Цель исследования. Комплексное изучение окислительных повреждений молекул биополимеров крови (белков и нуклеиновых кислот) при сахарном диабете 2-го типа (СД2). Материалы и методы. В крови 50 больных СД2 и 25 пациентов без нарушений углеводного обмена определяли: уровень окисленных липопротеидов низкой плотности (окЛПНП) иммунохимическим методом, содержание SH-групп в белках плазмы крови, активность Cu,Zn-супероксиддисмутазы (СОД) в эритроцитах, длину теломерных повторов в дезоксирибонуклеиновой кислоте (ДНК) лейкоцитов, уровень конечного продукта деструкции ДНК 8-гидрокси-2'-дезоксигуанидина (8-oxo-dG) в плазме и моче. Результаты и обсуждение. Показано, что при СД2 происходит повышение уровня окЛПНП и снижение содержания SH-групп в белках и пептидах плазмы крови, что свидетельствует о развитии окислительного стресса. Кроме того, у больных СД2 выявлена карбонил-зависимая модификация эритроцитарной СОД, а также окислительная деструкция ДНК (уменьшение длины теломеров в лейкоцитах и увеличение уровня 8-oxo-dG в плазме крови и моче). Заключение. Впервые на основании определения комплекса корректных показателей выявлена множественная окислительная модификация биополимеров крови (белков и ДНК) при СД2.
Ключевые слова: окислительный/карбонильный стресс, окисленные липопротеиды низкой плотности, Cu,Zn-супероксиддисмутаза, окислительная деструкция ДНК, сахарный диабет 2-го типа.
________________________________________________
Aim. To study the oxidative damage of biopolymers (proteins and nucleic acids) in blood of patients with type 2 diabetes mellitus (DM). Materials and methods. In the blood of 50 patients with DM and 25 patients without disorders of carbohydrate metabolism were estimated: the level of oxidized low-density lipoprotein (oxLDL) by immunochemical method, the content of SH-groups in plasma proteins, the activity of Cu, Zn-superoxide dismutase (SOD) in erythrocytes, the length of telomere in leukocyte DNA, the level of 8-hydroxy-2'-deoxygunosine (8-oxo-dG) in plasma and urine. Results and discussion. It is shown that in DM patients the level of oxLDL increases and the content of SH-groups in proteins and peptides of the blood plasma decreases, which indicates the development of oxidative stress. In addition, a carbonyl-dependent modification of erythrocyte SOD was detected in DM patients, as well as oxidative DNA destruction (decrease in telomere length in leukocytes and an increase in the level of 8-oxo-dG in blood plasma and urine). Conclusion. On the basis of the definition of a complex of correct indicators, a multiple oxidative modification of biopolymers of blood (proteins and DNA) was detected in patients with DM.
Keywords: oxidative/carbonyl stress, oxidized low-density lipoprotein, Cu, Zn-superoxide dismutase, oxidative DNA destruction, type 2 diabetes mellitus.
Список литературы
1. Lankin VZ, Tikhaze A.K. Free radical lipoperoxidation during atherosclerosis and antioxidative therapy of this disease. In: Tomasi A, Ozben T, Skulachev V, eds. Free Radicals, Nitric Oxide and Inflammation: Molecular, Biochemical and Clinical Aspects. NATO Science Series, Amsterdam, etc.: IOS Press; 2003;344:218-231.
2. Ланкин В.З., Тихазе А.К., Каппелько В.И., Шепелькова Г.С., Шумаев К.Б., Панасенко О.М., Коновалова Г.Г., Беленков Ю.Н. Механизмы окислительной модификации липопротеидов низкой плотности при окислительном и карбонильном стрессе. Биохимия. 2007;72(10):1081-1090 [Lankin VZ, Tikhaze AK, Kapel'ko VI, Shepel'kova GS, Shumaev KB, Panasenko OM, Konovalova GG, Belenkov YuN. Mechanisms of oxidative modification of low density lipoproteins under conditions of oxidative and carbonyl stress. Biohimiya = Biochemistry (Mosc). 2007;72(10):1081-1090 (In Russ.)].
3. Lankin VZ, Konovalova GG, Tikhaze AK,Kumskova EM, Shumaev KB. Aldehyde-Dependent Modification of Low Density Lipoproteins. In: Rathbond JE, ed. Handbook of Lipoprotein Research. N.Y.: NOVA Sci. Publ.; 2010. P. 85-107.
4. Lankin VZ, Tikhaze AK. Role of Oxidative Stress in the Genesis of Atherosclerosis and Diabetes Mellitus: A Personal Look Back on 50 Years of Research. Сurr Аging Sci. 2017;10(1):18-25. doi: 10.2174/1874609809666160926142640
5. Lankin VZ, Konovalova GG, Tikhaze AK, Shumaev KB, Kumskova EM, Viigimaa M. The Initiation of the Free Radical Peroxidation of Low-Density Lipoproteins by Glucose and Its Metabolite Methylglyoxal: a Common Molecular Mechanism of Vascular Wall Injure in Atherosclerosis and Diabetes. Mol Cell Biochem. 2014;395(1/2):241-252. doi: 10.1007/s11010-014-2131-2
6. Spiteller G. Peroxyl radicals are essential reagents in the oxidation steps of the Maillard reaction leading to generation of advanced glycation products. Ann NY Acad Sci. 2008;1126(9):128-133. doi: 10.1196/annals.1433.031
7. Lankin VZ, Konovalova GG, Tikhaze AK, Shumaev KB, Belova- Kumskova EM, Grechnikova MA, Viigimaa M. Aldehyde inhibition of antioxidant enzymes in the blood of diabetic patients. J Diabetes. 2016;8(3):398-404. doi: 10.1111/1753-0407.12309
8. Houben JM, Moonen HJ, van Schooten FJ, Hageman GJ. Telomere length assessment: biomarker of chronic oxidative stress? Free Radic Biol Med. 2008;44(3):235-46. doi: 10.1016/j.freeradbiomed.2007.10.001
9. Evans MD, Cooke MS. Factors contributing to the outcome of oxidative damage to nucleic acids. Bioessays. 2004;26(5):533-542. doi: 10.1002/bies.20027
10. Olinski R, Siomek A, Rozalski R, Gackowski D, Foksinski M, Guz J, Dziaman T, Szpila A, Tudek B. Oxidative damage to DNA and antioxidant status in aging and age-related diseases. Acta Biochim Pol. 2007;54(1):11-26.
11. Hu ML. Measurements of protein thiol groups and glutathione in plasma. Methods Enzymology. 1994;233:381-385.
12. Cawthon RM. Telomere length measurement by a novel monochrome multiplex quantitative PCR method. Nucleic Acids Res. 2009;37(3):e21. doi: 10.1093/nar/gkn1027
13. Корчин В.И., Ланкин В.З., Яркова Р.Д., Коновалова Г.Г., Смирнов Л.Д., Кухарчук В.В. Антиоксидант пробукол предотвращает развитие аллоксанового диабета и уменьшает активность антиоксидантных ферментов в тканях крыс. Бюллетень экспериментальной биологии и медицины. 1992;114(9):279-282 [Korchin VI, Lankin VZ, Iarkova RD, Konovalova GG, Smirnov LD, Kukharchuk VV. Antioxidant probucol prevents development of alloxan diabetes and decrease of antioxidant enzyme activity in rat tissues. Byulleten’ Eksperimental’noy Biologii i Meditsini. 1992;114(9):279-282 (In Russ.)].
14. Lankin VZ, Korchin VI, Konovalova GG, Jarkova RD. Alloxan-induced diabetes as a model of free radical pathology. Free Radic Biol Med. 1994;16(1):15.
15. Ланкин В.З., Корчин В.И., Коновалова Г.Г., Лисина М.О., Тихазе А.К., Акмаев И.Г. Роль антиоксидантных ферментов и антиоксиданта пробукола в антирадикальной защите ß-клеток поджелудочной железы при аллоксановом диабете. Бюллетень экспериментальной биологии и медицины. 2004;137(1):27-30 [Lankin VZ, Korchin VI, Konovalova GG, Lisina MO, Tikhaze AK, Akmaev IG. Role of antioxidant enzymes and antioxidant compound probucol in antiradical protection of pancreatic beta cells during alloxan-induced diabetes. Byulleten’ Eksperimental’noy Biologii i Meditsini. 2004;137(1):20-30 (In Russ.)].
16. Oberley LW. Free radicals and diabetes. Free Radic Biol Med. 1988;5(2):113-124.
17. Aydin A, Orhan H, Sayal A, Ozata M, Sahin G, Işimer A. Oxidative stress and nitric oxide related parameters in type II diabetes mellitus: effects of glycemic control. Clin Biochem. 2001;34(1):65-70.
18. Pasaoglu H, Sancak B, Bukan N. Lipid peroxidation and resistance to oxidation in patients with type 2 diabetes mellitus. Tohoku J Exp Med. 2004;203(3):211-218.
19. De Bona KS, Bellé LP, Bittencourt PE, Bonfanti G, Cargnelluti LO, Pimentel VC, Ruviaro AR, Schetinger MR, Emanuelli T, Moretto MB. Erythrocytic enzymes and antioxidant status in people with type 2 diabetes: beneficial effect of Syzygium cumini leaf extract in vitro. Diabetes Res Clin Pract. 2011;94(1):84-90. doi: 10.1016/j.diabres.2011.06.008
20. Piconi L, Quagliaro L, Ceriello A. Oxidative stress in diabetes. Clin Chem Lab Med. 2003;41(9):1144-1149.
21. Ланкин В.З., Гуревич С.М., Бурлакова Е.Б. Изучение аскорбат-зависимого переокисления липидов тканей при помощи теста с 2-тиобарбитуровой кислотой. В кн.: Иванов И.И., редактор. Биоантиокислители. Москва: Наука; 1975. С. 73-78 [Lankin VZ, Gurevich SM, Burlakova EB. Study of ascorbate-dependent reoxidation of tissue lipids by a test with 2-thiobarbituric acid. In: Ivanov II, editor. Bioantiokisliteli [Bioantioxidants]. Moscow: Science; 1975. P. 73-78 (In Russ.)].
22. Nourooz-Zadeh J, Rahimi A, Tajaddini-Sarmadi J, Tritschler H, Rosen P, Halliwell B, Betteridge DJ. Relationships between plasma measures of oxidative stress and metabolic control in NIDDM. Diabetologia. 1997;40(6):647-653. doi: 10.1007/s001250050729
23. Ланкин В.З., Лисина М.О., Арзамасцева Н.Е., Коновалова Г.Г., Недосугова Л.В., Каминный А.И., Тихазе А.К., Агеев Ф.Т., Кухарчук В.В., Беленков Ю.Н. Окислительный стресс при атеросклерозе и диабете. Бюллетень экспериментальной биологии и медицины. 2005;140(7):48-51 [Lankin VZ, Lisina MO, Arzamastseva NE, Konovalova GG, Nedosugova LV, Kaminnyi AI, Tikhaze AK, Ageev FT, Kukharchuk VV, Belenkov YuN. Oxidative stress in atherosclerosis and diabetes. Byulleten’ Eksperimental’noy Biologii i Meditsini. 2005;140(7):48-51 (In Russ.)].
24. Cakatay U. Protein oxidation parameters in type 2 diabetic patients with good and poor glycaemic control. Diabetes Metab. 2005;31(6):551-557.
25. Cooper GJ, Chan YK, Dissanayake AM, Leahy FE, Keogh GF, Frampton CM, Gamble GD, Brunton DH, Baker JR, Poppitt SD. Demonstration of a hyperglycemia-driven pathogenic abnormality of copper homeostasis in diabetes and its reversibility by selective chelation: quantitative comparisons between the biology of copper and eight other nutritionally essential elements in normal and diabetic individuals. Diabetes. 2005;54(5):1468-1476.
26. Awadallah SM, Ramadan AR, Nusier MK. Haptoglobin polymorphism in relation to antioxidative enzymes activity in type 2 diabetes mellitus. Diabetes Metab Syndr. 2013;7(1):26-31. doi: 10.1016/j.dsx.2013.02.024
27. Martín-Gallán P, Carrascosa A, Gussinyé M, Domínguez C. Biomarkers of diabetes-associated oxidative stress and antioxidant status in young diabetic patients with or without subclinical complications. Free Radic Biol Med. 2003;34(12):1563-1574. doi: 10.1016/S0891-5849(03)00185-0
28. Khan MA, Anwar S, Aljarbou AN, Al-Orainy M, Aldebasi YH, Islam S,Younus Hint. Protective effect of thymoquinone on glucose or methylglyoxal-induced glycation of superoxide dismutase. Int J Biol Macromol. 2014;65:16-20. doi: 10.1016/j.ijbiomac.2014.01.001
29. Sampson MJ, Winterbone MS, Hughes JC, Dozio N, Hughes DA. Monocyte telomere shortening and oxidative DNA damage in type 2 diabetes. Diabetes Care. 2006;29(2):283-289.
30. Waris S, Winklhofer-Roob BM, Roob JM, Fuchs S, Sourij H, Rabbani N, Thornalley PJ. Increased DNA dicarbonyl glycation and oxidation markers in patients with type 2 diabetes and link to diabetic nephropathy. J Diabetes Res. 2015;2015,Article ID 915486, 10 p. doi: 10.1155/2015/915486
31. Leinonen J, Lehtimäki T, Toyokuni S, Okada K, Tanaka T, Hiai H, Ochi H, Laippala P, Rantalaiho V, Wirta O, Pasternack A, Alho H. New biomarker evidence of oxidative DNA damage in patients with non-insulin-dependent diabetes mellitus. FEBS Lett. 1997;417(1):150-152.
32. Unger J. Reducing oxidative stress in patients with type 2 diabetes mellitus: A primary care call to action. Insulin. 2008;3(3):176-184. doi: 10.1016/S1557-0843(08)80037-1
________________________________________________
1. Lankin VZ, Tikhaze A.K. Free radical lipoperoxidation during atherosclerosis and antioxidative therapy of this disease. In: Tomasi A, Ozben T, Skulachev V, eds. Free Radicals, Nitric Oxide and Inflammation: Molecular, Biochemical and Clinical Aspects. NATO Science Series, Amsterdam, etc.: IOS Press; 2003;344:218-231.
2. [Lankin VZ, Tikhaze AK, Kapel'ko VI, Shepel'kova GS, Shumaev KB, Panasenko OM, Konovalova GG, Belenkov YuN. Mechanisms of oxidative modification of low density lipoproteins under conditions of oxidative and carbonyl stress. Biohimiya = Biochemistry (Mosc). 2007;72(10):1081-1090 (In Russ.)].
3. Lankin VZ, Konovalova GG, Tikhaze AK,Kumskova EM, Shumaev KB. Aldehyde-Dependent Modification of Low Density Lipoproteins. In: Rathbond JE, ed. Handbook of Lipoprotein Research. N.Y.: NOVA Sci. Publ.; 2010. P. 85-107.
4. Lankin VZ, Tikhaze AK. Role of Oxidative Stress in the Genesis of Atherosclerosis and Diabetes Mellitus: A Personal Look Back on 50 Years of Research. Сurr Аging Sci. 2017;10(1):18-25. doi: 10.2174/1874609809666160926142640
5. Lankin VZ, Konovalova GG, Tikhaze AK, Shumaev KB, Kumskova EM, Viigimaa M. The Initiation of the Free Radical Peroxidation of Low-Density Lipoproteins by Glucose and Its Metabolite Methylglyoxal: a Common Molecular Mechanism of Vascular Wall Injure in Atherosclerosis and Diabetes. Mol Cell Biochem. 2014;395(1/2):241-252. doi: 10.1007/s11010-014-2131-2
6. Spiteller G. Peroxyl radicals are essential reagents in the oxidation steps of the Maillard reaction leading to generation of advanced glycation products. Ann NY Acad Sci. 2008;1126(9):128-133. doi: 10.1196/annals.1433.031
7. Lankin VZ, Konovalova GG, Tikhaze AK, Shumaev KB, Belova- Kumskova EM, Grechnikova MA, Viigimaa M. Aldehyde inhibition of antioxidant enzymes in the blood of diabetic patients. J Diabetes. 2016;8(3):398-404. doi: 10.1111/1753-0407.12309
8. Houben JM, Moonen HJ, van Schooten FJ, Hageman GJ. Telomere length assessment: biomarker of chronic oxidative stress? Free Radic Biol Med. 2008;44(3):235-46. doi: 10.1016/j.freeradbiomed.2007.10.001
9. Evans MD, Cooke MS. Factors contributing to the outcome of oxidative damage to nucleic acids. Bioessays. 2004;26(5):533-542. doi: 10.1002/bies.20027
10. Olinski R, Siomek A, Rozalski R, Gackowski D, Foksinski M, Guz J, Dziaman T, Szpila A, Tudek B. Oxidative damage to DNA and antioxidant status in aging and age-related diseases. Acta Biochim Pol. 2007;54(1):11-26.
11. Hu ML. Measurements of protein thiol groups and glutathione in plasma. Methods Enzymology. 1994;233:381-385.
12. Cawthon RM. Telomere length measurement by a novel monochrome multiplex quantitative PCR method. Nucleic Acids Res. 2009;37(3):e21. doi: 10.1093/nar/gkn1027
13. [Korchin VI, Lankin VZ, Iarkova RD, Konovalova GG, Smirnov LD, Kukharchuk VV. Antioxidant probucol prevents development of alloxan diabetes and decrease of antioxidant enzyme activity in rat tissues. Byulleten’ Eksperimental’noy Biologii i Meditsini. 1992;114(9):279-282 (In Russ.)].
14. Lankin VZ, Korchin VI, Konovalova GG, Jarkova RD. Alloxan-induced diabetes as a model of free radical pathology. Free Radic Biol Med. 1994;16(1):15.
15. [Lankin VZ, Korchin VI, Konovalova GG, Lisina MO, Tikhaze AK, Akmaev IG. Role of antioxidant enzymes and antioxidant compound probucol in antiradical protection of pancreatic beta cells during alloxan-induced diabetes. Byulleten’ Eksperimental’noy Biologii i Meditsini. 2004;137(1):20-30 (In Russ.)].
16. Oberley LW. Free radicals and diabetes. Free Radic Biol Med. 1988;5(2):113-124.
17. Aydin A, Orhan H, Sayal A, Ozata M, Sahin G, Işimer A. Oxidative stress and nitric oxide related parameters in type II diabetes mellitus: effects of glycemic control. Clin Biochem. 2001;34(1):65-70.
18. Pasaoglu H, Sancak B, Bukan N. Lipid peroxidation and resistance to oxidation in patients with type 2 diabetes mellitus. Tohoku J Exp Med. 2004;203(3):211-218.
19. De Bona KS, Bellé LP, Bittencourt PE, Bonfanti G, Cargnelluti LO, Pimentel VC, Ruviaro AR, Schetinger MR, Emanuelli T, Moretto MB. Erythrocytic enzymes and antioxidant status in people with type 2 diabetes: beneficial effect of Syzygium cumini leaf extract in vitro. Diabetes Res Clin Pract. 2011;94(1):84-90. doi: 10.1016/j.diabres.2011.06.008
20. Piconi L, Quagliaro L, Ceriello A. Oxidative stress in diabetes. Clin Chem Lab Med. 2003;41(9):1144-1149.
21. [Lankin VZ, Gurevich SM, Burlakova EB. Study of ascorbate-dependent reoxidation of tissue lipids by a test with 2-thiobarbituric acid. In: Ivanov II, editor. Bioantiokisliteli [Bioantioxidants]. Moscow: Science; 1975. P. 73-78 (In Russ.)].
22. Nourooz-Zadeh J, Rahimi A, Tajaddini-Sarmadi J, Tritschler H, Rosen P, Halliwell B, Betteridge DJ. Relationships between plasma measures of oxidative stress and metabolic control in NIDDM. Diabetologia. 1997;40(6):647-653. doi: 10.1007/s001250050729
23. [Lankin VZ, Lisina MO, Arzamastseva NE, Konovalova GG, Nedosugova LV, Kaminnyi AI, Tikhaze AK, Ageev FT, Kukharchuk VV, Belenkov YuN. Oxidative stress in atherosclerosis and diabetes. Byulleten’ Eksperimental’noy Biologii i Meditsini. 2005;140(7):48-51 (In Russ.)].
24. Cakatay U. Protein oxidation parameters in type 2 diabetic patients with good and poor glycaemic control. Diabetes Metab. 2005;31(6):551-557.
25. Cooper GJ, Chan YK, Dissanayake AM, Leahy FE, Keogh GF, Frampton CM, Gamble GD, Brunton DH, Baker JR, Poppitt SD. Demonstration of a hyperglycemia-driven pathogenic abnormality of copper homeostasis in diabetes and its reversibility by selective chelation: quantitative comparisons between the biology of copper and eight other nutritionally essential elements in normal and diabetic individuals. Diabetes. 2005;54(5):1468-1476.
26. Awadallah SM, Ramadan AR, Nusier MK. Haptoglobin polymorphism in relation to antioxidative enzymes activity in type 2 diabetes mellitus. Diabetes Metab Syndr. 2013;7(1):26-31. doi: 10.1016/j.dsx.2013.02.024
27. Martín-Gallán P, Carrascosa A, Gussinyé M, Domínguez C. Biomarkers of diabetes-associated oxidative stress and antioxidant status in young diabetic patients with or without subclinical complications. Free Radic Biol Med. 2003;34(12):1563-1574. doi: 10.1016/S0891-5849(03)00185-0
28. Khan MA, Anwar S, Aljarbou AN, Al-Orainy M, Aldebasi YH, Islam S,Younus Hint. Protective effect of thymoquinone on glucose or methylglyoxal-induced glycation of superoxide dismutase. Int J Biol Macromol. 2014;65:16-20. doi: 10.1016/j.ijbiomac.2014.01.001
29. Sampson MJ, Winterbone MS, Hughes JC, Dozio N, Hughes DA. Monocyte telomere shortening and oxidative DNA damage in type 2 diabetes. Diabetes Care. 2006;29(2):283-289.
30. Waris S, Winklhofer-Roob BM, Roob JM, Fuchs S, Sourij H, Rabbani N, Thornalley PJ. Increased DNA dicarbonyl glycation and oxidation markers in patients with type 2 diabetes and link to diabetic nephropathy. J Diabetes Res. 2015;2015,Article ID 915486, 10 p. doi: 10.1155/2015/915486
31. Leinonen J, Lehtimäki T, Toyokuni S, Okada K, Tanaka T, Hiai H, Ochi H, Laippala P, Rantalaiho V, Wirta O, Pasternack A, Alho H. New biomarker evidence of oxidative DNA damage in patients with non-insulin-dependent diabetes mellitus. FEBS Lett. 1997;417(1):150-152.
32. Unger J. Reducing oxidative stress in patients with type 2 diabetes mellitus: A primary care call to action. Insulin. 2008;3(3):176-184. doi: 10.1016/S1557-0843(08)80037-1
1 ФГБУ «Национальный медицинский исследовательский центр кардиологии» Минздрава России, Москва, Россия;
2 ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова» Минздрава России (Сеченовский Университет), Москва, Россия
________________________________________________
V.Z. Lankin 1, A.K. Tikhaze 1, G.G. Konovalova 1, O.A. Odinokova 2, N.A. Doroshchuk 1, I.E. Chazova 1
1 National Medical Research Center for Cardiology, Moscow, Russia;
2 I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia (Sechenov University), Moscow, Russia