Применение внутрисосудистого ультразвукового исследования с «виртуальной гистологией» в оценке структуры атеросклеротической бляшки у больных ишемической болезнью сердца и сахарным диабетом 2-го типа
Применение внутрисосудистого ультразвукового исследования с «виртуальной гистологией» в оценке структуры атеросклеротической бляшки у больных ишемической болезнью сердца и сахарным диабетом 2-го типа
Захаров А.С., Мичурова М.С., Терехин С.А. и др. Применение внутрисосудистого ультразвукового исследования с «виртуальной гистологией» в оценке структуры атеросклеротической бляшки у больных ишемической болезнью сердца и сахарным диабетом 2-го типа. Терапевтический архив. 2019; 91 (12): 41–46. DOI: 10.26442/00403660.2019.12.000367
________________________________________________
Zakharov A.S., Michurova M.S., Terekhin S.A., et al. Intravascular ultrasound with virtual histology in assessment of atherosclerotic plaque composition in patients with coronary artery disease and type 2 diabetes mellitus. Therapeutic Archive. 2019; 91 (12): 41–46. DOI: 10.26442/00403660.2019.12.000367
Применение внутрисосудистого ультразвукового исследования с «виртуальной гистологией» в оценке структуры атеросклеротической бляшки у больных ишемической болезнью сердца и сахарным диабетом 2-го типа
Захаров А.С., Мичурова М.С., Терехин С.А. и др. Применение внутрисосудистого ультразвукового исследования с «виртуальной гистологией» в оценке структуры атеросклеротической бляшки у больных ишемической болезнью сердца и сахарным диабетом 2-го типа. Терапевтический архив. 2019; 91 (12): 41–46. DOI: 10.26442/00403660.2019.12.000367
________________________________________________
Zakharov A.S., Michurova M.S., Terekhin S.A., et al. Intravascular ultrasound with virtual histology in assessment of atherosclerotic plaque composition in patients with coronary artery disease and type 2 diabetes mellitus. Therapeutic Archive. 2019; 91 (12): 41–46. DOI: 10.26442/00403660.2019.12.000367
Цель. Оценить структуру и состав атеросклеротической бляшки (АСБ) в целевом поражении сосуда у больных сахарным диабетом 2-го типа (СД2) и пациентов без нарушения углеводного обмена с использованием внутрисосудистого ультразвукового исследования (ВСУЗИ), а также ВСУЗИ с виртуальной гистологией (ВСУЗИ-ВГ). Материалы и методы. В исследование включено 25 пациентов с ИБС (17 мужчин; средний возраст 68,0 [63,5; 73,0] года), поступивших в НМИЦ эндокринологии для реваскуляризации миокарда. Сформировано две группы: в 1-ю группу включено 15 пациентов с ИБС и СД2; во 2-ю – 10 пациентов без нарушений углеводного обмена. В рамках процедуры чрескожного коронарного вмешательства всем пациентам выполнено ВСУЗИ и ВСУЗИ-ВГ. В 1-й группе проанализировано 24 АСБ; во 2-й группе – 10. Результаты. Статистически значимых отличий в исследуемых группах между показателями средней площади поперечного сечения сосуда (12,5 [10,4; 15,8] мм2 и 13,5 [12,7; 16,5] мм2, соответственно; p=0,223); площади просвета сосуда (3,71 [2,5; 4,5] мм2 и 3,2 [2,7; 3,8] мм2, соответственно; р=0,589) не наблюдалось. Процент от площади поперечного среза сосуда, занимаемый АСБ, больше в группе пациентов без СД2 (71,6 [65,5; 75,7] % и 77,6 [74,4; 80,4] %, соответственно; р=0,008). При анализе структуры АСБ нами обнаружено, что процентное содержание некротического ядра (31,3 [25,3; 36,5] % и 21,65 [14,3; 27,8] %, соответственно; p=0,01) и плотного кальция (4,7 [2,3; 7,8] % и 2,45 [1,2; 4,05] %, соответственно; р=0,046) в составе бляшки было больше у пациентов с СД2. Процентное содержание фиброзной ткани больше у пациентов без нарушения углеводного обмена (55,35 [49,7; 63,6] % и 67,7 [61,8; 76,5] %, соответственно, р=0,004). Статистически значимой разницы в процентном содержании липидной ткани в двух группах не отмечено. Заключение. Исследование АСБ коронарных артерий у больных СД2 с помощью ВСУЗИ-ВГ выявило большее содержание компонентов некротического ядра и плотного кальция в составе бляшки по сравнению с пациентами без нарушения углеводного обмена.
Type 2 diabetes mellitus (T2DM) is a serious medical and social problem leading to early disability of patients and high mortality from cardiovascular complications. The development of cardiovascular events is associated not only with the degree of coronary artery stenosis, but also with the structure of the atherosclerotic plaque. Aim. This study aimed to characterize structure and composition of coronary artery atherosclerotic plaque in target lesion of T2DM patients and patients without diabetes using intravascular ultrasound (IVUS) and IVUS with virtual histology (IVUS-VH). Materials and methods. We observed 25 patients with coronary artery disease (CAD) with T2DM and without T2DM, which admitted to Endocrinology Research Centre to perform percutaneous coronary intervention (PCI). Patients with CAD and T2DM were included at group 1 and patients with CAD and without T2DM were included at group 2. IVUS and IVUS-VH assessment of target lesion were performed prior to stent implantation. We observed 24 plaques at group 1 and 10 plaques at group 2. Results. In grey-scale IVUS 2D analysis there were no differences in mean cross-sectional area of the vessel (12.5 [10.4; 15.8] mm2 vs. 13.5 [12,7; 16.5] mm2; p=0.223, respectively) and lumen area (3.71 [2.5; 4.5] mm2 vs. 3.2 [2.7; 3.8] mm2; р=0.589, respectively). Plaque burden were higher in patients without T2DM (71.6 [65.5; 75.7] % vs. 77.6 [74.4; 80.4] %; р=0.008, respectively). IVUS-VH analysis showed that percent of necrotic core and dense calcium areas were significantly higher in the T2DM group (31.3 [25.3; 36.5] % vs. 21.65 [14.3; 27.8] %; p=0.01 and 4.7 [2.3; 7.8] % vs. 2.45 [1.2; 4.05] %; р=0.046, respectively). Percent of the fibrotic tissue were higher in non-T2DM group (55.35 [49.7; 63.6] % vs 67.7 [61.8; 76.5] %; р=0.004, respectively). There were no differences in percent of lipidic tissue in both groups. Conclusions. IVUS-VH assessment of coronary artery atherosclerotic plaques showed greater amount of necrotic core and dense calcium in patients with T2DM compared to patients without diabetes.
1. Дедов И.И., Шестакова М.В. Сахарный диабет. Руководство для врачей. Москва: Универсум Паблишинг, 2003 [Dedov II, Shestakova MV. Diabetes mellitus. Guidance for physicians. Moscow: Universum pablishing, 2003 (In Russ.)].
2. Haffner S, Lehto S, Rönnemaa T, Pyörälä K, Laakso M. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. New Engl J Med. 1998;339:229-34. doi: 10.1056/nejm199807233390404
3. Nicholls SJ, Tuzcu EM, Kalidindi S, Wolski K, Moon, K-W, Sipahi I, Shoenhagen P, Nissen SE. Effect of diabetes on progression of coronary atherosclerosis and arterial remodeling. J Am Coll Cardiol. 2008;52(4):255-62. doi: 10.1016/j.jacc.2008.03.051
4. Cordunean A, Hodas R, Benedek E, Bordi L, Benedek I, Benedek T. Imaging techniques for the assessment of coronary arteries in diabetic patients undergoing PCI with bioresorbable vascular scaffolds. J Interdiscipl Med. 2017;2(1):36-40. doi: 10.1515/jim-2017-0030
5. Varnava AM, Mills PG, Davies MJ. Relationship between coronary artery remodeling and plaque vulnerability. Circulation. 2002;105:939-43. doi: 10.1161/hc0802.104327
6. Tauth J, Pinnow E, Sullebarger JT, Basta L, Gursoy S, Lindsay J, Matar F. Predictors of coronary arterial remodeling patterns in patients with myocardial ischemia. Am J Cardiol. 1997;80(10):1352-5. doi: 10.1016/s0002-9149(97)00682-6
7. Greenland P, Bonow RO, Brundage BH, et al. A Report of the American College of Cardiology Foundation Clinical Expert Consensus Task Force (ACCF/AHA Writing Committee to Update the 2000 Expert Consensus Document on Electron Beam Computed Tomography, ACCF/AHA 2007 Clinical Expert Consensus Document on Coronary Artery Calcium Scoring By Computed Tomography in Global Cardiovascular Risk Assessment and in Evaluation of Patients With Chest Pain. J Am Coll Cardiol. 2007;49:378-402. doi: 10.3410/f.1069728.522645
8. Raggi P, Callister TQ, Cooil B, et al. Identification of patients at increased risk of first unheralded acute myocardial infarction by electron-beam computed tomography. Circulation. 2000;101(8):850-5. doi: 10.1161/ 01.cir.101.8.850
9. Burke A, Farb A, Malcom G, Liang Y, Smialek J, Virmani R. Coronary risk factors and plaque morphology in men with coronary disease who died suddenly. New Engl J Med. 1997;336:1276-82. doi: 10.1056/nejm199705013361802
10. Potkin BN, Bartorelli AL, Gessert JM, et al. Coronary artery imaging with intravascular high-frequency ultrasound. Circulation. 1990;81:1575-85. doi: 10.1161/01.cir.81.5.1575
11. Sanidas E, Dangas G. Evolution of intravascular assessment of coronary anatomy and physiology: from ultrasound imaging to optical and flow assessment. Eur J Clin Investigat. 2013;43(9):996-1008. doi: 10.1111/eci.12119
12. Garcìa-Garcìa HM, Gogas BD, Serruys PW, Bruining N. IVUS-based imaging modalities for tissue characterization: similarities and differences. Int J Cardiovasc Imag. 2011;27(2):215-24. doi: 10.1007/s10554-010-9789-7
13. Nakamura M, Nishikawa H, Mukai S, Setsuda M, Nakajima K, Tamada H, Yeung AC. Impact of coronary artery remodeling on clinical presentation of coronary artery disease: an intravascular ultrasound study. J Am Coll Cardiol. 2001;37(1):63-9. doi: 10.1016/s0735-1097(00)01097-4
14. Kannel WB. Diabetes and cardiovascular disease. JAMA. 1979;241(19):2035. doi: 10.1001/jama.1979.03290450033020
15. Burke AP, Kolodgie FD, Zieske A, Fowler DR, Weber DK, Varghese PJ, et al. Morphologic findings of coronary atherosclerotic plaques in diabetics: A postmortem study. Arterioscler Thromb Vasc Biol. 2004;24(7):1266-71. doi: 10.1161/01.atv.0000131783.74034.97
16. Moreno PR, Murcia AM, Palacios IF, Leon MN, Bernardi VH, Fuster V, Fallon JT. Coronary composition and macrophage infiltration in atherectomy specimens from patients with diabetes mellitus. Circulation. 2000;102(18):2180-4. doi: 10.1161/01.cir.102.18.2180
17. Nasu K, Tsuchikane E, Katoh O, Fujita H, Surmely J-F, Ehara M, Suzuki T. Plaque characterization by virtual histology intravascular ultrasound analysis in patients with type 2 diabetes. Heart. 2007;94(4):429-33. doi: 10.1136/hrt.2007.118950
18. Hong MK, Mintz GS, Lee CW, et al. Comparison of coronary plaque rupture between stable angina and acute myocardial infarction: A three-vessel intravascular ultrasound study in 235 patients. Circulation. 2004;110(8):928-33. doi: 10.1161/ 01.cir.0000139858.69915.2e
19. Shaw LJ, Giambrone AE, Blaha MJ, et al. Long-term prognosis after coronary artery calcification testing in asymptomatic patients: A cohort study. Ann Intern Med. 2015;163(1):14-21. doi: 10.7326/M14-0612
20. Hosoi M, Sato T, Yamagami K, Hasegawa T, Yamakita T, Miyamoto M, Fujii S. Impact of diabetes on coronary stenosis and coronary artery calcification detected by electron-beam computed tomography in symptomatic patients. Diabetes Care. 2002;25(4):696-701. doi: 10.2337/diacare.25.4.696
21. Arad Y, Spadaro LA, Goodman K, Newstein D, Guerci AD. Prediction of coronary events with electron beam computed tomography. J Am Coll Cardiol. 2000;36(4):1253-60. doi: 10.1016/s0735-1097(00)00872-x
22. Raggi P, Shaw LJ, Berman DS, Callister TQ. Prognostic value of coronary artery calcium screening in subjects with and without diabetes. J Am Coll Cardiol. 2004;43(9):1663-9. doi: 10.1016/j.jacc.2003.09.068
23. Kelly-Arnold A, Maldonado N, Laudier D, Aikawa E, Cardoso L, Weinbaum S. Revised microcalcification hypothesis for fibrous cap rupture in human coronary arteries. Proc Nat Acad Sci. 2013;110(26):10741-6. doi: 10.1073/pnas.1308814110
24. Vengrenyuk Y, Carlier S, Xanthos S, et al. A hypothesis for vulnerable plaque rupture due to stress-induced debonding around cellular microcalcifications in thin fibrous caps. Proc Nat Acad Sci. 2006;103(40):14678-83. doi: 10.1073/pnas.0606310103
________________________________________________
1. [Dedov II, Shestakova MV. Diabetes mellitus. Guidance for physicians. Moscow: Universum pablishing, 2003 (In Russ.)].
2. Haffner S, Lehto S, Rönnemaa T, Pyörälä K, Laakso M. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. New Engl J Med. 1998;339:229-34. doi: 10.1056/nejm199807233390404
3. Nicholls SJ, Tuzcu EM, Kalidindi S, Wolski K, Moon, K-W, Sipahi I, Shoenhagen P, Nissen SE. Effect of diabetes on progression of coronary atherosclerosis and arterial remodeling. J Am Coll Cardiol. 2008;52(4):255-62. doi: 10.1016/j.jacc.2008.03.051
4. Cordunean A, Hodas R, Benedek E, Bordi L, Benedek I, Benedek T. Imaging techniques for the assessment of coronary arteries in diabetic patients undergoing PCI with bioresorbable vascular scaffolds. J Interdiscipl Med. 2017;2(1):36-40. doi: 10.1515/jim-2017-0030
5. Varnava AM, Mills PG, Davies MJ. Relationship between coronary artery remodeling and plaque vulnerability. Circulation. 2002;105:939-43. doi: 10.1161/hc0802.104327
6. Tauth J, Pinnow E, Sullebarger JT, Basta L, Gursoy S, Lindsay J, Matar F. Predictors of coronary arterial remodeling patterns in patients with myocardial ischemia. Am J Cardiol. 1997;80(10):1352-5. doi: 10.1016/s0002-9149(97)00682-6
7. Greenland P, Bonow RO, Brundage BH, et al. A Report of the American College of Cardiology Foundation Clinical Expert Consensus Task Force (ACCF/AHA Writing Committee to Update the 2000 Expert Consensus Document on Electron Beam Computed Tomography, ACCF/AHA 2007 Clinical Expert Consensus Document on Coronary Artery Calcium Scoring By Computed Tomography in Global Cardiovascular Risk Assessment and in Evaluation of Patients With Chest Pain. J Am Coll Cardiol. 2007;49:378-402. doi: 10.3410/f.1069728.522645
8. Raggi P, Callister TQ, Cooil B, et al. Identification of patients at increased risk of first unheralded acute myocardial infarction by electron-beam computed tomography. Circulation. 2000;101(8):850-5. doi: 10.1161/ 01.cir.101.8.850
9. Burke A, Farb A, Malcom G, Liang Y, Smialek J, Virmani R. Coronary risk factors and plaque morphology in men with coronary disease who died suddenly. New Engl J Med. 1997;336:1276-82. doi: 10.1056/nejm199705013361802
10. Potkin BN, Bartorelli AL, Gessert JM, et al. Coronary artery imaging with intravascular high-frequency ultrasound. Circulation. 1990;81:1575-85. doi: 10.1161/01.cir.81.5.1575
11. Sanidas E, Dangas G. Evolution of intravascular assessment of coronary anatomy and physiology: from ultrasound imaging to optical and flow assessment. Eur J Clin Investigat. 2013;43(9):996-1008. doi: 10.1111/eci.12119
12. Garcìa-Garcìa HM, Gogas BD, Serruys PW, Bruining N. IVUS-based imaging modalities for tissue characterization: similarities and differences. Int J Cardiovasc Imag. 2011;27(2):215-24. doi: 10.1007/s10554-010-9789-7
13. Nakamura M, Nishikawa H, Mukai S, Setsuda M, Nakajima K, Tamada H, Yeung AC. Impact of coronary artery remodeling on clinical presentation of coronary artery disease: an intravascular ultrasound study. J Am Coll Cardiol. 2001;37(1):63-9. doi: 10.1016/s0735-1097(00)01097-4
14. Kannel WB. Diabetes and cardiovascular disease. JAMA. 1979;241(19):2035. doi: 10.1001/jama.1979.03290450033020
15. Burke AP, Kolodgie FD, Zieske A, Fowler DR, Weber DK, Varghese PJ, et al. Morphologic findings of coronary atherosclerotic plaques in diabetics: A postmortem study. Arterioscler Thromb Vasc Biol. 2004;24(7):1266-71. doi: 10.1161/01.atv.0000131783.74034.97
16. Moreno PR, Murcia AM, Palacios IF, Leon MN, Bernardi VH, Fuster V, Fallon JT. Coronary composition and macrophage infiltration in atherectomy specimens from patients with diabetes mellitus. Circulation. 2000;102(18):2180-4. doi: 10.1161/01.cir.102.18.2180
17. Nasu K, Tsuchikane E, Katoh O, Fujita H, Surmely J-F, Ehara M, Suzuki T. Plaque characterization by virtual histology intravascular ultrasound analysis in patients with type 2 diabetes. Heart. 2007;94(4):429-33. doi: 10.1136/hrt.2007.118950
18. Hong MK, Mintz GS, Lee CW, et al. Comparison of coronary plaque rupture between stable angina and acute myocardial infarction: A three-vessel intravascular ultrasound study in 235 patients. Circulation. 2004;110(8):928-33. doi: 10.1161/ 01.cir.0000139858.69915.2e
19. Shaw LJ, Giambrone AE, Blaha MJ, et al. Long-term prognosis after coronary artery calcification testing in asymptomatic patients: A cohort study. Ann Intern Med. 2015;163(1):14-21. doi: 10.7326/M14-0612
20. Hosoi M, Sato T, Yamagami K, Hasegawa T, Yamakita T, Miyamoto M, Fujii S. Impact of diabetes on coronary stenosis and coronary artery calcification detected by electron-beam computed tomography in symptomatic patients. Diabetes Care. 2002;25(4):696-701. doi: 10.2337/diacare.25.4.696
21. Arad Y, Spadaro LA, Goodman K, Newstein D, Guerci AD. Prediction of coronary events with electron beam computed tomography. J Am Coll Cardiol. 2000;36(4):1253-60. doi: 10.1016/s0735-1097(00)00872-x
22. Raggi P, Shaw LJ, Berman DS, Callister TQ. Prognostic value of coronary artery calcium screening in subjects with and without diabetes. J Am Coll Cardiol. 2004;43(9):1663-9. doi: 10.1016/j.jacc.2003.09.068
23. Kelly-Arnold A, Maldonado N, Laudier D, Aikawa E, Cardoso L, Weinbaum S. Revised microcalcification hypothesis for fibrous cap rupture in human coronary arteries. Proc Nat Acad Sci. 2013;110(26):10741-6. doi: 10.1073/pnas.1308814110
24. Vengrenyuk Y, Carlier S, Xanthos S, et al. A hypothesis for vulnerable plaque rupture due to stress-induced debonding around cellular microcalcifications in thin fibrous caps. Proc Nat Acad Sci. 2006;103(40):14678-83. doi: 10.1073/pnas.0606310103