1. Meo SA, Alhowikan AM, Al-Khlaiwi T et al. Novel coronavirus 2019-nCoV: prevalence, biological and clinical characteristics comparison with SARS-CoV and MERS-CoV. Eur Rev Med Pharmacol Sci 2020; 24 (4): 2012–9. DOI: 10.26355/eurrev_202002_20379
2. Reddy R, Asante I, Liu S et al. Circulating angiotensin peptides levels in acute respiratory distresssyndrome correlate with clinical outcomes: a pilot study. PLoS ONE 2019. DOI: 10.1371/journal.pone.0213096.
3. Huang C, Wang Y, Li X et al. Clinical features of patients infected with 2019 novel coronavirus inWuhan, China. Lancet 2020; 395: 497–506. DOI: 10.1016/S0140-6736(20)30183-5
4. Wang B, Li R, Lu Z, Huang Y. Does comorbidity increase the risk of patients with covid-19: Evidence from meta-analysis. Aging (Albany NY) 2020; 12: 6049–57. DOI: 10.18632/aging.103000
5. Richardson S, Hirsch JS, Narasimhan M et al. Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the New York City Area. JAMA 2020. DOI: 10.1001/jama.2020.6775
6. Zhou F, Yu T, Du R et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020; 395 (10229):1054–62. DOI: 10.1016/S0140-6736(20)30566-3
7. Guo W, Li M, Dong Y et al. Diabetes is a risk factor for the progression and prognosis of COVID-19. Diabetes Metab Res Rev 2020. DOI: 10.1002/dmrr.3319
8. Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parametersare associated with poor prognosis in patientswith novel coronavirus pneumonia. J Thromb Haemost 2020; 18 (4): 844–7. DOI: 10.1111/jth.14768
9. Wang D, Hu B, Hu C et al. Clinical characteristics of 138 hospitalized patientswith 2019 novel Coronavirus-infected pneumonia in Wuhan, China. JAMA 2020. DOI: 10.1001/jama.2020.1585
10. Guan WJ, Ni ZY, Hu Y et al; China Medical Treatment Expert Group for Covid-19. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. DOI: 10.1056/NEJMoa2002032
11. Li B, Yang J, Zhao F et al. Prevalence and impact of cardiovascular metabolic diseases on COVID-19in China. Clin Res Cardiol 2020. DOI: 10.1007/s00392-020-01626-9
12. Wu C, Chen X, Cai Y et al. Risk factors associated with acute respiratory distress syndrome and deathin patients with Coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern Med 2020. DOI: 10.1001/jamainternmed.2020.0994
13. Fadini GP, Morieri ML, Longato E, Avogaro A. Prevalence and impact of diabetes among people infected with SARSCoV-2. J Endocrinol Invest 2020. DOI: 10.1007/s40618-020-01236-2.
14. Gupta R, Ghosh A, Singh AK, Misra A. Clinical considerations for patients with diabetes in times of COVID-19 epidemic. Diabetes Metab Syndr 2020; 14 (3): 211–2. DOI: 10.1016/j.dsx.2020.03.002
15. Kohio HP, Adamson AL. Glycolytic control of vacuolar-type ATPase activity: a mechanism to regulate influenza viral infection. Virology. 2013; 444 (1–2): 301–9. DOI: 10.1016/j.virol.2013.06.026
16. Reading PC, Allison J, Crouch EC, Anders EM. Increased susceptibility of diabetic mice to influenza virus infection: compromise of collectin-mediatedhostdefenseof thelung byglucose? J Virol 1998; 72 (8): 6884–7.
17. Shi S, Qin M, Shen B et al. Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA Cardiol 2020. DOI: 10.1001/jamacardio.2020.0950
18. Mehta P, McAuley DF, Brown M et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet 2020; 395 (10229): 1033–4. DOI: 10.1016/S0140-6736(20)30628-0
19. Tanaka T, Narazaki M, Kishimoto T. Immunotherapeutic implications of IL-6 blockade for cytokine storm. Immunotherapy 2016; 8 (8): 959–70. DOI: 10.2217/imt-2016-0020
20. Lu R, Zhao X, Li J et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 2020. DOI: 10.1016/S0140-6736(20)30251-8
21. Wan Y, Shang J, Graham R et al. Receptor recognition on by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus. J Virol 2020; 94. pii: e00127–20. DOI: 10.1128/JVI.00127-20
22. Bullock GR, Steyaert I, Bilbe G et al. Distribution of type-1 and type-2 angiotensin receptors in the normal human lung and in lungs from patients with chronic obstructive pulmonary disease. Histochem Cell Biol 2001; 115: 117–24. DOI: 10.1007/s004180000235
23. Tipnis SR, Hooper NM, Hyde R et al. Human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase. J Biol Chem 2000; 275: 33238–43. DOI: 10.1074/jbc.M002615200
24. Batlle D, Wysocki J, Soler MJ, Ranganath K. Angiotensinconverting enzyme 2: enhancing the degradation of angiotensin II as a potential therapy for diabetic nephropathy. Kidney Int 2012; 81: 520–8. DOI: 10.1038/ki.2011.381
25. Hamming I, Timens W, Bulthuis ML et al. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol 2004; 203: 631–7. DOI: 10.1002/path.1570
26. Ferrario CM, Chappell MC, Tallant EA et al. Counterregulatory actions of angiotensin-(1-7). Hypertension 1997; 30: 535–41. DOI: 10.1161/01.hyp.30.3.535
27. Yumiko I, Kuba K, Penninger Josef M. The discovery of ACE2 role in acute lung injury in mice. Exp Physiol 2008; 93: 43–8. DOI: 10.1113/expphysiol.2007.040048
28. Ohshima K, Mogi M, Nakaoka H et al. Possible role of angiotensin-converting enzyme 2 and activation of angiotensin II type 2 receptor by angiotensin-(1-7) in improvement of vascular remodeling by angiotensin II type 1 receptor blockade. Hypertension 2014; 63: e53–9. DOI: 10.1161/HYPERTENSIONAHA.113.02426
29. Imai Y, Kuba K, Rao S et al. Angiotensin converting enzyme 2 protects from severe acute lung failure. Nature 2005; 436: 112–6. DOI: 10.1038/nature03712
30. Kuba K, Imai Y, Penninger JM. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med 2005; 11: 875–9. DOI: 10.1038/nm1267
31. Lijnen P, Petrov V, Fagard R. Induction of cardiac fibrosis by angiotensin II. Methods Find Exp Clin Pharmacol 2000; 22: 709–24. DOI: 10.1358/mf.2000.22.10
32. Chen D, Zhang X. Hypokalemia and clinical implications in patients with coronavirus disease 2019 (COVID-19). DOI: 10.1101/2020.02.27.20028530
33. Diaz JH. Hypothesis: angiotensine converting enzyme inhibitor and angiotensine receptor blocker may increase the risk of severe Covid19. J Travel Med 2020; pii: taaa041. DOI: 10.1093/jtm/taaa041
34. Pirola CJ, Sookoian S. Estimation of RAAS-inhibitor effect on the COVID-19 outcome: a meta-analysis. Inf Secur 2020; 81 (2): 276–81. doi: 10.1016/j.jinf.2020.05.052
35. Kreutz R, Algharably EAE, Azizi M et al. Hypertension, the reninangiotensin system, and the risk of lower respiratory tract infections and lung injury: implications for COVID-19. Cardiovasc Res 2020. DOI: 10.1093/cvr/cvaa097
36. Jordan RE, Adab P, Cheng KK. Covid-19: Risk factors for severe disease and death. BMJ 2020; m1198. DOI: 10.1136/bmj.m1198
37. Roca-Ho H, Riera M, Palau V et al. Characterization of ACE and ACE2 expression within different organs of the NOD mouse. Int J Mol Sci 2017; 18: E563.
38. De Abajo FJ, Rodríguez-Martín S, Lerma V et al. Use of renin-angiotensin-aldosterone system inhibitors and risk of COVID-19 requiring admission to hospital: a case-population study. Lancet 2020; 395: 1705–14. DOI: 10.1016/S0140-6736(20)31030-8
39. Bean DM, Kraljevic Z, Searle T et al. Treatment with ACE-inhibitors is associated with less severe disease with SARS-Covid-19 infection in a multi-site UK acute Hospital Trust. https://www.researchgate.net/publication/340261837_
40. Caldeira D, Alarcão J, Vaz-Carneiro A, Costa J. Risk of pneumonia associated with use of angiotensin converting enzyme inhibitors and angiotensin receptor blockers: systematic review and meta-analysis. BMJ 2012; 345. DOI: 10.1136/bmj.e4260
41. Henry C, Zaizafoun M, Stock E. Impact of angiotensin- converting enzyme inhibitors and statins on viral pneumonia. SAVE Proc 2018; 31: 419–23. DOI: 10.1080/08998280.2018.1499293
42. Khera R, Clark C, Lu Y et al. Association of Angiotensin-Converting Enzyme Inhibitors and Angiotensin Receptor Blockers with the Risk of Hospitalization and Death in Hypertensive Patients with Coronavirus Disease-19. DOI: 10.1101/2020.05.17.20104943
43. Yang G, Tan Z, Zhou L et al. Effects of ARBs and ACEIs on virus infection, inflammatory status and clinical outcomes in COVID-19 patients with hypertension: a single center retrospective study. Hypertension 2020; 76 (1): 51–8. DOI: 10.1161/HYPERTENSIONAHA.120.15143
44. Pioli MR, de Faria AP. Pro-inflammatory Cytokines and Resistant Hypertension: Potential for Novel Treatments? Curr Hypertens Rep 2019; 21: 95.
45. Gheblawi M, Wang K, Viveiros A et al. Angiotensin-converting enzyme 2: SARS-CoV-2 receptor and regulator of the renin-angiotensin system. Circ Res 2020; 126: 1456–74. DOI: 10.1161/CIRCRESAHA.120.317015
46. Oudit GY, Kassiri Z, Jiang C et al. SARS-coronavirus modulation of myocardial ACE2 expression and inflammation in patients with SARS. Eur J Clin Invest 2009; 39: 618–25. DOI: 10.1111/j.1365-2362.2009.02153.x
47. Inciardi RM, Lupi L, Zaccone G et al. Cardiac involvement in a patient with Coronavirus disease 2019 (COVID-19). JAMA Cardiol 2020. DOI: 10.1001/jamacardio.2020.1096
48. Clerkin KJ, Fried JA, Raikhelkar J et al. Coronavirus disease 2019 (COVID-19) and cardiovascular disease. Circulation 2020. DOI: 10.1161/CIRCULATIONAHA.120.046941
49. Guo T, Fan Y, Chen M et al. Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19). JAMA Cardiol 2020. DOI: 10.1001/jamacardio.2020.1017
50. Wang K, Gheblawi M, Oudit GY. Angiotensin converting enzyme 2: a double- edged sword. Circulation 2020. DOI: 10.1161/CIRCULATIONAHA.120.047049
51. Liu Y, Yang Y, Zhang C et al. Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury. Sci China Life Sci 2020; 63: 364–74. DOI: 10.1007/s11427-020-1643-8
52. Chen N, Zhou M, Dong X et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 2020; 395: 507–13. DOI: 10.1016/S0140-6736(20)30211-7
53. Qin C, Zhou L, Hu Z et al. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin Infect Dis 2020. DOI: 10.1093/cid/ciaa248
54. Liu X, Long C, Xiong Q et al. Association of angiotensin converting enzyme inhibitors and angiotensin II receptor blockers with risk of COVID-19, inflammation level, severity, and death in patients with COVID-19: A rapid systematic review and meta-analysis. Clin Cardiol 2020: 10.1002/clc.23421. DOI: 10.1002/clc.23421
Авторы
В.И. Новиков, К.Ю. Новиков
ФГБОУ ВО «Смоленский государственный медицинский университет» Минздрава России, Смоленск, Россия