S.V.Vovdenko
I.M.Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation. 119991, Russian Federation, Moscow, ul. Trubetskaia, d. 8, str. 2
*saenko_vs@mail.ru