Результаты современных отечественных и зарубежных исследований указывают на существенную роль кишечной микробиоты в патогенезе воспалительных заболеваний кишечника (ВЗК). Цель исследования: оценить таксономический и функциональный состав кишечной микробиоты у пациентов с язвенным колитом (ЯК) и болезнью Крона (БК) для выявления ключевых маркеров дисбиоза при ВЗК. Материалы и методы. Для анализа использованы образцы кала 95 пациентов с ВЗК (ЯК – 78, БК – 17) и 96 здоровых добровольцев. Подготовка библиотеки ДНК и полногеномное секвенирование проводили на платформе SOLiD 5500 W. Таксономическое профилирование осуществляли путем выравнивания ридов, не картировавшихся на hg19, на референсную базу данных маркерных бактериальных последовательностей MetaPhlAn2. Для оценки представленности микробных метаболических путей риды картированы с помощью алгоритма HUNAnN2 на базу данных ChocoPhlAn. Определение уровня короткоцепочечных жирных кислот (КЖК) в кале осуществляли методом газожидкостного хроматографического анализа. Результаты и обсуждение. Изменения кишечной микробиоты у пациентов с ЯК и БК характеризуются увеличением представленности бактерий фил Proteobacteria и Bacteroidetes на фоне снижения относительного количества бактерий филы Firmicutes и архей филы Euryarchaeota; снижением индекса альфа-разнообразия бактерий, уменьшением представленности бутират-продуцирующих, водород-утилизирующих бактерий, Methanobrevibacter smithii, увеличением представленности Ruminococcus gnavus у пациентов с БК и ЯК и Akkermansia muciniphila у пациентов с БК. Снижение относительной представленности гена Butyryl-CoA: acetate CoA transferase у пациентов с БК, уменьшение абсолютного содержания как отдельных КЖК, так и их суммарного количества, а также изменение соотношения основных КЖК у пациентов с ВЗК могут свидетельствовать об угнетении функциональной активности и количества анаэробной микрофлоры и/или изменении утилизации КЖК колоноцитами. Заключение. Выявленные изменения можно рассматривать в качестве характерных признаков дисбиоза у пациентов с ВЗК и потенциальных мишеней при подборе персонифицированной терапии.
The results of recent studies indicate a significant role of gut microbiota in the pathogenesis of inflammatory bowel diseases (IBD). The aim of the study was to study the taxonomic and functional composition of the gut microbiota in ulcerative colitis (UC) and Crohn's disease (CD) patients to identify key markers of dysbiosis in IBD. Materials and methods. Fecal samples obtained from 95 IBD patients (78 UC and 17 CD) as well as 96 healthy volunteers were used for whole-genome sequencing carried out on the SOLiD 5500 W platform. Taxonomic profiling was performed by aligning the reeds, not maped on hg19, on MetaPhlAn2 reference database. Reeds were mapped using the HUNAnN2 algorithm to the ChocoPhlAn database to assess the representation of microbial metabolic pathways. Short-chain fatty acids (SCFA) level were measured in fecal samples by gas-liquid chromatographic analysis. Results and discussion. Changes in IBD patients gut microbiota were characterized by an increase in the representation of Proteobacteria and Bacteroidetes phyla bacteria and decrease in the number of Firmicutes phylum bacteria and Euryarchaeota phylum archaea; a decrease in the alpha-diversity index, relative representation of butyrate-producing, hydrogen-utilizing bacteria, and Methanobrevibacter smithii; increase in the relative representation of Ruminococcus gnavus in UC and CD patients and Akkermansia muciniphila in CD patients. Reduction of Butyryl-CoA: acetate CoA transferase gene relative representation in CD patients, decrease of absolute content of SCFA total number as well as particular SCFAs and main SCFAs ratio in IBD patients may indicate inhibition of functional activity and number of anaerobic microflora and/or an change in SCFA utilization by colonocytes. Conclusion: the revealed changes can be considered as typical signs of dysbiosis in IBD patients and can be used as potential targets for IBD patients personalized treatment development.
1. Лазебник Л.Б., Конев Ю.В. Новое понимание роли микробиоты в патогенезе метаболического синдрома. Consilium Medicum (Прил.). 2014;(8):77-82 [Lazebnik LB, Konev YuV. New understanding of the role of microbiota in the pathogenesis of metabolic syndrome. Consilium Medicum (App.). 2014;(8):77-82 (In Russ.)].
2. Ситкин С.И., Вахитов Т.Я., Ткаченко Е.И. Орешко Л.С., Жигалова Т.Н., Радченко В.Г., Селиверстов П.В., Авалуева Е.Б., Суворова М.А., Комличенко Э.В. Микробиота кишечника при язвенном колите и целиакии. Экспериментальная и клиническая гастроэнтерология. 2017;1(137):8-30 [Sitkin SI, Vakhitov TYa, Tkachenko EI, Oreshko LS, Zhigalova TN, Radchenko VG, Seliverstov PV, Avaluyeva EB, Suvorova MA, Komlichenko EV. Gut microbiota in ulcerative colitis and celiac disease. Eksperimentalnaya i Klinicheskaya Gastroenterologiya. 2017;1(137):8-30 (In Russ.)].
3. Li KY, Wei JP, Gao SY, Zhang YY, Wang LT, Liu G. Fecal microbiota in pouchitis and ulcerative colitis. World J Gastroenterol. 2016;22(40):8929-39. doi: 10.3748/wjg.v22.i40.8929
4. Presley LL, Ye J, Li X, LeBlanc J, Zhang Z, Ruegger PM, Allard J, McGovern D, Ippoliti A, Roth B, Cui X, Jeske DR, Elashoff D, Goodglick L, Braun J, Borneman J. Host-microbe relationships in inflammatory bowel disease detected by bacterial and metaproteomic analysis of the mucosal-luminal interface. Inflamm Bowel Dis. 2012 Mar;18(3):409-17. doi: 10.1002/ibd.21793
5. Ganji L, Alebouyeh M, Shirazi MH, Eshraghi SS, Mirshafiey A, Daryani NE, Zali MR. Dysbiosis of fecal microbiota and high frequency of Citrobacter, Klebsiella spp., and Actinomycetes in patients with irritable bowel syndrome and gastroenteritis. Gastroenterol Hepatol Bed Bench. 2016;9(4):325-30.
6. Vrakas S, Mountzouris KC, Michalopoulos G, Karamanolis G, Papatheodoridis G, Tzathas C, Gazouli M. Intestinal Bacteria Composition and Translocation of Bacteria in Inflammatory Bowel Disease. PLoS One. 2017;12(1):e0170034. doi: 10.1371/journal.pone.0170034
7. Ситкин С.И., Вахитов Т.Я., Демьянова Е.В. Микробиом, дисбиоз толстой кишки и воспалительные заболевания кишечника: когда функция важнее таксономии. Альманах клинической медицины. 2018;46(5):396-425 [Sitkin SI, Vakhitov TYa, Demyanova EV. Microbiome, gut dysbiosis and inflammatory bowel disease: That moment when the function is more important than taxonomy. Al'manakh Klinicheskoi Meditsiny = Almanac of Clinical Medicine. 2018;46(5):396-425 (In Russ.)]. doi: 10.18786/2072-0505-2018-46-5-396-425
8. Mondot S, de Wouters T, Doré J, Lepage P. The human gut microbiome and its dysfunctions. Dig Dis. 2013;31:278-85. doi: 10.1111/nyas.13033
9. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, Mende DR, Li J, Xu J, Li S, Li D, Cao J, Wang B, Liang H, Zheng H, Xie Y, Tap J, Lepage P, Bertalan M, Batto JM, Hansen T, Le Paslier D, Linneberg A, Nielsen HB, Pelletier E, Renault P, Sicheritz-Ponten T, Turner K, Zhu H, Yu C, Li S, Jian M, Zhou Y, Li Y, Zhang X, Li S, Qin N, Yang H, Wang J, Brunak S, Doré J, Guarner F, Kristiansen K, Pedersen O, Parkhill J, Weissenbach J, MetaHIT Consortium, Bork P, Ehrlich SD, Wang J. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464(7285):59-65. doi: 10.1038/nature08821
10. Matsuoka K, Kanai T. The gut microbiota and inflammatory bowel disease. Semin Immunopathol. 2015;37:47-55. doi: 10.1007/s00281-014-0454-4
11. Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, Gordon JI, Relman DA, Fraser-Liggett CM, Nelson KE. Metagenomic analysis of the human distal gut microbiome. Science. 2006;5778:1355-9. doi: 10.1126/science.1124234
12. Tap J, Mondot S, Levenez F, Pelletier E, Caron C, Furet JP, Ugarte E, Muñoz-Tamayo R, Paslier DL, Nalin R, Dore J, Leclerc M. Towards the human intestinal microbiota phylogenetic core. Environ Microbiol. 2009;11(10):2574-84. doi: 10.1111/j.1462-2920.2009.01982.x
13. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA. Diversity of the Human Intestinal Microbial Flora. Science. 2005;308(5728):1635-8. doi: 10.1126/science.1110591
14. Tyakht AV, Kostryukova ES, Popenko AS, Belenikin MS, Pavlenko AV, Larin AK, Karpova IY, Selezneva OV, Semashko TA, Ospanova EA, Babenko VV, Maev IV, Cheremushkin SV, Kucheryavyy YA, Shcherbakov PL, Grinevich VB, Efimov OI, Sas EI, Abdulkhakov RA, Abdulkhakov SR, Lyalyukova EA, Livzan MA, Vlassov VV, Sagdeev RZ, Tsukanov VV, Osipenko MF, Kozlova IV, Tkachev AV, Sergienko VI, Alexeev DG, Govorun VM. Human gut microbiota community structures in urban and rural populations in Russia. Nat Commun. 2013;4:2469. doi: 10.1038/ncomms3469
15. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9(4):357-9. doi: 10.1038/nmeth.1923
16. Truong DT, Franzosa EA, Tickle TL, Scholz M, Weingart G, Pasolli E, Tett A, Huttenhower C, Segata N. MetaPhlAn2 for enhanced metagenomic taxonomic profiling. Nat Methods. 2015;12:902-3. doi: 10.1038/nmeth.3589
17. Abubucker S, Segata N, Goll J, Schubert AM, Izard J, Cantarel BL, Rodriguez-Mueller B, Zucker J, Thiagarajan M, Henrissat B, White O, Kelley ST, Methé B, Schloss PD, Gevers D, Mitreva M, Huttenhower C. Metabolic reconstruction for metagenomic data and its application to the human microbiome. PLoS Comput Biol. 2012:8:e1002358. doi: 10.1371/journal.pcbi.1002358
18. Andoh A, Kuzuoka H, Tsujikawa T, Nakamura S, Hirai F, Suzuki Y, Matsui T, Fujiyama Y, Matsumoto T. Multicenter analysis of fecal microbiota profiles in Japanese patients with Crohn’s disease. J Gastroenterol. 2012;47:1298-307. doi: 10.1007/s00535-012-0605-0
19. Ohkusa T, Sato N, Ogihara T, Morita K, Ogawa M, Okayasu I. Fusobacterium varium localized in the colonic mucosa of patients with ulcerative colitis stimulates species-specific antibody. J Gastroenterol Hepatol. 2002;17(8):849-53.
20. Ott SJ, Musfeldt M, Wenderoth DF, Hampe J, Brant O, Fölsch UR, Timmis KN, Schreiber S. Reduction in diversity of the colonic mucosa associated bacterial microflora in patients with active inflammatory bowel disease. Gut. 2004;53:685-93. doi: 10.1136/gut.2003.025403
21. Baumgart M, Dogan B, Rishniw M, Weitzman G, Bosworth B, Yantiss R, Orsi RH, Wiedmann M, McDonough P, Kim SG, Berg D, Schukken Y, Scherl E, Simpson KW. Culture independent analysis of ileal mucosa reveals a selective increase in invasive Escherichia coli of novel phylogeny relative to depletion of Clostridiales in Crohn's disease involving the ileum. ISMEJ. 2007;1:403-18. doi: 10.1038/ismej.2007.52
22. Frank DN, St Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci USA. 2007;104:13780-5. doi: 10.1073/pnas.0706625104
23. Gophna U, Sommerfeld K, Gophna S, Doolittle WF, Veldhuyzen van Zanten SJ. Differences between tissue-associated intestinal microfloras of patients with Crohn's disease and ulcerative colitis. J Clin Microbiol. 2006 Nov; 44(11):4136-41. doi: 10.1128/JCM.01004-06
24. Bernstein CN, Forbes JD. Gut Microbiome in Inflammatory Bowel Disease and Other Chronic Immune-Mediated Inflammatory Diseases. Inflamm Intest Dis. 2017;2(2):116-23. doi: 10.1159/000481401
25. Matsuoka K, Mizuno S, Hayashi A, Hisamatsu T, Naganuma M, Kanai T. Fecal microbiota transplantation for gastrointestinal diseases. Keio J Med. 2014;63(4):69-74. doi: 10.2302/kjm.2014-0006-RE
26. Sokol H, Pigneur B, Watterlot L, Lakhdari O, Bermúdez-Humarán LG, Gratadoux JJ, Blugeon S, Bridonneau C, Furet JP, Corthier G, Grangette C, Vasquez N, Pochart P, Trugnan G, Thomas G, Blottière HM, Doré J, Marteau P, Seksik P, Langella P. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci USA. 2008;105:16731-6. doi: 10.1073/pnas.0804812105
27. Sokol H, Seksik P, Furet JP, Firmesse O, Nion-Larmurier I, Beaugerie L, Cosnes J, Corthier G, Marteau P, Doré J. Low counts of Faecalibacterium prausnitzii in colitis microbiota. Inflamm Bowel Dis. 2009;15:1183-9. doi: 10.1002/ibd.20903
28. Pascal V, Pozuelo M, Borruel N, Casellas F, Campos D, Santiago A, Martinez X, Varela E, Sarrabayrouse G, Machiels K, Vermeire S, Sokol H, Guarner F, Manichanh C. A microbial signature for Crohn’s disease. Gut. 2017;66:813-22. doi: 10.1136/gutjnl-2016-313235
29. Tyakht AV, Manolov AI, Kanygina AV, Ischenko DS, Kovarsky BA, Popenko AS, Pavlenko AV, Elizarova AV, Rakitina DV, Baikova JP, Ladygina VG, Kostryukova ES, Karpova IY, Semashko TA, Larin AK, Grigoryeva TV, Sinyagina MN, Malanin SY, Shcherbakov PL, Kharitonova AY, Khalif IL, Shapina MV, Maev IV, Andreev DN, Belousova EA, Buzunova YM, Alexeev DG, Govorun VM. Genetic diversity of Escherichia coli in gut microbiota of patients with Crohn’s disease discovered using metagenomic and genomic analyses. BMC Genomics. 2018;19:968. doi: 10.1186/s12864-018-5306-5
30. Manichanh C, Rigottier-Gois L, Bonnaud E, Gloux K, Pelletier E, Frangeul L, Nalin R, Jarrin C, Chardon P, Marteau P, Roca J, Dore J. Reduced diversity of faecalmicrobiota in Crohn's disease revealed by a metagenomic approach. Gut. 2006;55:205-11. doi: 10.1136/gut.2005.073817
31. Mirsepasi-Lauridsen HC, Vrankx K, Engberg J, Friis-Møller A, Brynskov J, Nordgaard-Lassen I, Petersen AM, Krogfelt KA. Disease-Specific Enteric Microbiome Dysbiosis in Inflammatory Bowel Disease. Front Med. 2018. doi: 10.3389/fmed.2018.00304
32. Ghavami SB, Rostami E, Sephay AA, Shahrokh S, Balaii H, Aghdaei HA, Zali MR. Alterations of the human gut Methanobrevibacter smithii as a biomarker for inflammatory bowel diseases. Microb Pathog. 2018;117:285-9. doi: 10.1016/j.micpath.2018.01.029
33. Ситкин С.И., Ткаченко Е.И., Вахитов Т.Я. Филометаболическое ядро микробиоты кишечника. Альманах клинической медицины. 2015;(40):12-34 [Sitkin SI, Tkachenko EI, Vakhitov TYa. Phylometabolic core of intestinal microbiota. Al'manakh klinicheskoi meditsiny = Almanac of Clinical Medicine. 2015;(40):12-34 (In Russ.)]. doi: 10.18786/2072-0505-2015-40-12-34
34. Fujimoto T, Imaeda H, Takahashi K, Kasumi E, Bamba S, Fujiyama Y, Andoh A. Decreased abundance of Faecalibacterium prausnitzii in the gut microbiota of Crohn's disease. J Gastroenterol Hepatol. 2013;28:613-9. doi: 10.1111/jgh.12073
35. Machiels K, Joossens M, Sabino J, de Preter V, Arijs I, Eeckhaut V, Ballet V, Claes K, van Immerseel F, Verbeke K, Ferrante M, Verhaegen J, Rutgeerts P, Vermeire S. A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut. 2013;63:1275-83. doi: 10.1136/gutjnl-2013-304833
36. Hall AB, Yassour M, Sauk J, Garner A, Jiang X, Arthur T, Lagoudas GK, Vatanen T, Fornelos N, Wilson R, Bertha M, Cohen M, Garber J, Khalili H, Gevers D, Ananthakrishnan AN, Kugathasan S, Lander ES, Blainey P, Vlamakis H, Xavier RJ, Huttenhower C. A novel Ruminococcus gnavus clade enriched in inflammatory bowel disease patients. Genome Medicine. 2017;9:103. doi: 10.1186/s13073-017-0490-5
37. Takahashi K, Nishida A, Fujimoto T, Fujii M, Shioya M, Imaeda H, Inatomi O, Bamba S, Sugimoto M, Andoh A. Reduced abundance of butyrate-producing bacteria species in the fecal microbial community in Crohn’s disease. Digestion. 2016;93(1):59-65. doi: 10.1159/000441768
38. Png CW, Lindén SK, Gilshenan KS, Zoetendal EG, McSweeney CS, Sly LI, McGuckin MA, Florin TH. Mucolytic bacteria with increased prevalence in IBD mucosa augment in vitro utilization of mucin by other bacteria. Am J Gastroenterol. 2010;105(11):2420-8. doi: 10.1038/ajg.2010.281
39. Pitcher MC, Beatty ER, Cummings JH. The contribution of sulphate reducing bacteria and 5-aminosalicylic acid to faecal sulphide in patients with ulcerative colitis. Gut. 2000;46:64-72. doi: 10.1136/gut.46.1.64
40. Nishida A, Inoue R, Inatomi O, Bamba S, Naito Y, Andoh A. Gut microbiota in the pathogenesis of inflammatory bowel disease. Clin J Gastroenterol. 2018;11(1):1-10. doi: 10.1007/s12328-017-0813-5
41. Deplancke B, Finster K, Graham WV, Collier CT, Thurmond JE, Gaskins HR. Gastrointestinal and microbial responses to sulfate-supplemented drinking water in mice. Exp Biol Med (Maywood). 2003;228(4):424-33. doi: 10.1177/153537020322800413
42. Sartor RB, Wu GD. Roles for Intestinal Bacteria, Viruses, and Fungi in Pathogenesis of Inflammatory Bowel Diseases and Therapeutic Approaches. Gastroenterology. 2016;152(2):327-39. doi: 10.1053/j.gastro.2016.10.012
43. Захарова И.Н., Ардатская М.Д., Свинцицкая В.И., Сугян Н.Г., Елезова Л.И., Гадзова И.С. Метаболическая активность кишечной микрофлоры у детей на фоне применения cинбиотика, содержащего bifidobacterium bb-12, lactobacillus acidophilus la-5 и фруктоолигосахарид. Педиатрия. 2011;(3):118-24 [Zakharova IN, Ardatskaya MD, Svintsitskaya VI, Sugyan NG, Yelezova LI, Gadzova IS. Metabolic activity of intestinal microflora in children with the use of a synbiotic containing bifidobacterium bb-12, lactobacillus acidophilus la-5 and fructooligosaccharide. Pediathry. 2011;(3):118-24 (In Russ.)].
44. Huda-Faujan N, Abdulamir AS, Fatimah AB, Muhammad Anas O, Shuhaimi M, Yazid AM, Loong YY. The impact of the level of the intestinal short chain Fatty acids in inflammatory bowel disease patients versus healthy subjects. Open Biochem J. 2010;4:53-8. doi: 10.2174/1874091X01004010053
45. Hamer HM, Jonkers D, Venema K, Vanhoutvin S, Troost FJ, Brummer RJ. Review article: the role of butyrate on colonic function. Aliment Pharmacol Ther. 2008;27(2):104-19. doi: 10.1111/j.1365-2036.2007.03562.x
46. Takaishi H, Matsuki T, Nakazawa A, Takada T, Kado S, Asahara T, Kamada N, Sakuraba A, Yajima T, Higuchi H, Inoue N, Ogata H, Iwao Y, Nomoto K, Tanaka R, Hibi T. Imbalance in intestinal microflora constitution could be involved in the pathogenesis of inflammatory bowel disease. Int J Med Microbiol. 2008;298:463-72. doi: 10.1016/j.ijmm.2007.07.016
________________________________________________
1. Lazebnik LB, Konev YuV. New understanding of the role of microbiota in the pathogenesis of metabolic syndrome. Consilium Medicum (App.). 2014;(8):77-82 (In Russ.).
2. Sitkin SI, Vakhitov TYa, Tkachenko EI, Oreshko LS, Zhigalova TN, Radchenko VG, Seliverstov PV, Avaluyeva EB, Suvorova MA, Komlichenko EV. Gut microbiota in ulcerative colitis and celiac disease. Eksperimentalnaya i Klinicheskaya Gastroenterologiya. 2017;1(137):8-30 (In Russ.).
3. Li KY, Wei JP, Gao SY, Zhang YY, Wang LT, Liu G. Fecal microbiota in pouchitis and ulcerative colitis. World J Gastroenterol. 2016;22(40):8929-39. doi: 10.3748/wjg.v22.i40.8929
4. Presley LL, Ye J, Li X, LeBlanc J, Zhang Z, Ruegger PM, Allard J, McGovern D, Ippoliti A, Roth B, Cui X, Jeske DR, Elashoff D, Goodglick L, Braun J, Borneman J. Host-microbe relationships in inflammatory bowel disease detected by bacterial and metaproteomic analysis of the mucosal-luminal interface. Inflamm Bowel Dis. 2012 Mar;18(3):409-17. doi: 10.1002/ibd.21793
5. Ganji L, Alebouyeh M, Shirazi MH, Eshraghi SS, Mirshafiey A, Daryani NE, Zali MR. Dysbiosis of fecal microbiota and high frequency of Citrobacter, Klebsiella spp., and Actinomycetes in patients with irritable bowel syndrome and gastroenteritis. Gastroenterol Hepatol Bed Bench. 2016;9(4):325-30.
6. Vrakas S, Mountzouris KC, Michalopoulos G, Karamanolis G, Papatheodoridis G, Tzathas C, Gazouli M. Intestinal Bacteria Composition and Translocation of Bacteria in Inflammatory Bowel Disease. PLoS One. 2017;12(1):e0170034. doi: 10.1371/journal.pone.0170034
7.Sitkin SI, Vakhitov TYa, Demyanova EV. Microbiome, gut dysbiosis and inflammatory bowel disease: That moment when the function is more important than taxonomy. Al'manakh Klinicheskoi Meditsiny = Almanac of Clinical Medicine. 2018;46(5):396-425 (In Russ.). doi: 10.18786/2072-0505-2018-46-5-396-425
8. Mondot S, de Wouters T, Doré J, Lepage P. The human gut microbiome and its dysfunctions. Dig Dis. 2013;31:278-85. doi: 10.1111/nyas.13033
9. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, Mende DR, Li J, Xu J, Li S, Li D, Cao J, Wang B, Liang H, Zheng H, Xie Y, Tap J, Lepage P, Bertalan M, Batto JM, Hansen T, Le Paslier D, Linneberg A, Nielsen HB, Pelletier E, Renault P, Sicheritz-Ponten T, Turner K, Zhu H, Yu C, Li S, Jian M, Zhou Y, Li Y, Zhang X, Li S, Qin N, Yang H, Wang J, Brunak S, Doré J, Guarner F, Kristiansen K, Pedersen O, Parkhill J, Weissenbach J, MetaHIT Consortium, Bork P, Ehrlich SD, Wang J. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464(7285):59-65. doi: 10.1038/nature08821
10. Matsuoka K, Kanai T. The gut microbiota and inflammatory bowel disease. Semin Immunopathol. 2015;37:47-55. doi: 10.1007/s00281-014-0454-4
11. Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, Gordon JI, Relman DA, Fraser-Liggett CM, Nelson KE. Metagenomic analysis of the human distal gut microbiome. Science. 2006;5778:1355-9. doi: 10.1126/science.1124234
12. Tap J, Mondot S, Levenez F, Pelletier E, Caron C, Furet JP, Ugarte E, Muñoz-Tamayo R, Paslier DL, Nalin R, Dore J, Leclerc M. Towards the human intestinal microbiota phylogenetic core. Environ Microbiol. 2009;11(10):2574-84. doi: 10.1111/j.1462-2920.2009.01982.x
13. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA. Diversity of the Human Intestinal Microbial Flora. Science. 2005;308(5728):1635-8. doi: 10.1126/science.1110591
14. Tyakht AV, Kostryukova ES, Popenko AS, Belenikin MS, Pavlenko AV, Larin AK, Karpova IY, Selezneva OV, Semashko TA, Ospanova EA, Babenko VV, Maev IV, Cheremushkin SV, Kucheryavyy YA, Shcherbakov PL, Grinevich VB, Efimov OI, Sas EI, Abdulkhakov RA, Abdulkhakov SR, Lyalyukova EA, Livzan MA, Vlassov VV, Sagdeev RZ, Tsukanov VV, Osipenko MF, Kozlova IV, Tkachev AV, Sergienko VI, Alexeev DG, Govorun VM. Human gut microbiota community structures in urban and rural populations in Russia. Nat Commun. 2013;4:2469. doi: 10.1038/ncomms3469
15. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9(4):357-9. doi: 10.1038/nmeth.1923
16. Truong DT, Franzosa EA, Tickle TL, Scholz M, Weingart G, Pasolli E, Tett A, Huttenhower C, Segata N. MetaPhlAn2 for enhanced metagenomic taxonomic profiling. Nat Methods. 2015;12:902-3. doi: 10.1038/nmeth.3589
17. Abubucker S, Segata N, Goll J, Schubert AM, Izard J, Cantarel BL, Rodriguez-Mueller B, Zucker J, Thiagarajan M, Henrissat B, White O, Kelley ST, Methé B, Schloss PD, Gevers D, Mitreva M, Huttenhower C. Metabolic reconstruction for metagenomic data and its application to the human microbiome. PLoS Comput Biol. 2012:8:e1002358. doi: 10.1371/journal.pcbi.1002358
18. Andoh A, Kuzuoka H, Tsujikawa T, Nakamura S, Hirai F, Suzuki Y, Matsui T, Fujiyama Y, Matsumoto T. Multicenter analysis of fecal microbiota profiles in Japanese patients with Crohn’s disease. J Gastroenterol. 2012;47:1298-307. doi: 10.1007/s00535-012-0605-0
19. Ohkusa T, Sato N, Ogihara T, Morita K, Ogawa M, Okayasu I. Fusobacterium varium localized in the colonic mucosa of patients with ulcerative colitis stimulates species-specific antibody. J Gastroenterol Hepatol. 2002;17(8):849-53.
20. Ott SJ, Musfeldt M, Wenderoth DF, Hampe J, Brant O, Fölsch UR, Timmis KN, Schreiber S. Reduction in diversity of the colonic mucosa associated bacterial microflora in patients with active inflammatory bowel disease. Gut. 2004;53:685-93. doi: 10.1136/gut.2003.025403
21. Baumgart M, Dogan B, Rishniw M, Weitzman G, Bosworth B, Yantiss R, Orsi RH, Wiedmann M, McDonough P, Kim SG, Berg D, Schukken Y, Scherl E, Simpson KW. Culture independent analysis of ileal mucosa reveals a selective increase in invasive Escherichia coli of novel phylogeny relative to depletion of Clostridiales in Crohn's disease involving the ileum. ISMEJ. 2007;1:403-18. doi: 10.1038/ismej.2007.52
22. Frank DN, St Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci USA. 2007;104:13780-5. doi: 10.1073/pnas.0706625104
23. Gophna U, Sommerfeld K, Gophna S, Doolittle WF, Veldhuyzen van Zanten SJ. Differences between tissue-associated intestinal microfloras of patients with Crohn's disease and ulcerative colitis. J Clin Microbiol. 2006 Nov; 44(11):4136-41. doi: 10.1128/JCM.01004-06
24. Bernstein CN, Forbes JD. Gut Microbiome in Inflammatory Bowel Disease and Other Chronic Immune-Mediated Inflammatory Diseases. Inflamm Intest Dis. 2017;2(2):116-23. doi: 10.1159/000481401
25. Matsuoka K, Mizuno S, Hayashi A, Hisamatsu T, Naganuma M, Kanai T. Fecal microbiota transplantation for gastrointestinal diseases. Keio J Med. 2014;63(4):69-74. doi: 10.2302/kjm.2014-0006-RE
26. Sokol H, Pigneur B, Watterlot L, Lakhdari O, Bermúdez-Humarán LG, Gratadoux JJ, Blugeon S, Bridonneau C, Furet JP, Corthier G, Grangette C, Vasquez N, Pochart P, Trugnan G, Thomas G, Blottière HM, Doré J, Marteau P, Seksik P, Langella P. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci USA. 2008;105:16731-6. doi: 10.1073/pnas.0804812105
27. Sokol H, Seksik P, Furet JP, Firmesse O, Nion-Larmurier I, Beaugerie L, Cosnes J, Corthier G, Marteau P, Doré J. Low counts of Faecalibacterium prausnitzii in colitis microbiota. Inflamm Bowel Dis. 2009;15:1183-9. doi: 10.1002/ibd.20903
28. Pascal V, Pozuelo M, Borruel N, Casellas F, Campos D, Santiago A, Martinez X, Varela E, Sarrabayrouse G, Machiels K, Vermeire S, Sokol H, Guarner F, Manichanh C. A microbial signature for Crohn’s disease. Gut. 2017;66:813-22. doi: 10.1136/gutjnl-2016-313235
29. Tyakht AV, Manolov AI, Kanygina AV, Ischenko DS, Kovarsky BA, Popenko AS, Pavlenko AV, Elizarova AV, Rakitina DV, Baikova JP, Ladygina VG, Kostryukova ES, Karpova IY, Semashko TA, Larin AK, Grigoryeva TV, Sinyagina MN, Malanin SY, Shcherbakov PL, Kharitonova AY, Khalif IL, Shapina MV, Maev IV, Andreev DN, Belousova EA, Buzunova YM, Alexeev DG, Govorun VM. Genetic diversity of Escherichia coli in gut microbiota of patients with Crohn’s disease discovered using metagenomic and genomic analyses. BMC Genomics. 2018;19:968. doi: 10.1186/s12864-018-5306-5
30. Manichanh C, Rigottier-Gois L, Bonnaud E, Gloux K, Pelletier E, Frangeul L, Nalin R, Jarrin C, Chardon P, Marteau P, Roca J, Dore J. Reduced diversity of faecalmicrobiota in Crohn's disease revealed by a metagenomic approach. Gut. 2006;55:205-11. doi: 10.1136/gut.2005.073817
31. Mirsepasi-Lauridsen HC, Vrankx K, Engberg J, Friis-Møller A, Brynskov J, Nordgaard-Lassen I, Petersen AM, Krogfelt KA. Disease-Specific Enteric Microbiome Dysbiosis in Inflammatory Bowel Disease. Front Med. 2018. doi: 10.3389/fmed.2018.00304
32. Ghavami SB, Rostami E, Sephay AA, Shahrokh S, Balaii H, Aghdaei HA, Zali MR. Alterations of the human gut Methanobrevibacter smithii as a biomarker for inflammatory bowel diseases. Microb Pathog. 2018;117:285-9. doi: 10.1016/j.micpath.2018.01.029
33. Ситкин С.И., Ткаченко Е.И., Вахитов Т.Я. Филометаболическое ядро микробиоты кишечника. Альманах клинической медицины. 2015;(40):12-34 [Sitkin SI, Tkachenko EI, Vakhitov TYa. Phylometabolic core of intestinal microbiota. Al'manakh klinicheskoi meditsiny = Almanac of Clinical Medicine. 2015;(40):12-34 (In Russ.)]. doi: 10.18786/2072-0505-2015-40-12-34
34. Fujimoto T, Imaeda H, Takahashi K, Kasumi E, Bamba S, Fujiyama Y, Andoh A. Decreased abundance of Faecalibacterium prausnitzii in the gut microbiota of Crohn's disease. J Gastroenterol Hepatol. 2013;28:613-9. doi: 10.1111/jgh.12073
35. Machiels K, Joossens M, Sabino J, de Preter V, Arijs I, Eeckhaut V, Ballet V, Claes K, van Immerseel F, Verbeke K, Ferrante M, Verhaegen J, Rutgeerts P, Vermeire S. A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut. 2013;63:1275-83. doi: 10.1136/gutjnl-2013-304833
36. Hall AB, Yassour M, Sauk J, Garner A, Jiang X, Arthur T, Lagoudas GK, Vatanen T, Fornelos N, Wilson R, Bertha M, Cohen M, Garber J, Khalili H, Gevers D, Ananthakrishnan AN, Kugathasan S, Lander ES, Blainey P, Vlamakis H, Xavier RJ, Huttenhower C. A novel Ruminococcus gnavus clade enriched in inflammatory bowel disease patients. Genome Medicine. 2017;9:103. doi: 10.1186/s13073-017-0490-5
37. Takahashi K, Nishida A, Fujimoto T, Fujii M, Shioya M, Imaeda H, Inatomi O, Bamba S, Sugimoto M, Andoh A. Reduced abundance of butyrate-producing bacteria species in the fecal microbial community in Crohn’s disease. Digestion. 2016;93(1):59-65. doi: 10.1159/000441768
38. Png CW, Lindén SK, Gilshenan KS, Zoetendal EG, McSweeney CS, Sly LI, McGuckin MA, Florin TH. Mucolytic bacteria with increased prevalence in IBD mucosa augment in vitro utilization of mucin by other bacteria. Am J Gastroenterol. 2010;105(11):2420-8. doi: 10.1038/ajg.2010.281
39. Pitcher MC, Beatty ER, Cummings JH. The contribution of sulphate reducing bacteria and 5-aminosalicylic acid to faecal sulphide in patients with ulcerative colitis. Gut. 2000;46:64-72. doi: 10.1136/gut.46.1.64
40. Nishida A, Inoue R, Inatomi O, Bamba S, Naito Y, Andoh A. Gut microbiota in the pathogenesis of inflammatory bowel disease. Clin J Gastroenterol. 2018;11(1):1-10. doi: 10.1007/s12328-017-0813-5
41. Deplancke B, Finster K, Graham WV, Collier CT, Thurmond JE, Gaskins HR. Gastrointestinal and microbial responses to sulfate-supplemented drinking water in mice. Exp Biol Med (Maywood). 2003;228(4):424-33. doi: 10.1177/153537020322800413
42. Sartor RB, Wu GD. Roles for Intestinal Bacteria, Viruses, and Fungi in Pathogenesis of Inflammatory Bowel Diseases and Therapeutic Approaches. Gastroenterology. 2016;152(2):327-39. doi: 10.1053/j.gastro.2016.10.012
43. Zakharova IN, Ardatskaya MD, Svintsitskaya VI, Sugyan NG, Yelezova LI, Gadzova IS. Metabolic activity of intestinal microflora in children with the use of a synbiotic containing bifidobacterium bb-12, lactobacillus acidophilus la-5 and fructooligosaccharide. Pediathry. 2011;(3):118-24 (In Russ.).
44. Huda-Faujan N, Abdulamir AS, Fatimah AB, Muhammad Anas O, Shuhaimi M, Yazid AM, Loong YY. The impact of the level of the intestinal short chain Fatty acids in inflammatory bowel disease patients versus healthy subjects. Open Biochem J. 2010;4:53-8. doi: 10.2174/1874091X01004010053
45. Hamer HM, Jonkers D, Venema K, Vanhoutvin S, Troost FJ, Brummer RJ. Review article: the role of butyrate on colonic function. Aliment Pharmacol Ther. 2008;27(2):104-19. doi: 10.1111/j.1365-2036.2007.03562.x
46. Takaishi H, Matsuki T, Nakazawa A, Takada T, Kado S, Asahara T, Kamada N, Sakuraba A, Yajima T, Higuchi H, Inoue N, Ogata H, Iwao Y, Nomoto K, Tanaka R, Hibi T. Imbalance in intestinal microflora constitution could be involved in the pathogenesis of inflammatory bowel disease. Int J Med Microbiol. 2008;298:463-72. doi: 10.1016/j.ijmm.2007.07.016
1 ФГАОУ ВО «Казанский (Приволжский) федеральный университет», Казань, Россия;
2 ФГБОУ ВО «Казанский государственный медицинский университет» Минздрава России, Казань, Россия;
3 ФГБУ ДПО «Центральная государственная медицинская академия» Управления делами Президента РФ, Москва, Россия;
4 ФГБУ «Федеральный научно-клинический центр физико-химической медицины» Федерального медико-биологического агентства России, Москва, Россия;
5 Институт биологии гена РАН, Москва, Россия;
6 Республиканская клиническая больница Минздрава Республики Татарстан, Казань, Россия
________________________________________________
The results of recent studies indicate a significant role of gut microbiota in the pathogenesis of inflammatory bowel diseases (IBD). The aim of the study was to study the taxonomic and functional composition of the gut microbiota in ulcerative colitis (UC) and Crohn's disease (CD) patients to identify key markers of dysbiosis in IBD. Materials and methods. Fecal samples obtained from 95 IBD patients (78 UC and 17 CD) as well as 96 healthy volunteers were used for whole-genome sequencing carried out on the SOLiD 5500 W platform. Taxonomic profiling was performed by aligning the reeds, not maped on hg19, on MetaPhlAn2 reference database. Reeds were mapped using the HUNAnN2 algorithm to the ChocoPhlAn database to assess the representation of microbial metabolic pathways. Short-chain fatty acids (SCFA) level were measured in fecal samples by gas-liquid chromatographic analysis. Results and discussion. Changes in IBD patients gut microbiota were characterized by an increase in the representation of Proteobacteria and Bacteroidetes phyla bacteria and decrease in the number of Firmicutes phylum bacteria and Euryarchaeota phylum archaea; a decrease in the alpha-diversity index, relative representation of butyrate-producing, hydrogen-utilizing bacteria, and Methanobrevibacter smithii; increase in the relative representation of Ruminococcus gnavus in UC and CD patients and Akkermansia muciniphila in CD patients. Reduction of Butyryl-CoA: acetate CoA transferase gene relative representation in CD patients, decrease of absolute content of SCFA total number as well as particular SCFAs and main SCFAs ratio in IBD patients may indicate inhibition of functional activity and number of anaerobic microflora and/or an change in SCFA utilization by colonocytes. Conclusion: the revealed changes can be considered as typical signs of dysbiosis in IBD patients and can be used as potential targets for IBD patients personalized treatment development.