Сигнальный путь Notch – терапевтическая мишень для регуляции репаративных процессов в сердце
Материалы доступны только для специалистов сферы здравоохранения. Авторизуйтесь или зарегистрируйтесь.
Ключевые слова: сигнальный путь Notch, регенерация, повреждение миокарда.
________________________________________________
Notch signaling pathway is a universal regulator of cell fate in embryogenesis and in maintaining the cell homeostasis of adult tissue. Through local cell-cell interactions, he controls neighboring cells behavior and determines their capacity for self-renewal, growth, survival, differentiation, and apoptosis. Recent studies have shown that the control of regenerative processes in the heart is also carried out with the participation of Notch system. At the heart of Notch regulates migration bone marrow progenitors and stimulates the proliferation of cardiomyocytes, cardiac progenitor cell activity, limits cardiomyocyte hypertrophy and fibrosis progression and stimulates angiogenesis. Notch signaling pathway may be regarded as a very promising target for the development of drugs for the stimulation of regeneration in the myocardium.
Keywords: Notch signalling, regeneration, myocardial damage.
2. De la Pompa JL, Epstein JA. Coordinating tissue interactions: Notch signaling in cardiac development and disease. Dev Cell. 2012;22(2):244-54. doi: 10.1016/j.devcel.2012.01.014
3. Luxán G, D'Amato G, MacGrogan D, de la Pompa JL. Endocardial Notch Signaling in Cardiac Development and Disease. Circ Res. 2016;118(1):1-18. doi: 10.1161/CIRCRESAHA.115.305350
4. High FA, Epstein JA. The multifaceted role of Notch in cardiac development and disease. Nat Rev Genet. 2008;9(1):49-61. doi: 10.1038/nrg2279
5. Weinmaster G, Roberts VJ, Lemke G. Notch2: a second mammalian Notch gene. Development. 1992;116(4):931-41.
6. Del Amo FF, Smith DE, Swiatek PJ, Gendron-Maguire M, Greenspan RJ, McMahon AP, Gridley T. Expression pattern of Motch, a mouse homolog of Drosophila Notch, suggests an important role in early postimplantation mouse development. Development. 1992;115:737-44.
7. Lardelli M, Dahlstrand J, Lendahl U. The novel Notch homologue mouse Notch3 lacks specific epidermal growth factor repeats and is expressed in proliferating neuroepithelium. Mech Dev. 1994;46(2):123-36.
8. Uyttendaele H, Marazzi G, Wu G, Yan Q, Sassoon D, Kitajewski J. Notch4/int-3, a mammary proto oncogene, is an endothelial cell-specific mammalian Notch gene. Development. 1996;122(7):2251-9.
9. Bettenhausen B, Hrabe de Angelis M, Simon D, Guenet D, Gossler A. Transient and restricted expression during mouse embryogenesis of Dll1, a murine gene closely related to Drosophila delta. Development. 1995;121(8):2407-18.
10. Dunwoodie SL, Henrique D, Harrison SM, Beddington RS. Mouse Dll3: a novel divergent Delta gene which may complement the function of other Delta homologues during early pattern formation in the mouse embryo. Development. 1997;124(16):3065-76.
11. Krebs LT, Xue Y, Norton CR, Shutter JR, Maguire M, Sundberg JP, Gallahan D, Closson V, Kitajewski J, Callahan R, Smith GH, Stark KL, Gridley T. Notch signaling is essential for vascular morphogenesis in mice. Genes Dev. 2000;14:1343-52. doi: 10.1101/gad.14.11.1343
12. Lindsell CE, Shawber CJ, Boulter J, Weinmaster G. Jagged: a mammalian ligand that activates Notch1. Cell. 1995;80(6):909-17.
13. Shawber C, Boulter J, Lindsell CE, Weinmaster G. Jagged2: a serrate like gene expressed during rat embryogenesis. Dev Biol. 1996;180(1):370-6. doi: 10.1006/dbio.1996.0310
14. D'Souza B, Meloty-Kapella L, Weinmaster G. Canonical and Non-Canonical Notch Ligands. Curr Top Develop Biol. 2010;92:73-129. doi: 10.1016/S0070–2153(10)92003–6
15. Hori K, Sen A, Artavanis-Tsakonas S. Notch Signaling at a Glance. J Cell Sci. 2013;126(10):2135-40. doi: 10.1242/jcs.127308
16. Tamura K, Taniguchi Y, Minoguchi S, Sakai T, Tun T, Furukawa T, Honjo T. Physical interaction between a novel domain of the receptor Notch and the transcription factor RBP-J kappa/Su(H). Curr Biol. 1995;5(12):1416-23.
17. Blank V, Kourilsky P, Israel A. NF-kappa B and related proteins: Rel/dorsal homologies meet ankyrin-like repeats. Trends Biochem Sci. 1992;17(4):135-40. doi: 10.1016/0968-0004(92)90321-Y
18. Rechsteiner M. Regulation of enzyme levels by proteolysis: the role of pest regions. Adv Enzyme Regul. 1988;27:135-51.
19. Chillakuri CR, Sheppard D, Le SM, Handford PA. Notch Receptor-ligand Binding and Activation: Insights from Molecular Studies. Semin Cell Develop Biol. 2012;23(4):421-8. doi: 10.1016/j.semcdb.2012.01.009
20. Komatsu H, Chao MY, Larkins-Ford J, Corkins ME, Somers GA, Tucey T, Dionne HM, White JQ, Wani K, Boxem M, Hart AC. OSM-11 facilitates LIN-12 Notch signaling during Caenorhabditis elegans vulval development. PLoS Biol. 2008;6(8):196-8. doi: 10.1371/journal.pbio.0060196
21. LaFoya B, Munroe JA, Mia MM, Detweiler MA, Crow JJ, Wood T, Roth S, Sharma B, Albig AR. Notch: A multi-functional integrating system of microenvironmental signals. Dev Biol. 2016;418(2):227-41. doi: 10.1016/j.ydbio.2016.08.023
22. Guruharsha KG, Kankel MW, Artavanis-Tsakonas S. The Notch Signalling System: Recent Insights into the Complexity of a Conserved Pathway. Nat Rev Genet. 2012;13(9):654-66. doi: 10.1038/nrg3272
23. Sprinzak D, Lakhanpal A, Lebon L, Santat LA, Fontes ME, Anderson GA, Garcia-Ojalvo J, Elowitz MB. Cis Interactions between Notch and Delta Generate Mutually Exclusive Signaling States. Nature. 2010;465(7294):86-90. doi: 10.1038/nature08959
24. Wang MM. Notch Signaling and Notch Signaling Modifiers. Int J Biochem Cell Biol. 2011;43(11):1550-62. doi: 10.1016/j.biocel.2011.08.005
25. Mumm JS, Schroeter EH, Saxena MT, Griesemer A, Tian X, Pan DJ, Ray WJ, Kopan R. A ligand-induced extracellular cleavage regulates gamma-secretase-like proteolytic activation of Notch1. Mol Cell. 2000;5(2):197-206. doi: 10.1016/S1097-2765(00)80416-5
26. Toonen JA, Ronchetti A, Sidjanin DJ. A Disintegrin and Metalloproteinase10 (ADAM10) Regulates NOTCH Signaling during Early Retinal Development. PLoS One. 2016;11(5):e0156184. doi: 10.1371/journal.pone.0156184
27. De Strooper B, Annaert W, Cupers P, Saftig P, Craessaerts K, Mumm JS, Schroeter EH, Schrijvers V, Wolfe MS, Ray WJ, Goate A, Kopan R. A presenilin-1-dependent gamma-secretase-like protease mediates release of Notch intracellular domain. Nature. 1999;398(6727):518-22. doi: 10.1038/19083
28. Wu L, Aster JC, Blacklow SC, Lake R, Artavanis-Tsakonas S, Griffin JD. MAML1, a human homologue of Drosophila mastermind, is a transcriptional coactivator for NOTCH receptors. Nat Genet. 2000;26:484-9. doi: 10.1038/82644
29. Kurooka H, Honjo T. Functional interaction between the mouse Notch1 intracellular region and histone acetyltransferases PCAF and GCN5. J Biol Chem. 2000;275:17211-20.
30. Kokubo H, Miyagawa-Tomita S, Johnson RL. Hesr, a mediator of the notch signaling functions in heart and vessel development. Trends Cardiovasc Med. 2005;15:190-4.
31. Sanalkumar R, Dhanesh SB, James J. Non-canonical activation of Notch signaling/target genes in vertebrates. Cell Mol Life Sci. 2010;67(17):2957-68. doi: 10.1007/s00018-010-0391-x
32. Ladi E, Nichols JT, Ge W, Miyamoto A, Yao C, Yang LT, Boulter J, Sun YE, Kintner C, Weinmaster G. The divergent DSL ligand Dll3 does not activate Notch signaling but cell autonomously attenuates signaling induced by other DSL ligands. J Cell Biol. 2005;170:983-92. doi: 10.1083/jcb.200503113
33. Lee SF, Srinivasan B, Sephton CF, Dries DR, Wang B, Yu C, Wang Y, Dewey CM, Shah S, Jiang J, Yu G. Gamma-secretase-regulated proteolysis of the Notch receptor by mitochondrial intermediate peptidase. J Biol Chem. 2011;286(31):27447-53. doi: 10.1074/jbc.M111.243154
34. Ayaz F, Osborne BA. Non-Canonical Notch Signaling in Cancer and Immunity. Front Oncol. 2014;4(4):345. doi: 10.3389/fonc.2014.00345
35. Forrester JS, Price MJ, Makkar RR. Stem cell repair of infarcted myocardium an overview for clinicians. Circulation. 2003;108:1139-45. doi: 10.1161/01.CIR.0000085305.82019.65
36. Li Y, Hiroi Y, Ngoy S, Okamoto R, Noma K, Wang CY, Wang HW, Zhou Q, Radtke F, Liao R, Liao JK. Notch1 in bone marrow-derived cells mediates cardiac repair after myocardial infarction. Circulation. 2011;123(8):866-76. doi: 10.1161/CIRCULATIONAHA.110.947531
37. Swiatek PJ, Lindsell CE, del Amo FF, Weinmaster G, Gridley T. Notch1 is essential for postimplantation development in mice. Genes Dev. 1994;8:707-19.
38. Li Y, Fukuda N, Yokoyama S, Kusumi Y, Hagikura K, Kawano T, Takayama T, Matsumoto T, Satomi A, Honye J, Mugishima H, Mitsumata M, Saito S. Effects of G-CSF on cardiac remodeling and arterial hyperplasia in rats. Eur J Pharmacol. 2006;549:98-106. doi: 10.1016/j.ejphar.2006.08.006
39. Da Silva Meirelles L, Caplan AI, Nardi NB. In search of the in vivo identity of mesenchymal stem cells. Stem Cells. 2008;26:2287-99. doi: 10.1634/stemcells.2007-1122
40. Nemir M, Metrich M, Plaisance I, Lepore M, Cruchet S, Berthonneche C, Sarre A, Radtke F, Pedrazzini T. The Notch pathway controls fibrotic and regenerative repair in the adult heart. Eur Heart J. 2014;35(32):2174-85. doi: 10.1093/eurheartj/ehs269
41. Abbott JD, Huang Y, Liu D, Hickey R, Krause D, Giordano F. Stromal cell-derived factor-1alpha plays a critical role in stem cell recruitment to the heart after myocardial infarction but is not sufficient to induce homing in the absence of injury. Circulation. 2004;110:3300-5. doi: 10.1161/01.CIR.0000147780.30124.CF
42. Wang YC, Hu XB, He F, Feng F, Wang L, Li W, Zhang P, Li D, Jia ZS, Liang YM, Han H. Lipopolysaccharide-induced maturation of bone marrow-derived dendritic cells is regulated by notch signaling through the up-regulation of CXCR4. J Biol Chem. 2009;284:15993-6003. doi: 10.1074/jbc.M901144200
43. Xie JI, Wang W, Si JW, Miao XY, Li JC, Wang YC, Wang ZR, Ma J, Zhao XC, Li Z, Yi H, Han H. Notch signaling regulates CXCR4 expression and the migration of mesenchymal stem cells. Cell Immunol. 2013;281(1):68-75. doi: 10.1016/j.cellimm.2013.02.001
44. Li Q, Turdi S, Thomas DP, Zhou T, Ren J. Intra-myocardial delivery of mesenchymal stem cells ameliorates left ventricular and cardiomyocyte contractile dysfunction following myocardial infarction. Toxicol Lett. 2010;195(23):119-26. doi: 10.1016/j.toxlet.2010.03.009
45. Yu XY, Geng YJ, Li XH, Lin QX, Shan ZX, Lin SG, Song YH, Li Y. The effects of mesenchymal stem cells on c-kit up-regulation and cell-cycle re-entry of neonatal cardiomyocytes are mediated by activation of insulin-like growth factor 1 receptor. Mol Cell Biochem. 2009;332(1-2):25-32. doi: 10.1007/s11010-009-0170-x
46. Sassoli C, Pini A, Mazzanti B, Quercioli F, Nistri S, Saccardi R, Zecchi-Orlandini S, Bani D, Formigli L. Mesenchymal stromal cells affect cardiomyocyte growth through juxtacrine Notch-1/Jagged-1 signaling and paracrine mechanisms: clues for cardiac regeneration. J Mol Cell Cardiol. 2011;51(3):399-408. doi: 10.1016/j.yjmcc.2011.06.004
47. Kassner N, Krueger M, Yagita H, Dzionek A, Hutloff A, Kroczek R, Scheffold A, Rutz S. Plasmacytoid dendritic cells induce IL-10 production in T cells via the Delta-like-4/Notch axis. J Immunol. 2010;184(2):550-4. doi: 10.4049/jimmunol.0903152
48. Woollard KJ, Geissmann F. Monocytes in atherosclerosis: Subsets and functions. Nat Rev Cardiol. 2010;7(2):77-86. doi: 10.1038/nrcardio.2009.228
49. Piggott K, Deng J, Warrington K, Younge B, Kubo JT, Desai M, Goronzy JJ, Weyand CM. Blocking the NOTCH pathway inhibits vascular inflammation in large-vessel vasculitis. Circulation. 2011;123(3):309-18. doi: 10.1161/CIRCULATIONAHA.110.936203
50. Chow JC, Young DW, Golenbock DT, Christ WJ, Gusovsky F. Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction. J Biol Chem. 1999;274:10689-92. doi: 10.1074/jbc.274.16.10689
51. Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 2008;8:958-69. doi: 10.1038/nri2448
52. Nathan CF, Murray HW, Wiebe ME, Rubin BY. Identification of interferon-gamma as the lymphokine that activates human macrophage oxidative metabolism and antimicrobial activity. J Exp Med. 1983;158:670-89. doi: 10.1084/jem.158.3.670
53. Loke P, Gallagher I, Nair MG, Zang X, Brombacher F, Mohrs M, Allison JP, Allen JE. Alternative activation is an innate response to injury that requires CD4+ T cells to be sustained during chronic infection. J Immunol. 2007;179:3926-36. doi: 10.4049/jimmunol.179.6.3926
54. Paliard X, de Waal Malefijt R, Yssel H, Blanchard D, Chretien I, Abrams J, de Vries J, Spits H. Simultaneous production of IL-2, IL-4, and IFN-gamma by activated human CD4+ and CD8+ T cell clones. J Immunol. 1988;141:849-55.
55. Wang YC, He F, Feng F, Liu XW, Dong GY, Qin HY, Hu XB, Zheng MH, Liang L, Feng L, Liang YM, Han H. Notch signaling determines the M1 versus M2 polarization of macrophages in antitumor immune responses. Cancer Res. 2010;70:4840-9. doi: 10.1158/0008-5472.CAN-10-0269
56. Singla RD, Wang J, Singla DK. Regulation of Notch 1 signaling in THP–1 cells enhances M2 macrophage differentiation. Am J Physiol Heart Circ Physiol. 2014;307(11):1634-42. doi: 10.1152/ajpheart.00896.2013
57. Ahmad HR, Hashmi S. Is biological repair of heart on the horizon? Pak J Med Sci. 2017;33(4):1042-46. doi: 10.12669/pjms.334.12938
58. Urbanek K, Cabral-da-Silva MC, Ide-Iwata N, Maestroni S, Delucchi F, Zheng H, Ferreira-Martins J, Ogorek B, D’Amario D, Bauer M, Zerbini G, Rota M, Hosoda T, Liao R, Anversa P, Kajstura J, Leri A. Inhibition of Notch1-dependent cardiomyogenesis leads to a dilated myopathy in the neonatal heart. Circ Res. 2010;107:429-41. doi: 10.1161/CIRCRESAHA.110.218487
59. Collesi C, Felician G, Secco I, Gutierrez MI, Martelletti E, Ali H, Zentilin L, Myers MP, Giacca M. Reversible Notch1 acetylation tunes proliferative signalling in cardiomyocytes. Cardiovasc Res. 2018;114(1):103-22. doi: 10.1093/cvr/cvx228
60. Ge W, Ren J. mTOR-STAT3-Notch signalling contributes to ALDH2-induced protection against cardiac contractile dysfunction and autophagy under alcoholism. J Cell Mol Med. 2012;16(3):616-26. doi: 10.1111/j.1582-4934.2011.01347.x
61. Lee JH, Suk J, Park J, Kim SB, Kwak SS, Kim JW, Lee CH, Byun B, Ahn JK, Joe CO. Notch signal activates hypoxia pathway through hes1-dependent src/signal transducers and activators of transcription pathway. Mol Cancer Res. 2009;7:1663-71. doi: 10.1158/1541-7786.MCR-09-0191
62. Gude NA, Emmanuel G, Wu W, Cottage CT, Fischer K., Quijada P, Muraski JA, Alvarez R, Rubio M, Schaefer E, Sussman MA. Activation of Notch-mediated protective signaling in the myocardium. Circ Res. 2008;102:1025-35. doi: 10.1161/CIRCRESAHA.107.164749
63. Kratsios P, Catela C, Salimova E, Huth M, Berno V, Rosenthal N, Mourkioti F. Distinct roles for cell-autonomous Notch signaling in cardiomyocytes of the embryonic and adult heart. Circ Res. 2010;106:559-72. doi: 10.1161/CIRCRESAHA.109.203034
64. Patel NS, Li JL, Generali D, Poulsom R, Cranston DW, Harris AL. Up-regulation of δ-like 4 ligand in human tumor vasculature and the role of basal expression in endothelial cell function. Cancer Res. 2005;65(19):8690-7. doi: 10.1158/0008–5472.CAN-05-1208
65. Mailhos C, Modlich U, Lewis J, Harris A, Bicknell R, Ish-Horowicz D. Delta4, an endothelial specific notch ligand expressed at sites of physiological and tumor angiogenesis. Differentiation. 2001;69:135-44. doi: 10.1046/j.1432–0436.2001.690207.x
66. Gustafsson MV, Zheng X, Pereira T, Gradin K, Jin S, Lundkvist J, Ruas JL, Poellinger L, Lendahl U, Bondesson M. Hypoxia requires notch signaling to maintain the undifferentiated cell state. Dev Cell. 2005;9:617-28. doi: 10.1016/j.devcel.2005.09.010
67. Croquelois A, Domenighetti AA, Nemir M, Lepore M, Rosenblatt-Velin N, Radtke F, Pedrazzini T. Control of the adaptive response of the heart to stress via the Notch1 receptor pathway. J Exp Med. 2008;205:3173-85. doi: 10.1084/jem.20081427
68. Yu HC, Qin HY, He F, Wang L, Fu W, Liu D, Guo FC, Liang L, Dou KF, Han H. Canonical notch pathway protects hepatocytes from ischemia/reperfusion injury in mice by repressing reactive oxygen species production through JAK2/STAT3 signaling. Hepatology. 2011;54:979-88. doi: 10.1002/hep.24469
69. Pei H, Yu Q, Xue Q, Guo Y, Sun L, Hong Z, Han H, Gao E, Qu Y, Tao L. Notch1 cardioprotection in myocardial ischemia/reperfusion involves reduction of oxidative/nitrative stress. Basic Res Cardiol. 2013;108(5):373. doi: 10.1007/s00395-013-0373-x
70. Liu Y, Wang T, Yan J, Jiagbogu N, Heideman DA, Canfield AE, Alexander MY. HGF/c-Met signalling promotes Notch3 activation and human vascular smooth muscle cell osteogenic differentiation in vitro. Atherosclerosis. 2011;219(2):440-7. doi: 10.1016/j.atherosclerosis.2011.08.033
71. Kochegura TN, Makarevich PI, Ovchinnikov AG, Zhigunova LV, Lahova EL, Shestakova MV, Ageev FT, Parfenova EV. Circulating hepatocyte growth factor (hgf) in patients with comorbidity of chronic heart failure, type 2 diabetes mellitus and impaired lipid metabolism. Diabetes Mellitus. 2013;16(2):17-25. doi: 10.14341/2072-0351-3752
72. Farzaneh M, Rahimi F, Alishahi M, Khoshnam SE. Paracrine mechanisms involved in mesenchymal stem cell differentiation into cardiomyocytes. Curr Stem Cell Res Ther. 2018;1(2):34-45. doi: 10.2174/1574888X13666180821160421
73. Campa VM, Gutierrez-Lanza R, Cerignoli F, Diaz-Trelles R, Nelson B, Tsuji T, Barcova M, Jiang W, Mercola M. Notch activates cell cycle reentry and progression in quiescent cardiomyocytes. J Cell Biol. 2008;183(1):129-41. doi: 10.1083/jcb.200806104
74. Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, Chimenti S, Kasahara H, Rota M, Musso E, Urbanek K, Leri A, Kajstura J, Nadal-Ginard B, Anversa P. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell. 2003;114(6):763-8. doi: 10.1016/S0092-8674(03)00687-1
75. Dergilev KV, Tsokolaeva ZI, Makarevich PI, Boldyreva MA, Beloglazova IB, Zubkova ES, Rubina KA, Sysoeva VY, Sharonov GV, Akchurin RS, Parfenova EV. Isolation and characterization of cardiac progenitor cells from myocardial right atrial appendage tissue. Cell Tiss Biol. 2016;10(5):349-56.
76. Дергилев К.В., Рубина К.А., Парфенова Е.В. Резидентные стволовые клетки сердца. Кардиология. 2011;51(4):84-92 [Dergilev KV, Rubina KA, Parfyonova YeV. Resident cardiac stem cells. Kardiologiya. 2011;51(4):84-92 (In Russ.)].
77. Dergilev KV, Makarevich PI, Tsokolaeva ZI, Boldyreva MA, Beloglazova IB, Zubkova ES, Menshikov MY, Parfenova EV. Comparison of cardiac stem cell sheeys detached from versene solution and from thermoresponsive dishes reveals similar properties of constructs. Tiss Cell. 2017;49(1):64-71. doi: 10.1016/j.tice.2016.12.001
78. Messina E, Giacomello A. Diabetic cardiomyopathy: a "cardiac stem cell disease" involving p66Shc, an attractive novel molecular target for heart failure therapy. Circ Res. 2006;99(1):1-2. doi: 10.1161/01.RES.0000233141.65522.3e
79. Urbanek K, Torella D, Sheikh F, De Angelis A, Nurzynska D, Silvestri F, Beltrami CA, Bussani R, Beltrami AP, Quaini F, Bolli R, Leri A, Kajstura J, Anversa P. Myocardial regeneration by activation of multipotent cardiac stem cells in ischemic heart failure. Proc Natl Acad Sci USA. 2005;102(24):8692-7. doi: 10.1073/pnas.0500169102
80. Linke A, Muller P, Nurzynska D, Casarsa C, Torella D, Nascimbene A, Castaldo C, Cascapera S, Böhm M, Quaini F, Urbanek K, Leri A, Hintze TH, Kajstura J, Anversa P. Stem cells in the dog heart are self-renewing, clonogenic, and multipotent and regenerate infarcted myocardium, improving cardiac function. Proc Natl Acad Sci USA. 2005;102(25):8966-71. doi: 10.1073/pnas.0502678102
81. Johnston PV, Sasano T, Mills K, Evers R, Lee ST, Smith RR, Lardo AC, Lai S, Steenbergen C, Gerstenblith G, Lange R, Marbán E. Engraftment, differentiation, and functional benefits of autologous cardiosphere-derived cells in porcine ischemic cardiomyopathy. Circulation. 2009;120(12):1075-83. doi: 10.1161/CIRCULATIONAHA.108.816058
82. Urbanek K, Quaini F, Tasca G, Torella D, Castaldo C, Nadal-Ginard B, Leri A, Kajstura J, Quaini E, Anversa P. Intense myocyte formation from cardiac stem cells in human cardiac hypertrophy. Proc Natl Acad Sci USA. 2003;100(18):10440-5. doi: 10.1073/pnas.1832855100
83. Smith RR, Barile L, Cho HC, Leppo MK, Hare JM, Messina E, Giacomello A, Abraham MR, Marbán E. Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation. 2007;115(7):896-908. doi: 10.1161/CIRCULATIONAHA.106.655209
84. Bearzi C, Rota M, Hosoda T, Tillmanns J, Nascimbene A, De Angelis A, Yasuzawa-Amano S, Trofimova I, Siggins RW, Lecapitaine N, Cascapera S, Beltrami AP, D'Alessandro DA, Zias E, Quaini F, Urbanek K, Michler RE, Bolli R, Kajstura J, Leri A, Anversa P. Human cardiac stem cells. Proc Natl Acad Sci USA. 2007;104(35):14068-73. doi: 10.1073/pnas.0706760104
85. Wang Y, Haider HKh, Ahmad N, Zhang D, Ashraf M. Evidence for ischemia induced host-derived bone marrow cell mobilization into cardiac allografts. J Mol Cell Cardiol. 2006;41(3):478-87. doi: 10.1016/j.yjmcc.2006.06.074
86. Dergilev K, Tsokolaeva Z, Boldyreva M, Beloglazova I, Zubkova E, Parfyonova Ye. Notch Activation Enchances Vascular Lineage Commitment of Cardiac Stem Cells. Mol Ther. 2016;24(1):177-8.
87. Boni A, Urbanek K, Nascimbene A, Hosoda T, Zheng H, Delucchi F, Amano K, Gonzalez A, Vitale S, Ojaimi C, Rizzi R, Bolli R, Yutzey KE, Rota M, Kajstura J, Anversa P, Leri A. Notch1 regulates the fate of cardiac progenitor cells. Proc Natl Acad Sci USA. 2008;105:15529-34. doi: 10.1073/pnas.0808357105
88. Lawson ND, Vogel AM, Weinstein BM. Sonic hedgehog and vascular endothelial growth factor act upstream of the Notch pathway during arterial endothelial differentiation. Dev Cell. 2002;3(1):127-36. doi: 10.1016/S1534-5807(02)00198-3
89. Niessen K, Karsan A. Notch signaling in cardiac development. Circ Res. 2008;102(10):1169-81. doi: 10.1161/CIRCRESAHA.108.174318
90. Espinosa L, Ingles-Esteve J, Aguilera C, Bigas A. Phosphorylation by glycogen synthase kinase-3 beta down-regulates Notch activity, a link for Notch and Wnt pathways. J Biol Chem. 2003;278(34):32227-35. doi: 10.1074/jbc.M304001200
91. Bridges E, Oon CE, Harris A. Notch regulation of tumor angiogenesis. Future Oncol. 2011;7(4):569-88. doi: 10.2217/fon.11.20
92. Del Monte G, Casanova JC, Guadix JA, MacGrogan D, Burch JB, Perez-Pomares JM, de la Pompa JL. Differential Notch signaling in the epicardium is required for cardiac inflow development and coronary vessel morphogenesis. Circ Res. 2011;108:824-36. doi: 10.1161/CIRCRESAHA.110.229062
93. Yang K, Doughman YQ, Karunamuni G, Gu S, Yang YC, Bader DM, Watanabe M. Expression of active Notch1 in avian coronary development. Dev Dyn. 2009;238(1):162-70. doi: 10.1002/dvdy.21811
94. Kwon SM, Eguchi M, Wada M, Iwami Y, Hozumi K, Iwaguro H, Masuda H, Kawamoto A, Asahara T. Specific Jagged-1 signal from bone marrow microenvironment is required for endothelial progenitor cell development for neovascularization. Circulation. 2008;118(2):157-65. doi: 10.1161/CIRCULATIONAHA.107.754978
95. Wang L, Wang YC, Hu XB, Zhang BF, Dou GR, He F, Gao F, Feng F, Liang YM, Dou KF, Han H. Notch-RBP-J signaling regulates the mobilization and function of endothelial progenitor cells by dynamic modulation of CXCR4 expression in mice. PLoS One. 2009;4(10):72-8. doi: 10.1371/journal.pone.0007572
96. Tetzlaff F, Fischer A. Control of Blood Vessel Formation by Notch Signaling. Adv Exp Med Biol. 2018;1066:319-38. doi: 10.1007/978-3-319-89512-3_16
97. Manderfield LJ, High FA, Engleka KA, Liu F, Li L, Rentschler S, Epstein J. Notch activation of Jagged1 contributes to the assembly of the arterial wall. Circulation. 2012;125:314-23. doi: 10.1161/CIRCULATIONAHA.111.047159
98. High FA, Zhang M, Proweller A, Tu L, Parmacek MS, Pear WS, Epstein JA. An essential role for Notch in neural crest during cardiovascular development and smooth muscle differentiation. J Clin Invest. 2007;117:353-63. doi: 10.1172/JCI30070
99. Grieskamp T, Rudat C, Ludtke TH, Norden J, Kispert A. Notch signaling regulates smooth muscle differentiation of epicardium-derived cells. Circ Res. 2011;108:813-23. doi: 10.1161/CIRCRESAHA.110.228809
100. Rentschler S, Harris BS, Kuznekoff L, Jain R, Manderfield L, Lu MM, Morley GE, Patel VV, Epstein JA. Notch signaling regulates murine atrioventricular conduction and the formation of accessory pathways. J Clin Invest. 2011;121:525-33. doi: 10.1172/JCI44470
101. Sciacca S, Pilato M, Mazzoccoli G, Pazienza V, Vinciguerra M. Anti-correlation between longevity gene SirT1 and Notch signaling in ascending aorta biopsies from patients with bicuspid aortic valve disease. Heart Vessels. 2013;28:268-75. doi: 10.1007/s00380-012-0238-5
102. Acharya A, Hans CP, Koenig SN, Nichols HA, Galindo CL, Garner HR, Merrill WH, Hinton RB, Garg V. Inhibitory role of Notch1 in calcific aortic valve disease. PloS One. 2011;6:277-83. doi: 10.1371/journal.pone.0027743
103. Bin Hafeez B, Adhami VM, Asim M, Siddiqui IA, Bhat KM, Zhong W, Saleem M, Din M, Setaluri V, Mukhtar H. Targeted knockdown of Notch1 inhibits invasion of human prostate cancer cells concomitant with inhibition of matrix metalloproteinase-9 and urokinase plasminogen activator. Clin Cancer Res. 2009;15(2):452-9. doi: 10.1158/1078-0432.CCR-08-1631
104. Tkachuk VA, Plekhanova OS, Parfyonova YV. Regulation of arterial remodeling and angiogenesis by urokinase-type plasminogen activator. Can J Physiol Pharmacol. 2009;87(4):231-51. doi: 10.1139/Y08-113
105. Loscalzo J. The macrophage and fibrinolysis. Semin Thromb Hemost. 1996;22(6):503-6. doi: 10.1055/s-2007-999051
106. Binder BR, Mihaly J, Prager GW. uPAR-uPA-PAI-1 interactions and signaling: a vascular biologist's view. Thromb Haemost. 2007;97(3):336-42.
107. Степанова В.В., Ткачук В.А. Урокиназа как мультидоменный белок и полифункциональный регулятор клеток. Биохимия (Москва). 2002;67(1):109-18 [Stepanova VV, Tkachuk VA. Urokinase as a multidomain protein and polyfunctional cell regulator. Biohimiya (Moscow). 2002;67(1):109-18 (In Russ.)].
108. Парфенова Е.В., Плеханова О.С., Стапанова В.В., Меньшиков М.Ю., Цоколаева З.И., Талицкий К.А., Рахмат-Заде Т.М., Трактуев Д.О., Торосян Н.А., Рогунова Н.А., Ратнер Е.И., Ткачук В.А. Активатор плазминогена урокиназного типа: механизмы участия в ремоделировании сосудов и ангиогенезе, подходы генной терапии к ишемии. Российский физиологический журнал им. И.M. Сеченова. 2004;90(5):547-68 [Parfenova EV, Plekhanova OS, Stepanova VV, Men'shikov MYu, Tsokaleva ZI, Talitskiy KA, Rakhmat-Zade TM, Traktuev DO, Torosyan NA, Rogunova NA, Ratner EI, Tkachuk VA. Plasminogen activator of urokinase-type: mechanisms of involvement in vessel remodeling and angiogenesis, gene therapy approaches to ischemia. Rossiyskiy Fiziologicheskiy Zhurnal im. I.M. Sechenova. 2004;90(5):547-68 (In Russ.)].
109. Aoyagi-Ikeda K, Maeno T, Matsui H, Ueno M, Hara K, Aoki Y, Aoki F, Shimizu T, Doi H, Kawai-Kowase K, Iso T, Suga T, Arai M, Kurabayashi M. Notch induces myofibroblast differentiation of alveolar epithelial cells via transforming growth factor-{beta}-Smad3 pathway. Am J Respir Cell Mol Biol. 2011;45(1):136-44. doi: 10.1165/rcmb.2010-0140OC
110. Dees C, Zerr P, Tomcik M, Beyer C, Horn A, Akhmetshina A, Palumbo K, Reich N, Zwerina J. Inhibition of Notch signaling prevents experimental fibrosis and induces regression of established fibrosis. Arthritis Rheum. 2011;63:1396-404.
111. Quillard T, Charreau B. Impact of Notch signaling on inflammatory responses in cardiovascular disorders. Int J Mol Sci. 2013;14(4):6863-88. doi: 10.3390/ijms14046863
112. Felician G, Collesi C, Lusic M, Martinelli V, Ferro MD, Zentilin L, Zacchigna S, Giacca M. Epigenetic modification at Notch responsive promoters blunts efficacy of inducing notch pathway reactivation after myocardial infarction. Circ Res. 2014;115(7):636-49. doi: 10.1161/CIRCRESAHA.115.304517
113. Rodriguez P, Sassi Y, Troncone L, Benard L, Ishikawa K, Gordon RE, Lamas S, Laborda J, Hajjar RJ, Lebeche D. Deletion of delta-like 1 homologue accelerates fibroblast-myofibroblast differentiation and induces myocardial fibrosis. Eur Heart J. 2018;1(2):23-42. doi: 10.1093/eurheartj/ehy188
114. Boopathy AV, Martinez MD, Smith AW, Brown ME, García AJ, Davis ME. Intramyocardial Delivery of Notch Ligand-Containing Hydrogels Improves Cardiac Function and Angiogenesis Following Infarction. Tissue Eng Part A. 2015;21(17-18):2315-22. doi: 10.1089/ten.TEA.2014.0622
115. Zhou XL, Zhu RR, Liu S, Xu H, Xu X, Wu QC, Liu JC. Notch signaling promotes angiogenesis and improves cardiac function after myocardial infarction. J Cell Biochem. 2018;119(8):7105-12. doi: 10.1002/jcb.27032
116. Gude N, Joyo E, Toko H, Quijada P, Villanueva M, Hariharan N, Sacchi V, Truffa S, Joyo A, Voelkers M, Alvarez R, Sussman MA. Notch activation enhances lineage commitment and protective signaling in cardiac progenitor cells. Basic Res Cardiol. 2015;110(3):29. doi: 10.1007/s00395-015-0488-3
117. Li K, Li Y, Wu W, Gordon WR, Chang DW, Lu M, Scoggin S, Fu T, Vien L, Histen G, Zheng J, Martin-Hollister R, Duensing T, Singh S, Blacklow SC, Yao Z, Aster JC, Zhou BB. Modulation of Notch signaling by antibodies specific for the extracellular negative regulatory region of NOTCH3. J Biol Chem. 2008;283(12):8046-54. doi: 10.1074/jbc.M800170200
118. Li W, Lu Y, Han R, Yue Q, Song X, Wang F, Wu R, Hou F, Yang L, Xu L, Zhao R, Hu J. Gremlin2 Regulates the Differentiation and Function of Cardiac Progenitor Cells via the Notch Signaling Pathway. Cell Physiol Biochem. 2018;47(2):579-89. doi: 10.1159/000490012. Epub 2018 May 22.
119. Mašek J, Andersson ER. The developmental biology of genetic Notch disorders. Development. 2017;144(10):1743-63. doi: 10.1242/dev.148007
________________________________________________
1. Porrello ER, Mahmoud AI, Simpson E, Johnson BA, Grinsfelder D, Canseco D, Mammen PP, Rothermel BA, Olson EN, Sadek HA. Regulation of neonatal and adult mammalian heart regeneration by the miR-15 family. Proc Natl Acad Sci USA. 1996;110(1):187-92. doi: 10.1073/pnas.1208863110
2. De la Pompa JL, Epstein JA. Coordinating tissue interactions: Notch signaling in cardiac development and disease. Dev Cell. 2012;22(2):244-54. doi: 10.1016/j.devcel.2012.01.014
3. Luxán G, D'Amato G, MacGrogan D, de la Pompa JL. Endocardial Notch Signaling in Cardiac Development and Disease. Circ Res. 2016;118(1):1-18. doi: 10.1161/CIRCRESAHA.115.305350
4. High FA, Epstein JA. The multifaceted role of Notch in cardiac development and disease. Nat Rev Genet. 2008;9(1):49-61. doi: 10.1038/nrg2279
5. Weinmaster G, Roberts VJ, Lemke G. Notch2: a second mammalian Notch gene. Development. 1992;116(4):931-41.
6. Del Amo FF, Smith DE, Swiatek PJ, Gendron-Maguire M, Greenspan RJ, McMahon AP, Gridley T. Expression pattern of Motch, a mouse homolog of Drosophila Notch, suggests an important role in early postimplantation mouse development. Development. 1992;115:737-44.
7. Lardelli M, Dahlstrand J, Lendahl U. The novel Notch homologue mouse Notch3 lacks specific epidermal growth factor repeats and is expressed in proliferating neuroepithelium. Mech Dev. 1994;46(2):123-36.
8. Uyttendaele H, Marazzi G, Wu G, Yan Q, Sassoon D, Kitajewski J. Notch4/int-3, a mammary proto oncogene, is an endothelial cell-specific mammalian Notch gene. Development. 1996;122(7):2251-9.
9. Bettenhausen B, Hrabe de Angelis M, Simon D, Guenet D, Gossler A. Transient and restricted expression during mouse embryogenesis of Dll1, a murine gene closely related to Drosophila delta. Development. 1995;121(8):2407-18.
10. Dunwoodie SL, Henrique D, Harrison SM, Beddington RS. Mouse Dll3: a novel divergent Delta gene which may complement the function of other Delta homologues during early pattern formation in the mouse embryo. Development. 1997;124(16):3065-76.
11. Krebs LT, Xue Y, Norton CR, Shutter JR, Maguire M, Sundberg JP, Gallahan D, Closson V, Kitajewski J, Callahan R, Smith GH, Stark KL, Gridley T. Notch signaling is essential for vascular morphogenesis in mice. Genes Dev. 2000;14:1343-52. doi: 10.1101/gad.14.11.1343
12. Lindsell CE, Shawber CJ, Boulter J, Weinmaster G. Jagged: a mammalian ligand that activates Notch1. Cell. 1995;80(6):909-17.
13. Shawber C, Boulter J, Lindsell CE, Weinmaster G. Jagged2: a serrate like gene expressed during rat embryogenesis. Dev Biol. 1996;180(1):370-6. doi: 10.1006/dbio.1996.0310
14. D'Souza B, Meloty-Kapella L, Weinmaster G. Canonical and Non-Canonical Notch Ligands. Curr Top Develop Biol. 2010;92:73-129. doi: 10.1016/S0070–2153(10)92003–6
15. Hori K, Sen A, Artavanis-Tsakonas S. Notch Signaling at a Glance. J Cell Sci. 2013;126(10):2135-40. doi: 10.1242/jcs.127308
16. Tamura K, Taniguchi Y, Minoguchi S, Sakai T, Tun T, Furukawa T, Honjo T. Physical interaction between a novel domain of the receptor Notch and the transcription factor RBP-J kappa/Su(H). Curr Biol. 1995;5(12):1416-23.
17. Blank V, Kourilsky P, Israel A. NF-kappa B and related proteins: Rel/dorsal homologies meet ankyrin-like repeats. Trends Biochem Sci. 1992;17(4):135-40. doi: 10.1016/0968-0004(92)90321-Y
18. Rechsteiner M. Regulation of enzyme levels by proteolysis: the role of pest regions. Adv Enzyme Regul. 1988;27:135-51.
19. Chillakuri CR, Sheppard D, Le SM, Handford PA. Notch Receptor-ligand Binding and Activation: Insights from Molecular Studies. Semin Cell Develop Biol. 2012;23(4):421-8. doi: 10.1016/j.semcdb.2012.01.009
20. Komatsu H, Chao MY, Larkins-Ford J, Corkins ME, Somers GA, Tucey T, Dionne HM, White JQ, Wani K, Boxem M, Hart AC. OSM-11 facilitates LIN-12 Notch signaling during Caenorhabditis elegans vulval development. PLoS Biol. 2008;6(8):196-8. doi: 10.1371/journal.pbio.0060196
21. LaFoya B, Munroe JA, Mia MM, Detweiler MA, Crow JJ, Wood T, Roth S, Sharma B, Albig AR. Notch: A multi-functional integrating system of microenvironmental signals. Dev Biol. 2016;418(2):227-41. doi: 10.1016/j.ydbio.2016.08.023
22. Guruharsha KG, Kankel MW, Artavanis-Tsakonas S. The Notch Signalling System: Recent Insights into the Complexity of a Conserved Pathway. Nat Rev Genet. 2012;13(9):654-66. doi: 10.1038/nrg3272
23. Sprinzak D, Lakhanpal A, Lebon L, Santat LA, Fontes ME, Anderson GA, Garcia-Ojalvo J, Elowitz MB. Cis Interactions between Notch and Delta Generate Mutually Exclusive Signaling States. Nature. 2010;465(7294):86-90. doi: 10.1038/nature08959
24. Wang MM. Notch Signaling and Notch Signaling Modifiers. Int J Biochem Cell Biol. 2011;43(11):1550-62. doi: 10.1016/j.biocel.2011.08.005
25. Mumm JS, Schroeter EH, Saxena MT, Griesemer A, Tian X, Pan DJ, Ray WJ, Kopan R. A ligand-induced extracellular cleavage regulates gamma-secretase-like proteolytic activation of Notch1. Mol Cell. 2000;5(2):197-206. doi: 10.1016/S1097-2765(00)80416-5
26. Toonen JA, Ronchetti A, Sidjanin DJ. A Disintegrin and Metalloproteinase10 (ADAM10) Regulates NOTCH Signaling during Early Retinal Development. PLoS One. 2016;11(5):e0156184. doi: 10.1371/journal.pone.0156184
27. De Strooper B, Annaert W, Cupers P, Saftig P, Craessaerts K, Mumm JS, Schroeter EH, Schrijvers V, Wolfe MS, Ray WJ, Goate A, Kopan R. A presenilin-1-dependent gamma-secretase-like protease mediates release of Notch intracellular domain. Nature. 1999;398(6727):518-22. doi: 10.1038/19083
28. Wu L, Aster JC, Blacklow SC, Lake R, Artavanis-Tsakonas S, Griffin JD. MAML1, a human homologue of Drosophila mastermind, is a transcriptional coactivator for NOTCH receptors. Nat Genet. 2000;26:484-9. doi: 10.1038/82644
29. Kurooka H, Honjo T. Functional interaction between the mouse Notch1 intracellular region and histone acetyltransferases PCAF and GCN5. J Biol Chem. 2000;275:17211-20.
30. Kokubo H, Miyagawa-Tomita S, Johnson RL. Hesr, a mediator of the notch signaling functions in heart and vessel development. Trends Cardiovasc Med. 2005;15:190-4.
31. Sanalkumar R, Dhanesh SB, James J. Non-canonical activation of Notch signaling/target genes in vertebrates. Cell Mol Life Sci. 2010;67(17):2957-68. doi: 10.1007/s00018-010-0391-x
32. Ladi E, Nichols JT, Ge W, Miyamoto A, Yao C, Yang LT, Boulter J, Sun YE, Kintner C, Weinmaster G. The divergent DSL ligand Dll3 does not activate Notch signaling but cell autonomously attenuates signaling induced by other DSL ligands. J Cell Biol. 2005;170:983-92. doi: 10.1083/jcb.200503113
33. Lee SF, Srinivasan B, Sephton CF, Dries DR, Wang B, Yu C, Wang Y, Dewey CM, Shah S, Jiang J, Yu G. Gamma-secretase-regulated proteolysis of the Notch receptor by mitochondrial intermediate peptidase. J Biol Chem. 2011;286(31):27447-53. doi: 10.1074/jbc.M111.243154
34. Ayaz F, Osborne BA. Non-Canonical Notch Signaling in Cancer and Immunity. Front Oncol. 2014;4(4):345. doi: 10.3389/fonc.2014.00345
35. Forrester JS, Price MJ, Makkar RR. Stem cell repair of infarcted myocardium an overview for clinicians. Circulation. 2003;108:1139-45. doi: 10.1161/01.CIR.0000085305.82019.65
36. Li Y, Hiroi Y, Ngoy S, Okamoto R, Noma K, Wang CY, Wang HW, Zhou Q, Radtke F, Liao R, Liao JK. Notch1 in bone marrow-derived cells mediates cardiac repair after myocardial infarction. Circulation. 2011;123(8):866-76. doi: 10.1161/CIRCULATIONAHA.110.947531
37. Swiatek PJ, Lindsell CE, del Amo FF, Weinmaster G, Gridley T. Notch1 is essential for postimplantation development in mice. Genes Dev. 1994;8:707-19.
38. Li Y, Fukuda N, Yokoyama S, Kusumi Y, Hagikura K, Kawano T, Takayama T, Matsumoto T, Satomi A, Honye J, Mugishima H, Mitsumata M, Saito S. Effects of G-CSF on cardiac remodeling and arterial hyperplasia in rats. Eur J Pharmacol. 2006;549:98-106. doi: 10.1016/j.ejphar.2006.08.006
39. Da Silva Meirelles L, Caplan AI, Nardi NB. In search of the in vivo identity of mesenchymal stem cells. Stem Cells. 2008;26:2287-99. doi: 10.1634/stemcells.2007-1122
40. Nemir M, Metrich M, Plaisance I, Lepore M, Cruchet S, Berthonneche C, Sarre A, Radtke F, Pedrazzini T. The Notch pathway controls fibrotic and regenerative repair in the adult heart. Eur Heart J. 2014;35(32):2174-85. doi: 10.1093/eurheartj/ehs269
41. Abbott JD, Huang Y, Liu D, Hickey R, Krause D, Giordano F. Stromal cell-derived factor-1alpha plays a critical role in stem cell recruitment to the heart after myocardial infarction but is not sufficient to induce homing in the absence of injury. Circulation. 2004;110:3300-5. doi: 10.1161/01.CIR.0000147780.30124.CF
42. Wang YC, Hu XB, He F, Feng F, Wang L, Li W, Zhang P, Li D, Jia ZS, Liang YM, Han H. Lipopolysaccharide-induced maturation of bone marrow-derived dendritic cells is regulated by notch signaling through the up-regulation of CXCR4. J Biol Chem. 2009;284:15993-6003. doi: 10.1074/jbc.M901144200
43. Xie JI, Wang W, Si JW, Miao XY, Li JC, Wang YC, Wang ZR, Ma J, Zhao XC, Li Z, Yi H, Han H. Notch signaling regulates CXCR4 expression and the migration of mesenchymal stem cells. Cell Immunol. 2013;281(1):68-75. doi: 10.1016/j.cellimm.2013.02.001
44. Li Q, Turdi S, Thomas DP, Zhou T, Ren J. Intra-myocardial delivery of mesenchymal stem cells ameliorates left ventricular and cardiomyocyte contractile dysfunction following myocardial infarction. Toxicol Lett. 2010;195(23):119-26. doi: 10.1016/j.toxlet.2010.03.009
45. Yu XY, Geng YJ, Li XH, Lin QX, Shan ZX, Lin SG, Song YH, Li Y. The effects of mesenchymal stem cells on c-kit up-regulation and cell-cycle re-entry of neonatal cardiomyocytes are mediated by activation of insulin-like growth factor 1 receptor. Mol Cell Biochem. 2009;332(1-2):25-32. doi: 10.1007/s11010-009-0170-x
46. Sassoli C, Pini A, Mazzanti B, Quercioli F, Nistri S, Saccardi R, Zecchi-Orlandini S, Bani D, Formigli L. Mesenchymal stromal cells affect cardiomyocyte growth through juxtacrine Notch-1/Jagged-1 signaling and paracrine mechanisms: clues for cardiac regeneration. J Mol Cell Cardiol. 2011;51(3):399-408. doi: 10.1016/j.yjmcc.2011.06.004
47. Kassner N, Krueger M, Yagita H, Dzionek A, Hutloff A, Kroczek R, Scheffold A, Rutz S. Plasmacytoid dendritic cells induce IL-10 production in T cells via the Delta-like-4/Notch axis. J Immunol. 2010;184(2):550-4. doi: 10.4049/jimmunol.0903152
48. Woollard KJ, Geissmann F. Monocytes in atherosclerosis: Subsets and functions. Nat Rev Cardiol. 2010;7(2):77-86. doi: 10.1038/nrcardio.2009.228
49. Piggott K, Deng J, Warrington K, Younge B, Kubo JT, Desai M, Goronzy JJ, Weyand CM. Blocking the NOTCH pathway inhibits vascular inflammation in large-vessel vasculitis. Circulation. 2011;123(3):309-18. doi: 10.1161/CIRCULATIONAHA.110.936203
50. Chow JC, Young DW, Golenbock DT, Christ WJ, Gusovsky F. Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction. J Biol Chem. 1999;274:10689-92. doi: 10.1074/jbc.274.16.10689
51. Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 2008;8:958-69. doi: 10.1038/nri2448
52. Nathan CF, Murray HW, Wiebe ME, Rubin BY. Identification of interferon-gamma as the lymphokine that activates human macrophage oxidative metabolism and antimicrobial activity. J Exp Med. 1983;158:670-89. doi: 10.1084/jem.158.3.670
53. Loke P, Gallagher I, Nair MG, Zang X, Brombacher F, Mohrs M, Allison JP, Allen JE. Alternative activation is an innate response to injury that requires CD4+ T cells to be sustained during chronic infection. J Immunol. 2007;179:3926-36. doi: 10.4049/jimmunol.179.6.3926
54. Paliard X, de Waal Malefijt R, Yssel H, Blanchard D, Chretien I, Abrams J, de Vries J, Spits H. Simultaneous production of IL-2, IL-4, and IFN-gamma by activated human CD4+ and CD8+ T cell clones. J Immunol. 1988;141:849-55.
55. Wang YC, He F, Feng F, Liu XW, Dong GY, Qin HY, Hu XB, Zheng MH, Liang L, Feng L, Liang YM, Han H. Notch signaling determines the M1 versus M2 polarization of macrophages in antitumor immune responses. Cancer Res. 2010;70:4840-9. doi: 10.1158/0008-5472.CAN-10-0269
56. Singla RD, Wang J, Singla DK. Regulation of Notch 1 signaling in THP–1 cells enhances M2 macrophage differentiation. Am J Physiol Heart Circ Physiol. 2014;307(11):1634-42. doi: 10.1152/ajpheart.00896.2013
57. Ahmad HR, Hashmi S. Is biological repair of heart on the horizon? Pak J Med Sci. 2017;33(4):1042-46. doi: 10.12669/pjms.334.12938
58. Urbanek K, Cabral-da-Silva MC, Ide-Iwata N, Maestroni S, Delucchi F, Zheng H, Ferreira-Martins J, Ogorek B, D’Amario D, Bauer M, Zerbini G, Rota M, Hosoda T, Liao R, Anversa P, Kajstura J, Leri A. Inhibition of Notch1-dependent cardiomyogenesis leads to a dilated myopathy in the neonatal heart. Circ Res. 2010;107:429-41. doi: 10.1161/CIRCRESAHA.110.218487
59. Collesi C, Felician G, Secco I, Gutierrez MI, Martelletti E, Ali H, Zentilin L, Myers MP, Giacca M. Reversible Notch1 acetylation tunes proliferative signalling in cardiomyocytes. Cardiovasc Res. 2018;114(1):103-22. doi: 10.1093/cvr/cvx228
60. Ge W, Ren J. mTOR-STAT3-Notch signalling contributes to ALDH2-induced protection against cardiac contractile dysfunction and autophagy under alcoholism. J Cell Mol Med. 2012;16(3):616-26. doi: 10.1111/j.1582-4934.2011.01347.x
61. Lee JH, Suk J, Park J, Kim SB, Kwak SS, Kim JW, Lee CH, Byun B, Ahn JK, Joe CO. Notch signal activates hypoxia pathway through hes1-dependent src/signal transducers and activators of transcription pathway. Mol Cancer Res. 2009;7:1663-71. doi: 10.1158/1541-7786.MCR-09-0191
62. Gude NA, Emmanuel G, Wu W, Cottage CT, Fischer K., Quijada P, Muraski JA, Alvarez R, Rubio M, Schaefer E, Sussman MA. Activation of Notch-mediated protective signaling in the myocardium. Circ Res. 2008;102:1025-35. doi: 10.1161/CIRCRESAHA.107.164749
63. Kratsios P, Catela C, Salimova E, Huth M, Berno V, Rosenthal N, Mourkioti F. Distinct roles for cell-autonomous Notch signaling in cardiomyocytes of the embryonic and adult heart. Circ Res. 2010;106:559-72. doi: 10.1161/CIRCRESAHA.109.203034
64. Patel NS, Li JL, Generali D, Poulsom R, Cranston DW, Harris AL. Up-regulation of δ-like 4 ligand in human tumor vasculature and the role of basal expression in endothelial cell function. Cancer Res. 2005;65(19):8690-7. doi: 10.1158/0008–5472.CAN-05-1208
65. Mailhos C, Modlich U, Lewis J, Harris A, Bicknell R, Ish-Horowicz D. Delta4, an endothelial specific notch ligand expressed at sites of physiological and tumor angiogenesis. Differentiation. 2001;69:135-44. doi: 10.1046/j.1432–0436.2001.690207.x
66. Gustafsson MV, Zheng X, Pereira T, Gradin K, Jin S, Lundkvist J, Ruas JL, Poellinger L, Lendahl U, Bondesson M. Hypoxia requires notch signaling to maintain the undifferentiated cell state. Dev Cell. 2005;9:617-28. doi: 10.1016/j.devcel.2005.09.010
67. Croquelois A, Domenighetti AA, Nemir M, Lepore M, Rosenblatt-Velin N, Radtke F, Pedrazzini T. Control of the adaptive response of the heart to stress via the Notch1 receptor pathway. J Exp Med. 2008;205:3173-85. doi: 10.1084/jem.20081427
68. Yu HC, Qin HY, He F, Wang L, Fu W, Liu D, Guo FC, Liang L, Dou KF, Han H. Canonical notch pathway protects hepatocytes from ischemia/reperfusion injury in mice by repressing reactive oxygen species production through JAK2/STAT3 signaling. Hepatology. 2011;54:979-88. doi: 10.1002/hep.24469
69. Pei H, Yu Q, Xue Q, Guo Y, Sun L, Hong Z, Han H, Gao E, Qu Y, Tao L. Notch1 cardioprotection in myocardial ischemia/reperfusion involves reduction of oxidative/nitrative stress. Basic Res Cardiol. 2013;108(5):373. doi: 10.1007/s00395-013-0373-x
70. Liu Y, Wang T, Yan J, Jiagbogu N, Heideman DA, Canfield AE, Alexander MY. HGF/c-Met signalling promotes Notch3 activation and human vascular smooth muscle cell osteogenic differentiation in vitro. Atherosclerosis. 2011;219(2):440-7. doi: 10.1016/j.atherosclerosis.2011.08.033
71. Kochegura TN, Makarevich PI, Ovchinnikov AG, Zhigunova LV, Lahova EL, Shestakova MV, Ageev FT, Parfenova EV. Circulating hepatocyte growth factor (hgf) in patients with comorbidity of chronic heart failure, type 2 diabetes mellitus and impaired lipid metabolism. Diabetes Mellitus. 2013;16(2):17-25. doi: 10.14341/2072-0351-3752
72. Farzaneh M, Rahimi F, Alishahi M, Khoshnam SE. Paracrine mechanisms involved in mesenchymal stem cell differentiation into cardiomyocytes. Curr Stem Cell Res Ther. 2018;1(2):34-45. doi: 10.2174/1574888X13666180821160421
73. Campa VM, Gutierrez-Lanza R, Cerignoli F, Diaz-Trelles R, Nelson B, Tsuji T, Barcova M, Jiang W, Mercola M. Notch activates cell cycle reentry and progression in quiescent cardiomyocytes. J Cell Biol. 2008;183(1):129-41. doi: 10.1083/jcb.200806104
74. Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, Chimenti S, Kasahara H, Rota M, Musso E, Urbanek K, Leri A, Kajstura J, Nadal-Ginard B, Anversa P. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell. 2003;114(6):763-8. doi: 10.1016/S0092-8674(03)00687-1
75. Dergilev KV, Tsokolaeva ZI, Makarevich PI, Boldyreva MA, Beloglazova IB, Zubkova ES, Rubina KA, Sysoeva VY, Sharonov GV, Akchurin RS, Parfenova EV. Isolation and characterization of cardiac progenitor cells from myocardial right atrial appendage tissue. Cell Tiss Biol. 2016;10(5):349-56.
76. [Dergilev KV, Rubina KA, Parfyonova YeV. Resident cardiac stem cells. Kardiologiya. 2011;51(4):84-92 (In Russ.)].
77. Dergilev KV, Makarevich PI, Tsokolaeva ZI, Boldyreva MA, Beloglazova IB, Zubkova ES, Menshikov MY, Parfenova EV. Comparison of cardiac stem cell sheeys detached from versene solution and from thermoresponsive dishes reveals similar properties of constructs. Tiss Cell. 2017;49(1):64-71. doi: 10.1016/j.tice.2016.12.001
78. Messina E, Giacomello A. Diabetic cardiomyopathy: a "cardiac stem cell disease" involving p66Shc, an attractive novel molecular target for heart failure therapy. Circ Res. 2006;99(1):1-2. doi: 10.1161/01.RES.0000233141.65522.3e
79. Urbanek K, Torella D, Sheikh F, De Angelis A, Nurzynska D, Silvestri F, Beltrami CA, Bussani R, Beltrami AP, Quaini F, Bolli R, Leri A, Kajstura J, Anversa P. Myocardial regeneration by activation of multipotent cardiac stem cells in ischemic heart failure. Proc Natl Acad Sci USA. 2005;102(24):8692-7. doi: 10.1073/pnas.0500169102
80. Linke A, Muller P, Nurzynska D, Casarsa C, Torella D, Nascimbene A, Castaldo C, Cascapera S, Böhm M, Quaini F, Urbanek K, Leri A, Hintze TH, Kajstura J, Anversa P. Stem cells in the dog heart are self-renewing, clonogenic, and multipotent and regenerate infarcted myocardium, improving cardiac function. Proc Natl Acad Sci USA. 2005;102(25):8966-71. doi: 10.1073/pnas.0502678102
81. Johnston PV, Sasano T, Mills K, Evers R, Lee ST, Smith RR, Lardo AC, Lai S, Steenbergen C, Gerstenblith G, Lange R, Marbán E. Engraftment, differentiation, and functional benefits of autologous cardiosphere-derived cells in porcine ischemic cardiomyopathy. Circulation. 2009;120(12):1075-83. doi: 10.1161/CIRCULATIONAHA.108.816058
82. Urbanek K, Quaini F, Tasca G, Torella D, Castaldo C, Nadal-Ginard B, Leri A, Kajstura J, Quaini E, Anversa P. Intense myocyte formation from cardiac stem cells in human cardiac hypertrophy. Proc Natl Acad Sci USA. 2003;100(18):10440-5. doi: 10.1073/pnas.1832855100
83. Smith RR, Barile L, Cho HC, Leppo MK, Hare JM, Messina E, Giacomello A, Abraham MR, Marbán E. Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation. 2007;115(7):896-908. doi: 10.1161/CIRCULATIONAHA.106.655209
84. Bearzi C, Rota M, Hosoda T, Tillmanns J, Nascimbene A, De Angelis A, Yasuzawa-Amano S, Trofimova I, Siggins RW, Lecapitaine N, Cascapera S, Beltrami AP, D'Alessandro DA, Zias E, Quaini F, Urbanek K, Michler RE, Bolli R, Kajstura J, Leri A, Anversa P. Human cardiac stem cells. Proc Natl Acad Sci USA. 2007;104(35):14068-73. doi: 10.1073/pnas.0706760104
85. Wang Y, Haider HKh, Ahmad N, Zhang D, Ashraf M. Evidence for ischemia induced host-derived bone marrow cell mobilization into cardiac allografts. J Mol Cell Cardiol. 2006;41(3):478-87. doi: 10.1016/j.yjmcc.2006.06.074
86. Dergilev K, Tsokolaeva Z, Boldyreva M, Beloglazova I, Zubkova E, Parfyonova Ye. Notch Activation Enchances Vascular Lineage Commitment of Cardiac Stem Cells. Mol Ther. 2016;24(1):177-8.
87. Boni A, Urbanek K, Nascimbene A, Hosoda T, Zheng H, Delucchi F, Amano K, Gonzalez A, Vitale S, Ojaimi C, Rizzi R, Bolli R, Yutzey KE, Rota M, Kajstura J, Anversa P, Leri A. Notch1 regulates the fate of cardiac progenitor cells. Proc Natl Acad Sci USA. 2008;105:15529-34. doi: 10.1073/pnas.0808357105
88. Lawson ND, Vogel AM, Weinstein BM. Sonic hedgehog and vascular endothelial growth factor act upstream of the Notch pathway during arterial endothelial differentiation. Dev Cell. 2002;3(1):127-36. doi: 10.1016/S1534-5807(02)00198-3
89. Niessen K, Karsan A. Notch signaling in cardiac development. Circ Res. 2008;102(10):1169-81. doi: 10.1161/CIRCRESAHA.108.174318
90. Espinosa L, Ingles-Esteve J, Aguilera C, Bigas A. Phosphorylation by glycogen synthase kinase-3 beta down-regulates Notch activity, a link for Notch and Wnt pathways. J Biol Chem. 2003;278(34):32227-35. doi: 10.1074/jbc.M304001200
91. Bridges E, Oon CE, Harris A. Notch regulation of tumor angiogenesis. Future Oncol. 2011;7(4):569-88. doi: 10.2217/fon.11.20
92. Del Monte G, Casanova JC, Guadix JA, MacGrogan D, Burch JB, Perez-Pomares JM, de la Pompa JL. Differential Notch signaling in the epicardium is required for cardiac inflow development and coronary vessel morphogenesis. Circ Res. 2011;108:824-36. doi: 10.1161/CIRCRESAHA.110.229062
93. Yang K, Doughman YQ, Karunamuni G, Gu S, Yang YC, Bader DM, Watanabe M. Expression of active Notch1 in avian coronary development. Dev Dyn. 2009;238(1):162-70. doi: 10.1002/dvdy.21811
94. Kwon SM, Eguchi M, Wada M, Iwami Y, Hozumi K, Iwaguro H, Masuda H, Kawamoto A, Asahara T. Specific Jagged-1 signal from bone marrow microenvironment is required for endothelial progenitor cell development for neovascularization. Circulation. 2008;118(2):157-65. doi: 10.1161/CIRCULATIONAHA.107.754978
95. Wang L, Wang YC, Hu XB, Zhang BF, Dou GR, He F, Gao F, Feng F, Liang YM, Dou KF, Han H. Notch-RBP-J signaling regulates the mobilization and function of endothelial progenitor cells by dynamic modulation of CXCR4 expression in mice. PLoS One. 2009;4(10):72-8. doi: 10.1371/journal.pone.0007572
96. Tetzlaff F, Fischer A. Control of Blood Vessel Formation by Notch Signaling. Adv Exp Med Biol. 2018;1066:319-38. doi: 10.1007/978-3-319-89512-3_16
97. Manderfield LJ, High FA, Engleka KA, Liu F, Li L, Rentschler S, Epstein J. Notch activation of Jagged1 contributes to the assembly of the arterial wall. Circulation. 2012;125:314-23. doi: 10.1161/CIRCULATIONAHA.111.047159
98. High FA, Zhang M, Proweller A, Tu L, Parmacek MS, Pear WS, Epstein JA. An essential role for Notch in neural crest during cardiovascular development and smooth muscle differentiation. J Clin Invest. 2007;117:353-63. doi: 10.1172/JCI30070
99. Grieskamp T, Rudat C, Ludtke TH, Norden J, Kispert A. Notch signaling regulates smooth muscle differentiation of epicardium-derived cells. Circ Res. 2011;108:813-23. doi: 10.1161/CIRCRESAHA.110.228809
100. Rentschler S, Harris BS, Kuznekoff L, Jain R, Manderfield L, Lu MM, Morley GE, Patel VV, Epstein JA. Notch signaling regulates murine atrioventricular conduction and the formation of accessory pathways. J Clin Invest. 2011;121:525-33. doi: 10.1172/JCI44470
101. Sciacca S, Pilato M, Mazzoccoli G, Pazienza V, Vinciguerra M. Anti-correlation between longevity gene SirT1 and Notch signaling in ascending aorta biopsies from patients with bicuspid aortic valve disease. Heart Vessels. 2013;28:268-75. doi: 10.1007/s00380-012-0238-5
102. Acharya A, Hans CP, Koenig SN, Nichols HA, Galindo CL, Garner HR, Merrill WH, Hinton RB, Garg V. Inhibitory role of Notch1 in calcific aortic valve disease. PloS One. 2011;6:277-83. doi: 10.1371/journal.pone.0027743
103. Bin Hafeez B, Adhami VM, Asim M, Siddiqui IA, Bhat KM, Zhong W, Saleem M, Din M, Setaluri V, Mukhtar H. Targeted knockdown of Notch1 inhibits invasion of human prostate cancer cells concomitant with inhibition of matrix metalloproteinase-9 and urokinase plasminogen activator. Clin Cancer Res. 2009;15(2):452-9. doi: 10.1158/1078-0432.CCR-08-1631
104. Tkachuk VA, Plekhanova OS, Parfyonova YV. Regulation of arterial remodeling and angiogenesis by urokinase-type plasminogen activator. Can J Physiol Pharmacol. 2009;87(4):231-51. doi: 10.1139/Y08-113
105. Loscalzo J. The macrophage and fibrinolysis. Semin Thromb Hemost. 1996;22(6):503-6. doi: 10.1055/s-2007-999051
106. Binder BR, Mihaly J, Prager GW. uPAR-uPA-PAI-1 interactions and signaling: a vascular biologist's view. Thromb Haemost. 2007;97(3):336-42.
107. [Stepanova VV, Tkachuk VA. Urokinase as a multidomain protein and polyfunctional cell regulator. Biohimiya (Moscow). 2002;67(1):109-18 (In Russ.)].
108. [Parfenova EV, Plekhanova OS, Stepanova VV, Men'shikov MYu, Tsokaleva ZI, Talitskiy KA, Rakhmat-Zade TM, Traktuev DO, Torosyan NA, Rogunova NA, Ratner EI, Tkachuk VA. Plasminogen activator of urokinase-type: mechanisms of involvement in vessel remodeling and angiogenesis, gene therapy approaches to ischemia. Rossiyskiy Fiziologicheskiy Zhurnal im. I.M. Sechenova. 2004;90(5):547-68 (In Russ.)].
109. Aoyagi-Ikeda K, Maeno T, Matsui H, Ueno M, Hara K, Aoki Y, Aoki F, Shimizu T, Doi H, Kawai-Kowase K, Iso T, Suga T, Arai M, Kurabayashi M. Notch induces myofibroblast differentiation of alveolar epithelial cells via transforming growth factor-{beta}-Smad3 pathway. Am J Respir Cell Mol Biol. 2011;45(1):136-44. doi: 10.1165/rcmb.2010-0140OC
110. Dees C, Zerr P, Tomcik M, Beyer C, Horn A, Akhmetshina A, Palumbo K, Reich N, Zwerina J. Inhibition of Notch signaling prevents experimental fibrosis and induces regression of established fibrosis. Arthritis Rheum. 2011;63:1396-404.
111. Quillard T, Charreau B. Impact of Notch signaling on inflammatory responses in cardiovascular disorders. Int J Mol Sci. 2013;14(4):6863-88. doi: 10.3390/ijms14046863
112. Felician G, Collesi C, Lusic M, Martinelli V, Ferro MD, Zentilin L, Zacchigna S, Giacca M. Epigenetic modification at Notch responsive promoters blunts efficacy of inducing notch pathway reactivation after myocardial infarction. Circ Res. 2014;115(7):636-49. doi: 10.1161/CIRCRESAHA.115.304517
113. Rodriguez P, Sassi Y, Troncone L, Benard L, Ishikawa K, Gordon RE, Lamas S, Laborda J, Hajjar RJ, Lebeche D. Deletion of delta-like 1 homologue accelerates fibroblast-myofibroblast differentiation and induces myocardial fibrosis. Eur Heart J. 2018;1(2):23-42. doi: 10.1093/eurheartj/ehy188
114. Boopathy AV, Martinez MD, Smith AW, Brown ME, García AJ, Davis ME. Intramyocardial Delivery of Notch Ligand-Containing Hydrogels Improves Cardiac Function and Angiogenesis Following Infarction. Tissue Eng Part A. 2015;21(17-18):2315-22. doi: 10.1089/ten.TEA.2014.0622
115. Zhou XL, Zhu RR, Liu S, Xu H, Xu X, Wu QC, Liu JC. Notch signaling promotes angiogenesis and improves cardiac function after myocardial infarction. J Cell Biochem. 2018;119(8):7105-12. doi: 10.1002/jcb.27032
116. Gude N, Joyo E, Toko H, Quijada P, Villanueva M, Hariharan N, Sacchi V, Truffa S, Joyo A, Voelkers M, Alvarez R, Sussman MA. Notch activation enhances lineage commitment and protective signaling in cardiac progenitor cells. Basic Res Cardiol. 2015;110(3):29. doi: 10.1007/s00395-015-0488-3
117. Li K, Li Y, Wu W, Gordon WR, Chang DW, Lu M, Scoggin S, Fu T, Vien L, Histen G, Zheng J, Martin-Hollister R, Duensing T, Singh S, Blacklow SC, Yao Z, Aster JC, Zhou BB. Modulation of Notch signaling by antibodies specific for the extracellular negative regulatory region of NOTCH3. J Biol Chem. 2008;283(12):8046-54. doi: 10.1074/jbc.M800170200
118. Li W, Lu Y, Han R, Yue Q, Song X, Wang F, Wu R, Hou F, Yang L, Xu L, Zhao R, Hu J. Gremlin2 Regulates the Differentiation and Function of Cardiac Progenitor Cells via the Notch Signaling Pathway. Cell Physiol Biochem. 2018;47(2):579-89. doi: 10.1159/000490012. Epub 2018 May 22.
119. Mašek J, Andersson ER. The developmental biology of genetic Notch disorders. Development. 2017;144(10):1743-63. doi: 10.1242/dev.148007
1 ФГБУ «Национальный медицинский исследовательский центр кардиологии» Минздрава России, Москва, Россия;
2 ФГБОУ ВО «Московский государственный университет им. М.В. Ломоносова», Москва, Россия
________________________________________________
K.V. Dergilev 1, Е.S. Zubkova 1, I.B. Beloglazova 1, М.Yu. Menshikov 1, Е.V. Parfyonova 1,2
1 National Medical Research Center for Cardiology of the Ministry of Health of the Russian Federation, Moscow, Russia;
2 M.V. Lomonosov Moscow State University, Moscow, Russia