Исход заболеваний, сопровождающихся или вызванных мукостазом, зависит как от восстановления дренажной функции дыхательных путей, так и от эффективности противоинфекционных иммунных механизмов. N-ацетилцистеин (ацетилцистеин) широко используется в клинической практике как муколитическое и антиоксидантное средство. В этой связи проанализированы данные научной литературы о прямом и опосредованном влиянии ацетилцистеина на мукозальный иммунитет респираторного тракта. Этот препарат обладает плейотропным и иммунотропными свойствами, большая часть которых способствует регрессии клинических проявлений острых и хронических воспалительных заболеваний дыхательных путей. Среди биологических и фармакологических эффектов ацетилцистеина следует выделить улучшение реологических свойств слизи, снижение избыточной продукции муцинов, восстановление мукоцилиарного клиренса и продукции sIgA, подавление избыточной продукции IgE и IgG4, разрушение биопленок, делающее патогенные бактерии и грибы уязвимыми для антимикробных факторов хозяина, подавление адгезии болезнетворных бактерий к эпителиоцитам, антиоксидантную активность, регуляцию выработки провоспалительных и профибротических цитокинов. Не обнаружено веских подтверждений наличия у ацетилцистеина супрессивного потенциала в отношении мукозального иммунитета. Для окончательных суждений о влиянии ацетилцистеина на местный иммунный ответ требуются дополнительные, в первую очередь клинические, исследования.
The outcome of diseases accompanied or caused by mucostasis depends both on the restoration of drainage function of the airways and on the effectiveness of immune mechanisms against pathogens. N-acetylcysteine (NAC) is widely used as mucolytic and antioxidant remedy in clinical practice. In this regard, the data of the scientific literature on the direct and indirect effects of NAC on the mucosal immunity of the respiratory tract have been reviewed. NAC possesses pleiotropic immunomodulating properties, most of which contribute to the regression of clinical manifestations of acute and chronic inflammatory diseases of the respiratory tract. Biological and pharmacological effects of NAC include improvement in rheological properties of mucus, reduction of excess mucin production, restoration of mucociliary clearance and production of sIgA, suppression of excess production of IgE and IgG4, destruction of biofilms and inhibition of their formation, suppression of adhesion of pathogenic bacteria to epithelial cells, antioxidant activity, regulation of the production of pro-inflammatory and profibrotic cytokines. There was no convincing evidence that NAC is able to suppress any component of mucosal immunity. For final conclusions on this subject, further research are required.
1. Анаев Э.Х. Муколитическая терапия: рациональный выбор. Эффективная фармакотерапия. 2010; (27): 25-28. [Anaev EH. Mucolytic therapy: a rational choice. Effective pharmacotherapy. 2010; (27): 25-28. (In Russ.)]
2. Геппе Н.А., Снегоцкая М.Н., Никитенко А.А. Ацетилцистеин для лечения кашля у детей. Педиатрия. Прил. к журналу Consilium Medicum. 2007;(2):43-47. [Geppe NA, Snegockaja MN, Nikitenko AA. Acetylcysteine for the treatment of cough in children. Pediatrics. Consilium Medicum. 2007; (2): 43-47. (In Russ.)]
3. Зайцева О.В. Муколитические препараты в терапии болезней органов дыхания у детей: современный взгляд на проблему. Русский медицинский журнал. 2003; 11 (1): 49-54. [Zajceva OV. Mucolytic drugs in the treatment of respiratory diseases in children: a modern look at the problem. Russian medical journal. 2003; 11 (1): 49-54. (In Russ.)]
4. Коровина Н.А., Захарова И.Н., Заплатников А.Л., Овсянникова Е.М. Противокашлевые и отхаркивающие лекарственные средства в практике врача-педиатра: рациональный выбор и тактика применения. Пособие для врачей. – Москва: РМАПО, 2002. [Korovina NA, Zaharova IN, Zaplatnikov AL, Ovsjannikova EM. Anti-cough and expectorant drugs in the practice of pediatrician: rational choice and tactics of application. Manual for doctors. Moscow: RMAPO, 2002. (In Russ.)]
5. Knowles MR, Boucher RC. Mucus clearance as a primary innate defense mechanism for mammalian airways. The Journal of Clinical Investigation. 2002; 109 (5): 571-577. https://doi.org/10.1172/jci15217
6. Dreisin RB, Mostow SR. Sulfhydryl-mediated depression of ciliary activity: an adverse effect of acetylcysteine. J Lab Clin Med. 1979; 93 (4): 674-678.
7. Roomans GM, Tegner H, Toremalm NG. Acetylcysteine and its derivatives: functional and morphological effects on tracheal mucosa in vitro. Eur J Respir Dis. 1983; 64 (6): 416-425.
8. Olivieri D, Marsico SA, Del Donno M. Improvementofmucociliarytransportinsmokersbymucolytics. Eur J Respir Dis Suppl. 1985; 139: 142-145.
9. Stafanger G, Garne S, Howitz P, Morkassel E, Koch C. В The clinical effect and the effect on the ciliary motility of oral N-acetylcysteine in patients with cystic fibrosis and primary ciliary dyskinesia. Eur Respir J.1988; 1 (2): 161-167.
10. Mata M, Sarrion I, Armengot M, Carda C, Martinez I, Melero JA, Cortijo J. Respiratory Syncytial Virus Inhibits Ciliagenesis in Differentiated Normal Human Bronchial Epithelial Cells: Effectiveness of N-Acetylcysteine. Chu HW, ed. PLoS ONE. 2012; 7 (10): e48037. https://doi.org/10.1371/journal.pone.0048037
11. Corthesy B. Role of secretory immunoglobulin A and secretory component in the protection of mucosal surfaces. Future Microbiol. 2010; 5: 817–29. https://doi.org/10.2217/fmb.10.39
12. Mathias A, Pais B, Favre L, Benyacoub J, Corthésy B. Role of secretory IgA in the mucosal sensing of commensal bacteria. Gut Microbes. 2014; 5 (6): 688-695. https://doi.org/10.4161/19490976.2014.983763
13. Stone KD, Prussin C, Metcalfe DD. IgE, Mast Cells, Basophils, and Eosinophils. The Journal of allergy and clinical immunology. 2010; 125 (2 Suppl 2): S73-S80. https://doi.org/10.1016/j.jaci.2009.11.017
14. Della-Torre E, Lanzillotta M, Doglioni C. Immunology of IgG4-related disease. Clinical and Experimental Immunology. 2015; 181 (2):191-206. https://doi.org/10.1111/cei.12641
15. Perugino CA, Mattoo H, Mahajan VS, Maehara T, Wallace ZS, Pillai S, Stone JH. Emerging Treatment Models in Rheumatology: IgG4-Related Disease: Insights into human immunology and targeted therapies. Arthritis Rheumatol. 2017; 69(9): 1722-1732. https://doi.org/10.1002/ art. 40365
16. Kato A, Hulse KE, Tan BK, Schleimer RP. B lymphocyte lineage cells and the respiratory system. The Journal of allergy and clinical immunology. 2013; 131 (4): 933-957. https://doi.org/10.1016/j.jaci. 2013.02.023
17. Jeannin P, Delneste Y, Lecoanet-Henchoz S, Gauchat JF, Life P, Holmes D, Bonnefoy JY. Thiols decrease human interleukin (IL) 4 production and IL-4-induced immunoglobulin synthesis. The Journal of Experimental Medicine. 1995; 182 (6): 1785-1792. https://doi.org/ 10.1084/jem.182.6.1785
18. Yanagihara Y, Basaki Y, Kajiwara K, Ikizawa K. A thiol antioxidant regulates IgE isotype switching by inhibiting activation of nuclear factor-κB JAllergy Clin Immunol. 1997; 100: 33-38. https://doi.org/ 10.1016/s0091-6749(97)70002-2
19. Giordani L, Quaranta MG, Malorni W, Boccanera M, Giacomini E, Viora M. N-acetylcysteine inhibits the induction of an antigen-specific antibody response down-regulating CD40 and CD27 co-stimulatory molecules. Clin Exp Immunol. 2002; 129 (2): 254-264. https://doi.org/ 10.1046/j.1365-2249.2002.01897.x
20. Ercal N, Neal R, Treeratphan P, Lutz PM, Hammond TC, Dennery PA, Spitz DR. A role for oxidative stress in suppressing serum immunoglobulin levels in lead-exposed Fisher 344 rats. Arch Environ Contam Toxicol. 2000; 39 (2): 251-256. https://doi.org/10.1007/ s002440010102
21. Wang J, Li Q, Xie J, Xu Y. Cigarette smoke inhibits BAFF expression and mucosal immunoglobulin A responses in the lung during influenza virus infection. Respiratory Research. 2015; 16 (1): 37. https://doi.org/ 10.1186/s12931-015-0201-y
22. Ragland SA, Criss AK. From bacterial killing to immune modulation: Recent insights into the functions of lysozyme. Bliska JB, ed. PLoS Pathogens. 2017; 13 (9): e1006512. https://doi.org/10.1371/journal. ppat.1006512
23. Tse HN, Tseng CZS. Update on the pathological processes, molecular biology, and clinical utility of N-acetylcysteine in chronic obstructive pulmonary disease. International Journal of Chronic Obstructive Pulmonary Disease. 2014; 9: 825-836. https://doi.org/10.2147/copd. s51057
24. Eklund A, Eriksson O, Hakansson L et al. Oral N-acetylcysteine reduces selected humoral markers of inflammatory cell activity in BAL fluid from healthy smokers: correlation to effects on cellular variables. Eur Respir J. 1988; 1 (9): 832-838.
25. Walters MT, Rubin CE, Keightley SJ. A double-blind, cross-over, study of oral N-acetylcysteine in Sjögren’s syndrome. Scand J Rheumatol Suppl. 1986 61: 253-258.
26. An J-Y, Lee H-N, Park K-I, Kim J-Y, Lee J-Y, Park K-H. Effects of N-acetylcysteine (NAC) on non-specific immune parameters, respiratory burst and lysozyme activities, in different fishes. Journal of fish pathology. 2012; 25: 1-10. http://dx.doi.org/10.7847/jfp.2012.25.1.001
27. Monick MM, Samavati L, Butler NS, Mohning M, Powers LS, Yarovinsky T, Spitz DR, Hunninghake GW. Intracellular thiols contribute to Th2 function via a positive role in IL-4 production. J Immunol. 2003; 171 (10): 5107-5115. https://doi.org/10.4049/jimmunol. 171.10.5107
28. Elferink JG, de Koster BM. N-acetylcysteine causes a transient stimulation of neutrophil migration. Immunopharmacology. 1998; 38 (3): 229-236. https://doi.org/10.1016/s0162-3109(97)00056-8
29. Hasan MA, Ahn W-G, Song D-K. N-acetyl-L-cysteine and cysteine increase intracellular calcium concentration in human neutrophils. Korean J Physiol Pharmacol. 2016; 20 (5): 449-457. https://doi.org/ 10.4196/kjpp.2016.20.5.449
30. Heller AR, Groth G, Heller SC, Breitkreutz R, Nebe T, Quintel M, Koch T. N-acetylcysteine reduces respiratory burst but augments neutrophil phagocytosis in intensive care unit patients. Crit Care Med. 2001; 29 (2): 272-276. https://doi.org/10.1097/00003246-200102000-00009
31. Paulsen O, Forsgren A. Effects of N-acetylcysteine on human polymorphonuclear leukocytes. APMIS. 1989; 97 (2): 115-119. https://doi. org/10.1111/j.1699-0463.1989.tb00764.x
32. Linden M, Wieslander E, Eklund A, Larsson K, Brattsand R. Effects of oral N-acetylcysteine on cell content and macrophage function in bronchoalveolar lavage from healthy smokers. Eur Respir J. 1988; 1 (7): 645-650.
33. Pinar Karapinar S, Ulum YZ, Ozcelik B, Dogan Buzoglu H, Ceyhan D, Balci Peynircioglu B, Aksoy Y. The effect of N-acetylcysteine and calcium hydroxide on TNF-α and TGF-β1 in lipopolysaccharide-activated macrophages. Arch Oral Biol. 2016; 68: 48-54. https://doi.org/ 10.1016/j.archoralbio.2016.03.017
34. Gosset P, Wallaert B, Tonnel AB, Fourneau C. Thiol regulation of the production of TNF-alpha, IL-6 and IL-8 by human alveolar macrophages. Eur Respir J. 1999; 14 (1): 98-105. https://doi.org/ 10.1034/j.1399-3003.1999.14a17.x
35. Cu A, Ye Q, Sarria R, Nakamura S, Guzman J, Costabel U. N-acetylcysteine inhibits TNF-alpha, sTNFR, and TGF-beta1 release by alveolar macrophages in idiopathic pulmonary fibrosis in vitro. Sarcoidosis Vasc Diffuse Lung Dis. 2009; 26 (2): 147-154.
36. Riise GC, Qvarfordt I, Larsson S, Eliasson V, Andersson BA. Inhibitory effect of N-acetylcysteine on adherence of Streptococcus pneumoniae and Haemophilus influenzae to human oropharyngeal epithelial cells in vitro. Respiration. 2000; 67 (5): 552-558. https://doi.org/ 10.1159/000067473
37. Zheng CH, Ahmed K, Rikitomi N, Martinez G, Nagatake T. The effects of S-carboxymethylcysteine and N-acetylcysteine on the adherence of Moraxella catarrhalis to human pharyngeal epithelial cells. Microbiol Immunol. 1999; 43 (2): 107-13. https://doi.org/10.1111/j.1348-0421.1999.tb02381.x
38. Olofsson AC, Hermansson M, Elwing H. N-acetyl-L-cysteine affects growth, extracellular polysaccharide production, and bacterial biofilm formation on solid surfaces. Appl Environ Microbiol. 2003; 69: 4814-4822. https://doi.org/10.1128/aem.69.8.4814-4822.2003
39. Marchese A, Bozzolasco M, Gualco L, Debbia EA, Schito GC, Schito AM. Effect of fosfomycin alone and in combination with N-acetylcysteine on E. coli biofilms. Int J Antimicrob Agents. 2003; 22 (Suppl 2): 95-100. https://doi.org/10.1016/s0924-8579(03)00232-2
40. Perez-Giraldo C, Rodríguez-Benito A, Morán FJ, Hurtado C, Blanco MT, Gómez-García AC. Influence of N-acetylcysteine on the formation of biofilm by Staphylococcus epidermidis. J Antimicrob Chemother. 1997; 39: 643–646. https://doi.org/10.1093/jac/39.5.643
41. del Prado G, Ruiz V, Naves P, Rodríguez-Cerrato V, Soriano F, del Carmen Ponte M. Biofilm formation by Streptococcus pneumoniae strains and effects of human serum albumin, ibuprofen, N-acetyl-l-cysteine, amoxicillin, erythromycin, and levofloxacin. Diagn Microbiol Infect Dis. 2010; 67: 311-318. https://doi.org/10.1016/j.diagmicrobio.2010.03.016
42. Zhao T, Liu Y. N-acetylcysteine inhibit biofilms produced by Pseudomonas aeruginosa. BMC Microbiol. 2010; 10: 140. https://doi. org/10.1186/1471-2180-10-140
43. Blasi F, Page C, Rossolini GM, Pallecchi L, Matera MG, Rogliani P, Cazzola M. The effect of N-acetylcysteine on biofilms: Implications for the treatment of respiratory tract infections. Respir Med. 2016; 117: 190-197. https://doi.org/10.1016/j.rmed.2016.06.015
44. Dinicola S, De Grazia S, Carlomagno G, Pintucci JP. N-acetylcysteine as powerful molecule to destroy bacterial biofilms. Asystematicreview. Eur Rev Med Pharmacol Sci. 2014; 18 (19): 2942-2948.
45. Domenech M, García E. N-Acetyl-l-Cysteine and Cysteamine as New Strategies against Mixed Biofilms of Nonencapsulated Streptococcus pneumoniae and Nontypeable Haemophilus influenzae. Antimicrobial Agents and Chemotherapy. 2017; 61 (2): e01992-16. https://doi.org/ 10.1128/aac.01992-16
46. Valle J, Latasa C, Gil C, Toledo-Arana A, Solano C, Penadés JR, Lasa I. Bap, a Biofilm Matrix Protein of Staphylococcus aureus Prevents Cellular Internalization through Bindingto GP96 HostReceptor. PLoS Pathogens. 2012; 8 (8): e1002843. https://doi.org/10.1371/journal. ppat.1002843
________________________________________________
1. [Anaev EH. Mucolytic therapy: a rational choice. Effective pharmacotherapy. 2010; (27): 25-28. (In Russ.)]
2. [Geppe NA, Snegockaja MN, Nikitenko AA. Acetylcysteine for the treatment of cough in children. Pediatrics. Consilium Medicum. 2007; (2): 43-47. (In Russ.)]
3. [Zajceva OV. Mucolytic drugs in the treatment of respiratory diseases in children: a modern look at the problem. Russian medical journal. 2003; 11 (1): 49-54. (In Russ.)]
4. [Korovina NA, Zaharova IN, Zaplatnikov AL, Ovsjannikova EM. Anti-cough and expectorant drugs in the practice of pediatrician: rational choice and tactics of application. Manual for doctors. Moscow: RMAPO, 2002. (In Russ.)]
5. Knowles MR, Boucher RC. Mucus clearance as a primary innate defense mechanism for mammalian airways. The Journal of Clinical Investigation. 2002; 109 (5): 571-577. https://doi.org/10.1172/jci15217
6. Dreisin RB, Mostow SR. Sulfhydryl-mediated depression of ciliary activity: an adverse effect of acetylcysteine. J Lab Clin Med. 1979; 93 (4): 674-678.
7. Roomans GM, Tegner H, Toremalm NG. Acetylcysteine and its derivatives: functional and morphological effects on tracheal mucosa in vitro. Eur J Respir Dis. 1983; 64 (6): 416-425.
8. Olivieri D, Marsico SA, Del Donno M. Improvementofmucociliarytransportinsmokersbymucolytics. Eur J Respir Dis Suppl. 1985; 139: 142-145.
9. Stafanger G, Garne S, Howitz P, Morkassel E, Koch C. В The clinical effect and the effect on the ciliary motility of oral N-acetylcysteine in patients with cystic fibrosis and primary ciliary dyskinesia. Eur Respir J.1988; 1 (2): 161-167.
10. Mata M, Sarrion I, Armengot M, Carda C, Martinez I, Melero JA, Cortijo J. Respiratory Syncytial Virus Inhibits Ciliagenesis in Differentiated Normal Human Bronchial Epithelial Cells: Effectiveness of N-Acetylcysteine. Chu HW, ed. PLoS ONE. 2012; 7 (10): e48037. https://doi.org/10.1371/journal.pone.0048037
11. Corthesy B. Role of secretory immunoglobulin A and secretory component in the protection of mucosal surfaces. Future Microbiol. 2010; 5: 817–29. https://doi.org/10.2217/fmb.10.39
12. Mathias A, Pais B, Favre L, Benyacoub J, Corthésy B. Role of secretory IgA in the mucosal sensing of commensal bacteria. Gut Microbes. 2014; 5 (6): 688-695. https://doi.org/10.4161/19490976.2014.983763
13. Stone KD, Prussin C, Metcalfe DD. IgE, Mast Cells, Basophils, and Eosinophils. The Journal of allergy and clinical immunology. 2010; 125 (2 Suppl 2): S73-S80. https://doi.org/10.1016/j.jaci.2009.11.017
14. Della-Torre E, Lanzillotta M, Doglioni C. Immunology of IgG4-related disease. Clinical and Experimental Immunology. 2015; 181 (2):191-206. https://doi.org/10.1111/cei.12641
15. Perugino CA, Mattoo H, Mahajan VS, Maehara T, Wallace ZS, Pillai S, Stone JH. Emerging Treatment Models in Rheumatology: IgG4-Related Disease: Insights into human immunology and targeted therapies. Arthritis Rheumatol. 2017; 69(9): 1722-1732. https://doi.org/10.1002/ art. 40365
16. Kato A, Hulse KE, Tan BK, Schleimer RP. B lymphocyte lineage cells and the respiratory system. The Journal of allergy and clinical immunology. 2013; 131 (4): 933-957. https://doi.org/10.1016/j.jaci. 2013.02.023
17. Jeannin P, Delneste Y, Lecoanet-Henchoz S, Gauchat JF, Life P, Holmes D, Bonnefoy JY. Thiols decrease human interleukin (IL) 4 production and IL-4-induced immunoglobulin synthesis. The Journal of Experimental Medicine. 1995; 182 (6): 1785-1792. https://doi.org/ 10.1084/jem.182.6.1785
18. Yanagihara Y, Basaki Y, Kajiwara K, Ikizawa K. A thiol antioxidant regulates IgE isotype switching by inhibiting activation of nuclear factor-κB JAllergy Clin Immunol. 1997; 100: 33-38. https://doi.org/ 10.1016/s0091-6749(97)70002-2
19. Giordani L, Quaranta MG, Malorni W, Boccanera M, Giacomini E, Viora M. N-acetylcysteine inhibits the induction of an antigen-specific antibody response down-regulating CD40 and CD27 co-stimulatory molecules. Clin Exp Immunol. 2002; 129 (2): 254-264. https://doi.org/ 10.1046/j.1365-2249.2002.01897.x
20. Ercal N, Neal R, Treeratphan P, Lutz PM, Hammond TC, Dennery PA, Spitz DR. A role for oxidative stress in suppressing serum immunoglobulin levels in lead-exposed Fisher 344 rats. Arch Environ Contam Toxicol. 2000; 39 (2): 251-256. https://doi.org/10.1007/ s002440010102
21. Wang J, Li Q, Xie J, Xu Y. Cigarette smoke inhibits BAFF expression and mucosal immunoglobulin A responses in the lung during influenza virus infection. Respiratory Research. 2015; 16 (1): 37. https://doi.org/ 10.1186/s12931-015-0201-y
22. Ragland SA, Criss AK. From bacterial killing to immune modulation: Recent insights into the functions of lysozyme. Bliska JB, ed. PLoS Pathogens. 2017; 13 (9): e1006512. https://doi.org/10.1371/journal. ppat.1006512
23. Tse HN, Tseng CZS. Update on the pathological processes, molecular biology, and clinical utility of N-acetylcysteine in chronic obstructive pulmonary disease. International Journal of Chronic Obstructive Pulmonary Disease. 2014; 9: 825-836. https://doi.org/10.2147/copd. s51057
24. Eklund A, Eriksson O, Hakansson L et al. Oral N-acetylcysteine reduces selected humoral markers of inflammatory cell activity in BAL fluid from healthy smokers: correlation to effects on cellular variables. Eur Respir J. 1988; 1 (9): 832-838.
25. Walters MT, Rubin CE, Keightley SJ. A double-blind, cross-over, study of oral N-acetylcysteine in Sjögren’s syndrome. Scand J Rheumatol Suppl. 1986 61: 253-258.
26. An J-Y, Lee H-N, Park K-I, Kim J-Y, Lee J-Y, Park K-H. Effects of N-acetylcysteine (NAC) on non-specific immune parameters, respiratory burst and lysozyme activities, in different fishes. Journal of fish pathology. 2012; 25: 1-10. http://dx.doi.org/10.7847/jfp.2012.25.1.001
27. Monick MM, Samavati L, Butler NS, Mohning M, Powers LS, Yarovinsky T, Spitz DR, Hunninghake GW. Intracellular thiols contribute to Th2 function via a positive role in IL-4 production. J Immunol. 2003; 171 (10): 5107-5115. https://doi.org/10.4049/jimmunol. 171.10.5107
28. Elferink JG, de Koster BM. N-acetylcysteine causes a transient stimulation of neutrophil migration. Immunopharmacology. 1998; 38 (3): 229-236. https://doi.org/10.1016/s0162-3109(97)00056-8
29. Hasan MA, Ahn W-G, Song D-K. N-acetyl-L-cysteine and cysteine increase intracellular calcium concentration in human neutrophils. Korean J Physiol Pharmacol. 2016; 20 (5): 449-457. https://doi.org/ 10.4196/kjpp.2016.20.5.449
30. Heller AR, Groth G, Heller SC, Breitkreutz R, Nebe T, Quintel M, Koch T. N-acetylcysteine reduces respiratory burst but augments neutrophil phagocytosis in intensive care unit patients. Crit Care Med. 2001; 29 (2): 272-276. https://doi.org/10.1097/00003246-200102000-00009
31. Paulsen O, Forsgren A. Effects of N-acetylcysteine on human polymorphonuclear leukocytes. APMIS. 1989; 97 (2): 115-119. https://doi. org/10.1111/j.1699-0463.1989.tb00764.x
32. Linden M, Wieslander E, Eklund A, Larsson K, Brattsand R. Effects of oral N-acetylcysteine on cell content and macrophage function in bronchoalveolar lavage from healthy smokers. Eur Respir J. 1988; 1 (7): 645-650.
33. Pinar Karapinar S, Ulum YZ, Ozcelik B, Dogan Buzoglu H, Ceyhan D, Balci Peynircioglu B, Aksoy Y. The effect of N-acetylcysteine and calcium hydroxide on TNF-α and TGF-β1 in lipopolysaccharide-activated macrophages. Arch Oral Biol. 2016; 68: 48-54. https://doi.org/ 10.1016/j.archoralbio.2016.03.017
34. Gosset P, Wallaert B, Tonnel AB, Fourneau C. Thiol regulation of the production of TNF-alpha, IL-6 and IL-8 by human alveolar macrophages. Eur Respir J. 1999; 14 (1): 98-105. https://doi.org/ 10.1034/j.1399-3003.1999.14a17.x
35. Cu A, Ye Q, Sarria R, Nakamura S, Guzman J, Costabel U. N-acetylcysteine inhibits TNF-alpha, sTNFR, and TGF-beta1 release by alveolar macrophages in idiopathic pulmonary fibrosis in vitro. Sarcoidosis Vasc Diffuse Lung Dis. 2009; 26 (2): 147-154.
36. Riise GC, Qvarfordt I, Larsson S, Eliasson V, Andersson BA. Inhibitory effect of N-acetylcysteine on adherence of Streptococcus pneumoniae and Haemophilus influenzae to human oropharyngeal epithelial cells in vitro. Respiration. 2000; 67 (5): 552-558. https://doi.org/ 10.1159/000067473
37. Zheng CH, Ahmed K, Rikitomi N, Martinez G, Nagatake T. The effects of S-carboxymethylcysteine and N-acetylcysteine on the adherence of Moraxella catarrhalis to human pharyngeal epithelial cells. Microbiol Immunol. 1999; 43 (2): 107-13. https://doi.org/10.1111/j.1348-0421.1999.tb02381.x
38. Olofsson AC, Hermansson M, Elwing H. N-acetyl-L-cysteine affects growth, extracellular polysaccharide production, and bacterial biofilm formation on solid surfaces. Appl Environ Microbiol. 2003; 69: 4814-4822. https://doi.org/10.1128/aem.69.8.4814-4822.2003
39. Marchese A, Bozzolasco M, Gualco L, Debbia EA, Schito GC, Schito AM. Effect of fosfomycin alone and in combination with N-acetylcysteine on E. coli biofilms. Int J Antimicrob Agents. 2003; 22 (Suppl 2): 95-100. https://doi.org/10.1016/s0924-8579(03)00232-2
40. Perez-Giraldo C, Rodríguez-Benito A, Morán FJ, Hurtado C, Blanco MT, Gómez-García AC. Influence of N-acetylcysteine on the formation of biofilm by Staphylococcus epidermidis. J Antimicrob Chemother. 1997; 39: 643–646. https://doi.org/10.1093/jac/39.5.643
41. del Prado G, Ruiz V, Naves P, Rodríguez-Cerrato V, Soriano F, del Carmen Ponte M. Biofilm formation by Streptococcus pneumoniae strains and effects of human serum albumin, ibuprofen, N-acetyl-l-cysteine, amoxicillin, erythromycin, and levofloxacin. Diagn Microbiol Infect Dis. 2010; 67: 311-318. https://doi.org/10.1016/j.diagmicrobio.2010.03.016
42. Zhao T, Liu Y. N-acetylcysteine inhibit biofilms produced by Pseudomonas aeruginosa. BMC Microbiol. 2010; 10: 140. https://doi. org/10.1186/1471-2180-10-140
43. Blasi F, Page C, Rossolini GM, Pallecchi L, Matera MG, Rogliani P, Cazzola M. The effect of N-acetylcysteine on biofilms: Implications for the treatment of respiratory tract infections. Respir Med. 2016; 117: 190-197. https://doi.org/10.1016/j.rmed.2016.06.015
44. Dinicola S, De Grazia S, Carlomagno G, Pintucci JP. N-acetylcysteine as powerful molecule to destroy bacterial biofilms. Asystematicreview. Eur Rev Med Pharmacol Sci. 2014; 18 (19): 2942-2948.
45. Domenech M, García E. N-Acetyl-l-Cysteine and Cysteamine as New Strategies against Mixed Biofilms of Nonencapsulated Streptococcus pneumoniae and Nontypeable Haemophilus influenzae. Antimicrobial Agents and Chemotherapy. 2017; 61 (2): e01992-16. https://doi.org/ 10.1128/aac.01992-16
46. Valle J, Latasa C, Gil C, Toledo-Arana A, Solano C, Penadés JR, Lasa I. Bap, a Biofilm Matrix Protein of Staphylococcus aureus Prevents Cellular Internalization through Bindingto GP96 HostReceptor. PLoS Pathogens. 2012; 8 (8): e1002843. https://doi.org/10.1371/journal. ppat.1002843
Авторы
О.В. КАЛЮЖИН
ФГАОУ ВО «Первый МГМУ им. И.М. Сеченова» Минздрава России (Сеченовский университет), Москва, Россия
________________________________________________
O.V. KALYUZHIN
I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia