Коморбидность при подагре и гиперурикемии: распространенность, причины, перспективы уратснижающей терапии
________________________________________________
Eliseev M.S., Novikova A.M. Comorbidity in gout and hyperuricemia: prevalence, causes, prospects of urate lowering therapy. Therapeutic Archive. 2019; 91 (5): 120–128. DOI: 10.26442/00403660.2019.05.000232
Материалы доступны только для специалистов сферы здравоохранения. Авторизуйтесь или зарегистрируйтесь.
Ключевые слова: подагра, гиперурикемия, мочевая кислота, коморбидность, сахарный диабет, сердечно-сосудистые заболевания, метаболический синдром, фебуксостат, аллопуринол.
________________________________________________
Nowadays, there is increased interest in the connection of gout and asymptomatic hyperuricemia with comorbid conditions such as diabetes mellitus, cardiovascular diseases, hypertension, chronic kidney disease and other. Studies conducted over the past few decades suggest that not only gout, but also asymptomatic hyperuricemia can significantly worsen the prognosis in patients with cardiovascular diseases, as the deposition of urate crystals can be both an immediate cause and a factor in the progression of renal failure. In that way, the timely appointment of urate-lowering therapy and achieving the target serum uric acid level can not only affect joint damage, but also can significantly slow the progression of life-threatening comorbid conditions.
Кeywords: gout, hyperuricemia, uric acid, comorbidity, diabetes, cardiovascular disease, metabolic syndrome, febuxostat, allopurinol.
2. Culleton BF, Larson MG, Kannel WB, Levy D. Serum uric acid and risk for cardiovascular disease and death: the Framingham Heart Study. Ann Intern Med. 1999;131(1):7-13. PMID: 10391820
3. Kuo CF, Grainge MJ, Mallen C, Zhang W, Doherty M. Comorbidities in patients with gout prior to and following diagnosis: case-control study. Ann Rheum Dis. 2016;75(1):210-7. doi: 10.1136/annrh eum dis-2014-206410
4. Choi HK, Ford ES, Li C, Curhan G. Prevalence of the metabolic syndrome in patients with gout: the Third National Health and Nutrition Examination Survey. Arthritis Rheum. 2007;57(1):109-15. doi: 10.1002/art.22466
5. Cicero AFG, Fogacci F, Giovannini M, et al. Serum uric acid predicts incident metabolic syndrome in the elderly in an analysis of the Brisighella Heart Study. Sci Rep. 2018;8(1):11529. doi: 10.1038/s41598-018-29955-w
6. Shani M, Vinker S, Dinour D, Leiba M, Twig G, Holtzman EJ, Leiba A. High Normal Uric Acid Levels Are Associated with an Increased Risk of Diabetes in Lean, Normoglycemic Healthy Women. J Clin Endocrinol Metab. 2016 Oct;101(10):3772-8. doi: 10.1210/jc.2016-2107
7. Rho YH, Lu N, Peloquin CE, Man A, Zhu Y, Zhang Y, Choi HK. Independent impact of gout on the risk of diabetes mellitus among women and men: a population-based, BMI-matched cohort study. Ann Rheum Dis. 2016;75(1):91-5. doi: 10.1136/annrheumdis-2014-205827
8. Pan A, Teng GG, Yuan JM, Koh WP. Bidirectional association between diabetes and gout: the Singapore Chinese Health Study. Sci Rep. 2016; 6:25766. doi: 10.1038/srep25766
9. Lytvyn Y, Skrtic M, Yang GK, Yip PM, Perkins BA, Cherney DZ. Glycosuriamediated urinary uric acid excretion in patients with uncomplicated type 1 diabetes mellitus. Am J Physiol Renal Physiol. 2015;308(2):F77-83. doi: 10.1152/ajprenal.00555.2014
10. Елисеев М.С., Барскова В.Г. Нарушения углеводного обмена при подагре: частота выявления и клинические особенности. Терапевтический архив. 2010;82(5):50-4 [Eliseev MS, Barskova VG. Carbohydrate metabolic disturbances in gout: Detection rate and clinical features. Therapeutic Archive. 2010;82(5):50-4 (In Russ.)].
11. Agrawal NK, Kant S. Targeting inflammation in diabetes: newer therapeutic options. World J Diabetes. 2014;5(5):697-710. doi: 10.4239/wjd.v5.i5.697
12. Chen W, Liu X, Ye S. Effects of metformin on blood and urine proinflammatory mediators in patients with type 2 diabetes. J Inflamm (Lond). 2016;13:34. doi: 10.1186/s12950-016-0142-3
13. Барскова В.Г., Елисеев М.С., Кудаева Ф.М. и др. Влияние метформина на течение подагры и инсулинорезистентность. Клиническая медицина. 2009;87(7):41-6 [Barskova VG, Eliseev MS, Kudaeva FM, Aleksandrova EN, Volkov AV, Nasonova VA, Nasonov EL. Effect of metformine on the clinical course of gout and insulin resistance. Clinical medicine. 2009;87(7):41-6 (In Russ.)].
14. Matsuura F, Yamashita S, Nakamura T, et al. Effects of visceral fat accumulation on uric acid metabolism in male obese subjects: visceral fat obesity is linked more closely to overproduction of uric acid than subcutaneous fat obesity. Metabolism. 1998;47:929-33. doi: 10.1016/ S0026-0495(98)90346-8
15. Rasheed H, Hughes K, Flynn TJ, Merriman TR. Mendelian randomization provides no evidence for a causal role of serum urate in increasing serum triglyceride levels. Circ Cardiovasc Genet. 2014;7(6):830-7. doi: 10.1161/ CIRCGENETICS.114.000556
16. Johnson RJ, Nakagawa T, Sanchez-Lozada LG, et al. Sugar, uric acid, and the etiology of diabetes and obesity. Diabetes. 2013;62:3307-15. doi: 10.2337/db12-1814
17. Lanaspa MA, Sánchez-Lozada LG, Choi Y-J, et al. Uric acid induces hepatic steatosis by generation of mitochondrial oxidative stress: potential role in fructose-dependent and -independent fatty liver. J Biol Chem. 2012; 287:40732-44. doi: 10.1074/jbc.M112.399899
18. Cicerchi C, Li N, Kratzer J, et al. Uric acid-dependent inhibition of AMP kinase induces hepatic glucose production in diabetes and starvation: evolutionary implications of the uricase loss in hominids. FASEB J. 2014;28:3339-50. doi: 10.1096/fj.13-243634
19. Kuwabara M, Borghi C, Cicero AF, et al. Elevated Serum Uric Acid Increases Risks for Developing High LDL Cholesterol and Hypertriglyceridemia: A Five-Year Cohort Study in Japan. Int J Cardiol. 2018;261:183-8. doi: 10.5603/CJ.2018.0116
20. Roughley MJ, Belcher J, Mallen CD, Roddy E. Gout and risk of chronic kidney disease and nephrolithiasis: meta-analysis of observational studies. Arthritis Res Ther. 2015;17(1):90. doi: 10.1186/s13075-015-0610-9
21. Yu KH, Kuo CF, Luo SF, et al. Risk of endstage renal disease associated with gout: a nationwide population study. Arthritis Res Ther. 2012;14(2):R83. doi: 10.1186/ar3806
22. William F. Finn. Kidney Disease and Gout: The Role of the Innate Immune System. Open Urology & Nephrology J. 2016;9(Suppl 1:M3):12. doi: 10.2174/1874303X01609010012
23. Kang DH, Chen W. Uric acid and chronic kidney disease: new understanding of an old problem. Semin Nephol. 2011;31:447-552.
24. Mazzali M, Hughes J, Kim YG, et al. Elevated uric acid increases blood pressure in the rat by a novel crystal-independent mechanism. Hypertension. 2001;38:1101-6.
25. Kang DH, Nakagawa T, Feng L, et al. A role for uric acid in the progression of renal disease. J Am Soc Nephrol. 2002;13:2888-97.
26. Li L, Yang C, Zhao Y, Zeng X, Liu F, Fu P. Is hyperuricemia an independent risk factor for new-onset chronic kidney disease? A systematic review and metaanalysis based on observational cohort studies. BMC Nephrol. 2014;15:122. doi: 10.1186/1471-2369-15-122
27. Jing J, Kielstein JT, Schultheiss UT, Sitter T, Titze SI, Schaeffner ES, McAdams-DeMarco M, Kronenberg F, Eckardt KU, Kottgen A. Prevalence and correlates of gout in a large cohort of patients with chronic kidney disease: the German Chronic Kidney Disease (GCKD) study. Nephrol Dial Transplant. 2015;30(4):613-21. doi: 10.1093/ndt/gfu352
28. Clarson LE, Hider SL, Belcher J, et al. Increased risk of vascular disease associated with gout: a retrospective, matched cohort study in the UK clinical practice research datalink. Ann Rheum Dis. 2015;74(4):642-7.
doi: 10.1136/annrheumdis-2014-205252
29. Clarson LE, Chandratre P, Hider SL, et al. Increased cardiovascular mortality associated with gout: a systematic review and meta-analysis. Eur J Prev Cardiol. 2015;22(3):335-43. doi: 10.1177/2047487313514895
30. Choi HK, Curhan G. Independent impact of gout on mortality and risk for coronary heart disease. Circulation. 2007;116(8):894-900. doi: 10.1161/ CIRCULATIONAHA.107.703389
31. Perez-Ruiz F, Martinez-Indart L, Carmona L, et al. Tophaceous gout and high level of hyperuricaemia are both associated with increased risk of mortality in patients with gout. Ann Rheum Dis. 2014;73(1):177-82. doi: 10.1136/annrheumdis-2012-202421
32. Елисеев М.С., Денисов И.С., Маркелова Е.И., Глухова С.И., Насонов Е.Л. Независимые факторы риска развития тяжелых сердечно-сосудистых осложнений у мужчин с подагрой: результаты 7-летнего проспективного исследования. Терапевтический архив. 2017; 89(5):10-9 [Eliseev MS, Denisov IS, Markelova EI, Glukhova SI, Nasonov EL. Independent risk factors for severe cardiovascular events in male patients with gout: Results of a 7-years prospective study. Therapeutic Archive. 2017;89(5):10-9 (In Russ.)]. doi:10.17116/terarkh201789510-19
33. Bardin T, Richette P. Impact of comorbidities on gout and hyperuricaemia: an update on prevalence and treatment options. BMC Medicine. 2017; 15:123. doi: 10.1186/s12916-017-0890-9
34. Richette P, Perez-Ruiz F, Doherty M, Jansen TL, Nuki G, Pascual E, Punzi L, So AK, Bardin T. Improving cardiovascular and renal outcomes in gout: what should we target? Nat Rev Rheumatol. 2014;10(11):654-61. doi: 10.1016/j.jare.2017.04.008
35. Perez-Ruiz F, et al. Failure to Reach Serum Urate Target Is Associated with Elevated Mortality in Gout. Arthritis Rheum. ABSTRACT SUPPLEMENT. 2018;70(S9):954-5.
36. Krishnan E, Baker JF, Furst DE, Schumacher HR. Gout and the risk of acute myocardial infarction. Arthritis Rheum. 2006;54(8):2688-96. doi: 10.1002/art.22014
37. De Vera MA, Rahman MM, Bhole V, Kopec JA, Choi HK. Independent impact of gout on the risk of acute myocardial infarction among elderly women: a population-based study. Ann Rheum Dis. 2010;69(6):1162-4. doi: 10.1136/ard.2009.122770
38. Krishnan E. Gout and the risk for incident heart failure and systolic dysfunction. BMJ Open. 2012;2(1):e000282. doi: 10.1136/bmjopen-2011-000282
39. Harzand A, Tamariz L, Hare JM. Uric acid, heart failure survival, and the impact of xanthine oxidase inhibition. Congest Heart Fail. 2012; 18(3):179-82. doi: 10.1111/j.1751-7133.2011.00262.x
40. Kuo CF, Grainge MJ, Mallen C, Zhang W, Doherty M. Impact of gout on the risk of atrial fibrillation. Rheumatology (Oxford). 2016;55(4):721-8. doi: 10.1093/rheumatology/kev418
41. Chang K, Yokose C, Tenner C, et al. Association between gout and aortic stenosis. Am J Med. 2017;130(2):230.e1-8. doi: 10.1016/j.amjmed.2016. 09.005
42. Nakagawa T, Mazzali M, Kang D-H, et al. Hyperuricemia causes glomerular hypertrophy in the rat. Am J Nephrol. 2003;23:2-7. doi: 10.115 9/000066303
43. Sánchez-Lozada LG, Tapia E, Bautista-García P, et al. Effects of febuxostat on metabolic and renal alterations in rats with fructose-induced metabolic syndrome. Am J Physiol Renal Physiol. 2008;294(4):F710-8. doi: 10.1152/ajprenal.00454.2007
44. DeBosch BJ, Kluth O, Fujiwara H, Schurmann A, Moley K. Early-onset metabolic syndrome in mice lacking the intestinal uric acid transporter SLC2A9. Nat Commun. 2014;5:4642. doi: 10.1038/ncomms5642
45. Kondo M, Imanishi M, Fukushima K, et al. Xanthine Oxidase Inhibition by Febuxostat in Macrophages Suppresses Angiotensin II-induced Aortic Fibrosis. Am J Hypertens. 2018 Oct 23. doi: 10.1093/ajh/hpy157 [Epub ahead of print.]
46. Namai-Takahashi A, Sakuyama A, Nakamura T, et al. Xanthine oxidase inhibitor, febuxostat ameliorates the high salt intake-induced cardiac hypertrophy and fibrosis in Dahl salt-sensitive rats. Am J Hypertens. 2018 Oct 1. doi: 10.1093/ajh/hpy143
47. Kohagura K, Kochi M, Miyagi T, et al. An association between uric acid levels and renal arteriolopathy in chronic kidney disease: a biopsy-based study. Hypertens Res. 2013;36:43-9. doi: 10.1038/hr.2012.135
48. Saito Y, Nakayama T, Sugimoto K, Fujimoto Y, Kobayashi Y. Relation of lipid content of coronary plaque to level of serum uric acid. Am J Cardiol. 2015;116(9):1346-50. doi: 10.1016/j.amjcard.2015.07.059
49. Ando K, Takahashi H, Watanabe T, Daidoji H, Otaki Y, Nishiyama S, Arimoto T, Shishido T, Miyashita T, Miyamoto T, et al. Impact of serum uric acid levels on coronary plaque stability evaluated using integrated backscatter intravascular ultrasound in patients with coronary artery disease. J Atheroscler Thromb. 2016;23(8):932-9. doi: 10.5551/jat.33951
50. Park JJ, Roudier MP, Soman D, Mokadam NA, Simkin PA. Prevalence of birefringent crystals in cardiac and prostatic tissues, an observational study. BMJ Open. 2014;4(7):e005308. doi: 10.1136/bmjopen-2014-005308
51. Borghi C, Rosei EA, Bardin T, et al Serum uric acid and the risk of cardiovascular and renal disease. J Hypertens. 2015;33(9):1729-41. Discussion 1741. doi: 10.1097/HJH.0000000000000701
52. Zhao G, Huang L, Song M, Song Y. Baseline serum uric acid level as a predictor of cardiovascular disease related mortality and all-cause mortality: a meta-analysis of prospective studies. Atherosclerosis. 2013;231(1):61-8. doi: 10.1016/j.atherosclerosis.2013.08.023
53. Nozue T, Yamamoto S, Tohyama S, et al. Correlations between serum uric acid and coronary atherosclerosis before and during statin therapy. Coron Artery Dis. 2014;25(4):343-8. doi: 10.1097/MCA.0000000000000084
54. Tamariz L, Hernandez F, Bush A, Palacio A, Hare JM. Association between serum uric acid and atrial fibrillation: a systematic review and meta-analysis. Heart Rhythm. 2014;11(7):1102-8. doi: 10.1016/j.hrthm. 2014.04.003
55. Kim SY, Guevara JP, Kim KM, Choi HK, Heitjan DF, Albert DA. Hyperuricemia and risk of stroke: a systematic review and meta-analysis. Arthritis Rheum. 2009;61(7):885-92.
56. Andres M, Quintanilla MA, Sivera F, et al. Silent monosodium urate crystal deposits are associated with severe coronary calcification in asymptomatic hyperuricemia: an exploratory study. Arthritis Rheumatol. 2016;68(6):1531-9. doi: 10.1002/art.39581
57. Grayson PC, Kim SY, LaValley M, Choi HK. Hyperuricemia and incident hypertension: a systematic review and meta-analysis. Arthritis Care Res (Hoboken). 2011;63(1):102-10. doi: 10.1002/acr.20344
58. Viazzi F, Rebora P, Giussani M, et al. Increased serum uric acid levels blunt the antihypertensive efficacy of lifestyle modifications in children at cardiovascular risk. Hypertension. 2016;67(5):934-40. doi: 10.1161/HYPERTENSIONAHA.115.06852
59. Cicero AF, Rosticci M, Fogacci F, Grandi E, D’Addato S, Borghi C. High serum uric acid is associated to poorly controlled blood pressure and higher arterial stiffness in hypertensive subjects. Eur J Intern Med. 2017;37:38-42. doi: 10.1016/j.ejim.2016.07.026
60. Lv Q, Meng XF, He FF, Chen S, et al. High serum uric acid and increased risk of type 2 diabetes: a systemic review and meta-analysis of prospective cohort studies. PLoS One. 2013;8(2):e56864. doi: 10.1371/journal.pone. 0056864
61. Yu TY, Jee JH, Bae JC, et al. Serum uric acid: a strong and independent predictor of metabolic syndrome after adjusting for body composition. Metabolism. 2016;65(4):432-40. doi: 10.1016/j.metabol.2015.11.003
62. Kleber ME, Delgado G, Grammer TB, Silbernagel G, Huang J, Kramer BK, Ritz E, Marz W. Uric acid and cardiovascular events: a Mendelian randomization study. J Am Soc Nephrol. 2015;26(11):2831-8.
63. Yan D, Wang J, Jiang F, Zhang R, Wang T, Wang S, Peng D, He Z, Chen H, Bao Y, et al. A causal relationship between uric acid and diabetic macrovascular disease in Chinese type 2 diabetes patients: a Mendelian randomization analysis. Int J Cardiol. 2016;214:194-9.
64. Stack AG, Hanley A, Casserly LF, Cronin CJ, Abdalla AA, Kiernan TJ, Murthy BV, Hegarty A, Hannigan A, Nguyen HT. Independent and conjoint associations of gout and hyperuricaemia with total and cardiovascular mortality. QJM. 2013;106(7):647-58.
65. Yang Q, Kottgen A, Dehghan A, Smith AV, Glazer NL, Chen MH, Chasman DI, Aspelund T, Eiriksdottir G, Harris TB, et al. Multiple genetic loci influence serum urate levels and their relationship with gout and cardiovascular disease risk factors. Circ Cardiovasc Genet. 2010;3(6):523-30.
66. Pfister R, Barnes D, Luben R, Forouhi NG, Bochud M, Khaw KT, Wareham NJ, Langenberg C. No evidence for a causal link between uric acid and type 2 diabetes: a Mendelian randomization approach. Diabetologia. 2011;54(10):2561-9.
67. Hughes K, Flynn T, de Zoysa J, Dalbeth N, Merriman TR. Mendelian randomization analysis associates increased serum urate, due to genetic variation in uric acid transporters, with improved renal function. Kidney Int. 2014;85(2):344-51.
68. Sedaghat S, Pazoki R, Uitterlinden AG, Hofman A, Stricker BH, Ikram MA, Franco OH, Dehghan A. Association of uric acid genetic risk score with blood pressure: the Rotterdam study. Hypertension. 2014;64(5):1061-6.
69. Sluijs I, Holmes MV, van der Schouw YT, Beulens JW, Asselbergs FW, Huerta JM, Palmer TM, Arriola L, Balkau B, Barricarte A, et al. A Mendelian randomization study of circulating uric acid and type 2 diabetes. Diabetes. 2015;64(8):3028-36.
70. Keenan T, Zhao W, Rasheed A, Ho WK, Malik R, Felix JF, Young R, Shah N, Samuel M, Sheikh N, et al. Causal assessment of serum urate levels in cardiometabolic diseases through a Mendelian randomization study. J Am Coll Cardiol. 2016;67(4):407-16.
71. White J, Sofat R, Hemani G, Shah T, Engmann J, Dale C, Shah S, Kruger FA, Giambartolomei C, Swerdlow DI, et al. Plasma urate concentration and risk of coronary heart disease: a Mendelian randomisation analysis. Lancet Diabetes Endocrinol. 2016;4(4):327-36.
72. Higgins P, Dawson J, Lees KR, McArthur K, Quinn TJ, Walters MR. Xanthine oxidase inhibition for the treatment of cardiovascular disease: a systematic review and meta-analysis. Cardiovasc Ther. 2012;30(4):217-26. doi: 10.1111/j.1755-5922.2011.00277.x
73. Noman A, Ang DS, Ogston S, Lang CC, Struthers AD. Effect of high-dose allopurinol on exercise in patients with chronic stable angina: a randomised, placebo controlled crossover trial. Lancet. 2010; 375(9732):2161-7. doi: 10.1016/S0140-6736(10)60391-1
74. Scheepers LE, Wei FF, Stolarz-Skrzypek K, et al. Xanthine oxidase gene variants and their association with blood pressure and incident hypertension: a population study. J Hypertens. 2016;34(11):2147-54. doi: 10.1097/HJH.0000000000001077
75. Scheepers LE, Boonen A, Pijnenburg W, et al. Associations of plasma uric acid and purine metabolites with blood pressure in children: the KOALA Birth Cohort Study. J Hypertens. 2017;35(5):982-93. doi: 10.1097/HJH.0000000000001270
76. Nomura J, Busso N, Ives A, et al. Xanthine oxidase inhibition by febuxostat attenuates experimental atherosclerosis in mice. Sci Rep. 2014; 4:4554. doi: 10.1038/srep04554
77. Kelley EE. A new paradigm for XOR-catalyzed reactive species generation in the endothelium. Pharmacol Rep. 2015;67:669-74. doi: 10.1016/j.phar ep.2015.05.004
78. Kushiyama A, Nakatsu Y, Matsunaga Y, et al. Role of Uric Acid Metabolism-Related Inflammation in the Pathogenesis of Metabolic Syndrome Components Such as Atherosclerosis and Nonalcoholic Steatohepatitis. Mediators Inflamm. 2016;2016:8603164. doi: 10.1155/2016/8603164
79. Rekhraj S, Gandy SJ, Szwejkowski BR, et al. High-dose allopurinol reduces left ventricular mass in patients with ischemic heart disease. J Am Coll Cardiol. 2013;61:92632. doi: 10.1016/j.jacc.2012.09.066
80. de Abajo FJ, Gil MJ, Rodriguez A, et al. Allopurinol use and risk of non-fatal acute myocardial infarction. Heart. 2015;101:67985. doi: 10.1136/ heartjnl-2014-306670
81. Larsen KS, Pottegard A, Lindegaard HM, Hallas J. Effect of allopurinol on cardiovascular outcomes in hyperuricemic patients: a cohort study. Am J Med. 2016;129:299306 e2. doi: 10.1016/j.amjmed.2015.11.003
82. Thanassoulis G, Brophy JM, Richard H, Pilote L. Gout, allopurinol use, and heart failure outcomes. Arch Intern Med. 2010;170:1358-64. doi: 10.11 36/bmjopen-2011-000282
83. Zhang J, Dierckx R, Mohee K, Clark AL, Cleland JG. Xanthine oxidase inhibition for the treatment of cardiovascular disease: an updated systematic review and meta-analysis. ESC Heart Fail. 2017 Feb;4(1):40-5.
84. Givertz MM, Anstrom KJ, Redfield MM, et al. Effects of xanthine oxidase inhibition in hyperuricemic heart failure patients: the EXACT-HF study. Circulation. 2015;131:1763-71.
85. Agarwal V, Hans N, Messerli FH. Effect of allopurinol on blood pressure: a systematic review and meta-analysis. J Clin Hypertens. 2013;15:435-42.
86. Qu LH, Jiang H, Chen JH. Effect of uric acid-lowering therapy on blood pressure: systematic review and meta-analysis. Ann Med. 2017;49(2):142-56. doi: 10.1080/07853890.2016.1243803
87. Feig DI, Soletsky B, Johnson RJ. Effect of allopurinol on blood pressure of adolescents with newly diagnosed. essential hypertension: a randomized trial. JAMA. 2008;300:924-32. doi: 10.1001/jama.300.8.924
88. Soletsky B, Feig DI. Uric acid reduction rectifies prehypertension in obese adolescents. Hypertension. 2012;60:1148-56. doi: 10.1161/HYPER TENSIONAHA.112.196980
89. McMullan CJ, Borgi L, Fisher N, Curhan G, Forman J. Effect of uric acid lowering on renin-angiotensin-system activation and ambulatory BP: a randomized controlled trial. Clin J Am Soc Nephrol. 2017;12:807-16. doi: 10.2215/CJN.10771016
90. Kanji T, Gandhi M, Clase CM, Yang R. Urate lowering therapy to improve renal outcomes in patients with chronic kidney disease: systematic review and metaanalysis. BMC Nephrol. 2015;16:58. doi: 10.1186/s12882-015-0047-z
91. Bose B, Badve SV, Hiremath SS, et al. Effects of uric acid-lowering therapy on renal outcomes: a systematic review and meta-analysis. Neph Dial Transpl. 2014;29:406-13. doi: 10.1093/ndt/gft378
92. Goicoechea M, Garcia de Vinuesa S, Verdalles U, et al. Allopurinol and progression of CKD and cardiovascular events: long-term follow-up of a randomized clinical trial. Am J Kidney Dis. 2015;65:543-9. doi: 10.1053/j.ajkd.2014.11.016
93. Su X, Xu B, Yan B, Qiao X, Wang L. Effects of uric acid-lowering therapy in patients with chronic kidney disease: A meta-analysis. PLoS One. 2017; 12(11):e0187550. doi: 10.1371/journal.pone.0187550
94. Tanaka K, Nakayama M, Kanno M, et al. Renoprotective effects of febuxostat in hyperuricemic patients with chronic kidney disease: a parallel-group, randomized, controlled trial. Clin Exp Nephrol. 2015;19(6):1044-53. doi: 10.1007/s10157-015-1095-1
95. Sircar D, Chatterjee S, Waikhom R, et al. Efficacy of febuxostat for slowing the GFR decline in patients with CKD and asymptomatic hyperuricemia: a 6-month, double-blind, randomized, placebo-controlled trial. Am J Kidney Dis. 2015;66:94550. doi: 10.1053/j.ajkd.2015.05.017
96. Baek CH, Kim H, Yang WS, Han DJ, Park SK. Efficacy and Safety of Febuxostat in Kidney Transplant Patients. Exp Clin Transplant. 2018; 16(4):401-6. doi: 10.6002/ect.2016.0367
97. Chou HW, Chiu HT, Tsai CW, et al. Comparative effectiveness of allopurinol, febuxostat and benzbromarone on renal function in chronic kidney disease patients with hyperuricemia: a 13-year inception cohort study. Nephrol Dial Transplant. 2017 Nov 17. doi: 10.1093/ndt/gfx313
98. Juge PA, Truchetet ME, Pillebout E, et al. Efficacy and safety of febuxostat in 73 gouty patients with stage 4/5 chronic kidney disease: A retrospective study of 10 centers. Joint Bone Spine. 2017;84(5):595-8. doi: 10.1016/ j.jbspin.2016.09.020
________________________________________________
1. Kuo CF, Luo SF. Gout: Risk of premature death in gout unchanged for years. Nat Rev Rheumatol. 2017;13(4):200-1. doi: 10.1038/nrrheum.2017. 27
2. Culleton BF, Larson MG, Kannel WB, Levy D. Serum uric acid and risk for cardiovascular disease and death: the Framingham Heart Study. Ann Intern Med. 1999;131(1):7-13. PMID: 10391820
3. Kuo CF, Grainge MJ, Mallen C, Zhang W, Doherty M. Comorbidities in patients with gout prior to and following diagnosis: case-control study. Ann Rheum Dis. 2016;75(1):210-7. doi: 10.1136/annrh eum dis-2014-206410
4. Choi HK, Ford ES, Li C, Curhan G. Prevalence of the metabolic syndrome in patients with gout: the Third National Health and Nutrition Examination Survey. Arthritis Rheum. 2007;57(1):109-15. doi: 10.1002/art.22466
5. Cicero AFG, Fogacci F, Giovannini M, et al. Serum uric acid predicts incident metabolic syndrome in the elderly in an analysis of the Brisighella Heart Study. Sci Rep. 2018;8(1):11529. doi: 10.1038/s41598-018-29955-w
6. Shani M, Vinker S, Dinour D, Leiba M, Twig G, Holtzman EJ, Leiba A. High Normal Uric Acid Levels Are Associated with an Increased Risk of Diabetes in Lean, Normoglycemic Healthy Women. J Clin Endocrinol Metab. 2016 Oct;101(10):3772-8. doi: 10.1210/jc.2016-2107
7. Rho YH, Lu N, Peloquin CE, Man A, Zhu Y, Zhang Y, Choi HK. Independent impact of gout on the risk of diabetes mellitus among women and men: a population-based, BMI-matched cohort study. Ann Rheum Dis. 2016;75(1):91-5. doi: 10.1136/annrheumdis-2014-205827
8. Pan A, Teng GG, Yuan JM, Koh WP. Bidirectional association between diabetes and gout: the Singapore Chinese Health Study. Sci Rep. 2016; 6:25766. doi: 10.1038/srep25766
9. Lytvyn Y, Skrtic M, Yang GK, Yip PM, Perkins BA, Cherney DZ. Glycosuriamediated urinary uric acid excretion in patients with uncomplicated type 1 diabetes mellitus. Am J Physiol Renal Physiol. 2015;308(2):F77-83. doi: 10.1152/ajprenal.00555.2014
10. Eliseev MS, Barskova VG. Carbohydrate metabolic disturbances in gout: Detection rate and clinical features. Therapeutic Archive. 2010;82(5):50-4 (In Russ.).
11. Agrawal NK, Kant S. Targeting inflammation in diabetes: newer therapeutic options. World J Diabetes. 2014;5(5):697-710. doi: 10.4239/wjd.v5.i5.697
12. Chen W, Liu X, Ye S. Effects of metformin on blood and urine proinflammatory mediators in patients with type 2 diabetes. J Inflamm (Lond). 2016;13:34. doi: 10.1186/s12950-016-0142-3
13. Barskova VG, Eliseev MS, Kudaeva FM, Aleksandrova EN, Volkov AV, Nasonova VA, Nasonov EL. Effect of metformine on the clinical course of gout and insulin resistance. Clinical medicine. 2009;87(7):41-6 (In Russ.).
14. Matsuura F, Yamashita S, Nakamura T, et al. Effects of visceral fat accumulation on uric acid metabolism in male obese subjects: visceral fat obesity is linked more closely to overproduction of uric acid than subcutaneous fat obesity. Metabolism. 1998;47:929-33. doi: 10.1016/ S0026-0495(98)90346-8
15. Rasheed H, Hughes K, Flynn TJ, Merriman TR. Mendelian randomization provides no evidence for a causal role of serum urate in increasing serum triglyceride levels. Circ Cardiovasc Genet. 2014;7(6):830-7. doi: 10.1161/ CIRCGENETICS.114.000556
16. Johnson RJ, Nakagawa T, Sanchez-Lozada LG, et al. Sugar, uric acid, and the etiology of diabetes and obesity. Diabetes. 2013;62:3307-15. doi: 10.2337/db12-1814
17. Lanaspa MA, Sánchez-Lozada LG, Choi Y-J, et al. Uric acid induces hepatic steatosis by generation of mitochondrial oxidative stress: potential role in fructose-dependent and -independent fatty liver. J Biol Chem. 2012; 287:40732-44. doi: 10.1074/jbc.M112.399899
18. Cicerchi C, Li N, Kratzer J, et al. Uric acid-dependent inhibition of AMP kinase induces hepatic glucose production in diabetes and starvation: evolutionary implications of the uricase loss in hominids. FASEB J. 2014;28:3339-50. doi: 10.1096/fj.13-243634
19. Kuwabara M, Borghi C, Cicero AF, et al. Elevated Serum Uric Acid Increases Risks for Developing High LDL Cholesterol and Hypertriglyceridemia: A Five-Year Cohort Study in Japan. Int J Cardiol. 2018;261:183-8. doi: 10.5603/CJ.2018.0116
20. Roughley MJ, Belcher J, Mallen CD, Roddy E. Gout and risk of chronic kidney disease and nephrolithiasis: meta-analysis of observational studies. Arthritis Res Ther. 2015;17(1):90. doi: 10.1186/s13075-015-0610-9
21. Yu KH, Kuo CF, Luo SF, et al. Risk of endstage renal disease associated with gout: a nationwide population study. Arthritis Res Ther. 2012;14(2):R83. doi: 10.1186/ar3806
22. William F. Finn. Kidney Disease and Gout: The Role of the Innate Immune System. Open Urology & Nephrology J. 2016;9(Suppl 1:M3):12. doi: 10.2174/1874303X01609010012
23. Kang DH, Chen W. Uric acid and chronic kidney disease: new understanding of an old problem. Semin Nephol. 2011;31:447-552.
24. Mazzali M, Hughes J, Kim YG, et al. Elevated uric acid increases blood pressure in the rat by a novel crystal-independent mechanism. Hypertension. 2001;38:1101-6.
25. Kang DH, Nakagawa T, Feng L, et al. A role for uric acid in the progression of renal disease. J Am Soc Nephrol. 2002;13:2888-97.
26. Li L, Yang C, Zhao Y, Zeng X, Liu F, Fu P. Is hyperuricemia an independent risk factor for new-onset chronic kidney disease? A systematic review and metaanalysis based on observational cohort studies. BMC Nephrol. 2014;15:122. doi: 10.1186/1471-2369-15-122
27. Jing J, Kielstein JT, Schultheiss UT, Sitter T, Titze SI, Schaeffner ES, McAdams-DeMarco M, Kronenberg F, Eckardt KU, Kottgen A. Prevalence and correlates of gout in a large cohort of patients with chronic kidney disease: the German Chronic Kidney Disease (GCKD) study. Nephrol Dial Transplant. 2015;30(4):613-21. doi: 10.1093/ndt/gfu352
28. Clarson LE, Hider SL, Belcher J, et al. Increased risk of vascular disease associated with gout: a retrospective, matched cohort study in the UK clinical practice research datalink. Ann Rheum Dis. 2015;74(4):642-7.
doi: 10.1136/annrheumdis-2014-205252
29. Clarson LE, Chandratre P, Hider SL, et al. Increased cardiovascular mortality associated with gout: a systematic review and meta-analysis. Eur J Prev Cardiol. 2015;22(3):335-43. doi: 10.1177/2047487313514895
30. Choi HK, Curhan G. Independent impact of gout on mortality and risk for coronary heart disease. Circulation. 2007;116(8):894-900. doi: 10.1161/ CIRCULATIONAHA.107.703389
31. Perez-Ruiz F, Martinez-Indart L, Carmona L, et al. Tophaceous gout and high level of hyperuricaemia are both associated with increased risk of mortality in patients with gout. Ann Rheum Dis. 2014;73(1):177-82. doi: 10.1136/annrheumdis-2012-202421
32. Eliseev MS, Denisov IS, Markelova EI, Glukhova SI, Nasonov EL. Independent risk factors for severe cardiovascular events in male patients with gout: Results of a 7-years prospective study. Therapeutic Archive. 2017;89(5):10-9 (In Russ.). doi:10.17116/terarkh201789510-19
33. Bardin T, Richette P. Impact of comorbidities on gout and hyperuricaemia: an update on prevalence and treatment options. BMC Medicine. 2017; 15:123. doi: 10.1186/s12916-017-0890-9
34. Richette P, Perez-Ruiz F, Doherty M, Jansen TL, Nuki G, Pascual E, Punzi L, So AK, Bardin T. Improving cardiovascular and renal outcomes in gout: what should we target? Nat Rev Rheumatol. 2014;10(11):654-61. doi: 10.1016/j.jare.2017.04.008
35. Perez-Ruiz F, et al. Failure to Reach Serum Urate Target Is Associated with Elevated Mortality in Gout. Arthritis Rheum. ABSTRACT SUPPLEMENT. 2018;70(S9):954-5.
36. Krishnan E, Baker JF, Furst DE, Schumacher HR. Gout and the risk of acute myocardial infarction. Arthritis Rheum. 2006;54(8):2688-96. doi: 10.1002/art.22014
37. De Vera MA, Rahman MM, Bhole V, Kopec JA, Choi HK. Independent impact of gout on the risk of acute myocardial infarction among elderly women: a population-based study. Ann Rheum Dis. 2010;69(6):1162-4. doi: 10.1136/ard.2009.122770
38. Krishnan E. Gout and the risk for incident heart failure and systolic dysfunction. BMJ Open. 2012;2(1):e000282. doi: 10.1136/bmjopen-2011-000282
39. Harzand A, Tamariz L, Hare JM. Uric acid, heart failure survival, and the impact of xanthine oxidase inhibition. Congest Heart Fail. 2012; 18(3):179-82. doi: 10.1111/j.1751-7133.2011.00262.x
40. Kuo CF, Grainge MJ, Mallen C, Zhang W, Doherty M. Impact of gout on the risk of atrial fibrillation. Rheumatology (Oxford). 2016;55(4):721-8. doi: 10.1093/rheumatology/kev418
41. Chang K, Yokose C, Tenner C, et al. Association between gout and aortic stenosis. Am J Med. 2017;130(2):230.e1-8. doi: 10.1016/j.amjmed.2016. 09.005
42. Nakagawa T, Mazzali M, Kang D-H, et al. Hyperuricemia causes glomerular hypertrophy in the rat. Am J Nephrol. 2003;23:2-7. doi: 10.115 9/000066303
43. Sánchez-Lozada LG, Tapia E, Bautista-García P, et al. Effects of febuxostat on metabolic and renal alterations in rats with fructose-induced metabolic syndrome. Am J Physiol Renal Physiol. 2008;294(4):F710-8. doi: 10.1152/ajprenal.00454.2007
44. DeBosch BJ, Kluth O, Fujiwara H, Schurmann A, Moley K. Early-onset metabolic syndrome in mice lacking the intestinal uric acid transporter SLC2A9. Nat Commun. 2014;5:4642. doi: 10.1038/ncomms5642
45. Kondo M, Imanishi M, Fukushima K, et al. Xanthine Oxidase Inhibition by Febuxostat in Macrophages Suppresses Angiotensin II-induced Aortic Fibrosis. Am J Hypertens. 2018 Oct 23. doi: 10.1093/ajh/hpy157 [Epub ahead of print.]
46. Namai-Takahashi A, Sakuyama A, Nakamura T, et al. Xanthine oxidase inhibitor, febuxostat ameliorates the high salt intake-induced cardiac hypertrophy and fibrosis in Dahl salt-sensitive rats. Am J Hypertens. 2018 Oct 1. doi: 10.1093/ajh/hpy143
47. Kohagura K, Kochi M, Miyagi T, et al. An association between uric acid levels and renal arteriolopathy in chronic kidney disease: a biopsy-based study. Hypertens Res. 2013;36:43-9. doi: 10.1038/hr.2012.135
48. Saito Y, Nakayama T, Sugimoto K, Fujimoto Y, Kobayashi Y. Relation of lipid content of coronary plaque to level of serum uric acid. Am J Cardiol. 2015;116(9):1346-50. doi: 10.1016/j.amjcard.2015.07.059
49. Ando K, Takahashi H, Watanabe T, Daidoji H, Otaki Y, Nishiyama S, Arimoto T, Shishido T, Miyashita T, Miyamoto T, et al. Impact of serum uric acid levels on coronary plaque stability evaluated using integrated backscatter intravascular ultrasound in patients with coronary artery disease. J Atheroscler Thromb. 2016;23(8):932-9. doi: 10.5551/jat.33951
50. Park JJ, Roudier MP, Soman D, Mokadam NA, Simkin PA. Prevalence of birefringent crystals in cardiac and prostatic tissues, an observational study. BMJ Open. 2014;4(7):e005308. doi: 10.1136/bmjopen-2014-005308
51. Borghi C, Rosei EA, Bardin T, et al Serum uric acid and the risk of cardiovascular and renal disease. J Hypertens. 2015;33(9):1729-41. Discussion 1741. doi: 10.1097/HJH.0000000000000701
52. Zhao G, Huang L, Song M, Song Y. Baseline serum uric acid level as a predictor of cardiovascular disease related mortality and all-cause mortality: a meta-analysis of prospective studies. Atherosclerosis. 2013;231(1):61-8. doi: 10.1016/j.atherosclerosis.2013.08.023
53. Nozue T, Yamamoto S, Tohyama S, et al. Correlations between serum uric acid and coronary atherosclerosis before and during statin therapy. Coron Artery Dis. 2014;25(4):343-8. doi: 10.1097/MCA.0000000000000084
54. Tamariz L, Hernandez F, Bush A, Palacio A, Hare JM. Association between serum uric acid and atrial fibrillation: a systematic review and meta-analysis. Heart Rhythm. 2014;11(7):1102-8. doi: 10.1016/j.hrthm. 2014.04.003
55. Kim SY, Guevara JP, Kim KM, Choi HK, Heitjan DF, Albert DA. Hyperuricemia and risk of stroke: a systematic review and meta-analysis. Arthritis Rheum. 2009;61(7):885-92.
56. Andres M, Quintanilla MA, Sivera F, et al. Silent monosodium urate crystal deposits are associated with severe coronary calcification in asymptomatic hyperuricemia: an exploratory study. Arthritis Rheumatol. 2016;68(6):1531-9. doi: 10.1002/art.39581
57. Grayson PC, Kim SY, LaValley M, Choi HK. Hyperuricemia and incident hypertension: a systematic review and meta-analysis. Arthritis Care Res (Hoboken). 2011;63(1):102-10. doi: 10.1002/acr.20344
58. Viazzi F, Rebora P, Giussani M, et al. Increased serum uric acid levels blunt the antihypertensive efficacy of lifestyle modifications in children at cardiovascular risk. Hypertension. 2016;67(5):934-40. doi: 10.1161/HYPERTENSIONAHA.115.06852
59. Cicero AF, Rosticci M, Fogacci F, Grandi E, D’Addato S, Borghi C. High serum uric acid is associated to poorly controlled blood pressure and higher arterial stiffness in hypertensive subjects. Eur J Intern Med. 2017;37:38-42. doi: 10.1016/j.ejim.2016.07.026
60. Lv Q, Meng XF, He FF, Chen S, et al. High serum uric acid and increased risk of type 2 diabetes: a systemic review and meta-analysis of prospective cohort studies. PLoS One. 2013;8(2):e56864. doi: 10.1371/journal.pone. 0056864
61. Yu TY, Jee JH, Bae JC, et al. Serum uric acid: a strong and independent predictor of metabolic syndrome after adjusting for body composition. Metabolism. 2016;65(4):432-40. doi: 10.1016/j.metabol.2015.11.003
62. Kleber ME, Delgado G, Grammer TB, Silbernagel G, Huang J, Kramer BK, Ritz E, Marz W. Uric acid and cardiovascular events: a Mendelian randomization study. J Am Soc Nephrol. 2015;26(11):2831-8.
63. Yan D, Wang J, Jiang F, Zhang R, Wang T, Wang S, Peng D, He Z, Chen H, Bao Y, et al. A causal relationship between uric acid and diabetic macrovascular disease in Chinese type 2 diabetes patients: a Mendelian randomization analysis. Int J Cardiol. 2016;214:194-9.
64. Stack AG, Hanley A, Casserly LF, Cronin CJ, Abdalla AA, Kiernan TJ, Murthy BV, Hegarty A, Hannigan A, Nguyen HT. Independent and conjoint associations of gout and hyperuricaemia with total and cardiovascular mortality. QJM. 2013;106(7):647-58.
65. Yang Q, Kottgen A, Dehghan A, Smith AV, Glazer NL, Chen MH, Chasman DI, Aspelund T, Eiriksdottir G, Harris TB, et al. Multiple genetic loci influence serum urate levels and their relationship with gout and cardiovascular disease risk factors. Circ Cardiovasc Genet. 2010;3(6):523-30.
66. Pfister R, Barnes D, Luben R, Forouhi NG, Bochud M, Khaw KT, Wareham NJ, Langenberg C. No evidence for a causal link between uric acid and type 2 diabetes: a Mendelian randomization approach. Diabetologia. 2011;54(10):2561-9.
67. Hughes K, Flynn T, de Zoysa J, Dalbeth N, Merriman TR. Mendelian randomization analysis associates increased serum urate, due to genetic variation in uric acid transporters, with improved renal function. Kidney Int. 2014;85(2):344-51.
68. Sedaghat S, Pazoki R, Uitterlinden AG, Hofman A, Stricker BH, Ikram MA, Franco OH, Dehghan A. Association of uric acid genetic risk score with blood pressure: the Rotterdam study. Hypertension. 2014;64(5):1061-6.
69. Sluijs I, Holmes MV, van der Schouw YT, Beulens JW, Asselbergs FW, Huerta JM, Palmer TM, Arriola L, Balkau B, Barricarte A, et al. A Mendelian randomization study of circulating uric acid and type 2 diabetes. Diabetes. 2015;64(8):3028-36.
70. Keenan T, Zhao W, Rasheed A, Ho WK, Malik R, Felix JF, Young R, Shah N, Samuel M, Sheikh N, et al. Causal assessment of serum urate levels in cardiometabolic diseases through a Mendelian randomization study. J Am Coll Cardiol. 2016;67(4):407-16.
71. White J, Sofat R, Hemani G, Shah T, Engmann J, Dale C, Shah S, Kruger FA, Giambartolomei C, Swerdlow DI, et al. Plasma urate concentration and risk of coronary heart disease: a Mendelian randomisation analysis. Lancet Diabetes Endocrinol. 2016;4(4):327-36.
72. Higgins P, Dawson J, Lees KR, McArthur K, Quinn TJ, Walters MR. Xanthine oxidase inhibition for the treatment of cardiovascular disease: a systematic review and meta-analysis. Cardiovasc Ther. 2012;30(4):217-26. doi: 10.1111/j.1755-5922.2011.00277.x
73. Noman A, Ang DS, Ogston S, Lang CC, Struthers AD. Effect of high-dose allopurinol on exercise in patients with chronic stable angina: a randomised, placebo controlled crossover trial. Lancet. 2010; 375(9732):2161-7. doi: 10.1016/S0140-6736(10)60391-1
74. Scheepers LE, Wei FF, Stolarz-Skrzypek K, et al. Xanthine oxidase gene variants and their association with blood pressure and incident hypertension: a population study. J Hypertens. 2016;34(11):2147-54. doi: 10.1097/HJH.0000000000001077
75. Scheepers LE, Boonen A, Pijnenburg W, et al. Associations of plasma uric acid and purine metabolites with blood pressure in children: the KOALA Birth Cohort Study. J Hypertens. 2017;35(5):982-93. doi: 10.1097/HJH.0000000000001270
76. Nomura J, Busso N, Ives A, et al. Xanthine oxidase inhibition by febuxostat attenuates experimental atherosclerosis in mice. Sci Rep. 2014; 4:4554. doi: 10.1038/srep04554
77. Kelley EE. A new paradigm for XOR-catalyzed reactive species generation in the endothelium. Pharmacol Rep. 2015;67:669-74. doi: 10.1016/j.phar ep.2015.05.004
78. Kushiyama A, Nakatsu Y, Matsunaga Y, et al. Role of Uric Acid Metabolism-Related Inflammation in the Pathogenesis of Metabolic Syndrome Components Such as Atherosclerosis and Nonalcoholic Steatohepatitis. Mediators Inflamm. 2016;2016:8603164. doi: 10.1155/2016/8603164
79. Rekhraj S, Gandy SJ, Szwejkowski BR, et al. High-dose allopurinol reduces left ventricular mass in patients with ischemic heart disease. J Am Coll Cardiol. 2013;61:92632. doi: 10.1016/j.jacc.2012.09.066
80. de Abajo FJ, Gil MJ, Rodriguez A, et al. Allopurinol use and risk of non-fatal acute myocardial infarction. Heart. 2015;101:67985. doi: 10.1136/ heartjnl-2014-306670
81. Larsen KS, Pottegard A, Lindegaard HM, Hallas J. Effect of allopurinol on cardiovascular outcomes in hyperuricemic patients: a cohort study. Am J Med. 2016;129:299306 e2. doi: 10.1016/j.amjmed.2015.11.003
82. Thanassoulis G, Brophy JM, Richard H, Pilote L. Gout, allopurinol use, and heart failure outcomes. Arch Intern Med. 2010;170:1358-64. doi: 10.11 36/bmjopen-2011-000282
83. Zhang J, Dierckx R, Mohee K, Clark AL, Cleland JG. Xanthine oxidase inhibition for the treatment of cardiovascular disease: an updated systematic review and meta-analysis. ESC Heart Fail. 2017 Feb;4(1):40-5.
84. Givertz MM, Anstrom KJ, Redfield MM, et al. Effects of xanthine oxidase inhibition in hyperuricemic heart failure patients: the EXACT-HF study. Circulation. 2015;131:1763-71.
85. Agarwal V, Hans N, Messerli FH. Effect of allopurinol on blood pressure: a systematic review and meta-analysis. J Clin Hypertens. 2013;15:435-42.
86. Qu LH, Jiang H, Chen JH. Effect of uric acid-lowering therapy on blood pressure: systematic review and meta-analysis. Ann Med. 2017;49(2):142-56. doi: 10.1080/07853890.2016.1243803
87. Feig DI, Soletsky B, Johnson RJ. Effect of allopurinol on blood pressure of adolescents with newly diagnosed. essential hypertension: a randomized trial. JAMA. 2008;300:924-32. doi: 10.1001/jama.300.8.924
88. Soletsky B, Feig DI. Uric acid reduction rectifies prehypertension in obese adolescents. Hypertension. 2012;60:1148-56. doi: 10.1161/HYPER TENSIONAHA.112.196980
89. McMullan CJ, Borgi L, Fisher N, Curhan G, Forman J. Effect of uric acid lowering on renin-angiotensin-system activation and ambulatory BP: a randomized controlled trial. Clin J Am Soc Nephrol. 2017;12:807-16. doi: 10.2215/CJN.10771016
90. Kanji T, Gandhi M, Clase CM, Yang R. Urate lowering therapy to improve renal outcomes in patients with chronic kidney disease: systematic review and metaanalysis. BMC Nephrol. 2015;16:58. doi: 10.1186/s12882-015-0047-z
91. Bose B, Badve SV, Hiremath SS, et al. Effects of uric acid-lowering therapy on renal outcomes: a systematic review and meta-analysis. Neph Dial Transpl. 2014;29:406-13. doi: 10.1093/ndt/gft378
92. Goicoechea M, Garcia de Vinuesa S, Verdalles U, et al. Allopurinol and progression of CKD and cardiovascular events: long-term follow-up of a randomized clinical trial. Am J Kidney Dis. 2015;65:543-9. doi: 10.1053/j.ajkd.2014.11.016
93. Su X, Xu B, Yan B, Qiao X, Wang L. Effects of uric acid-lowering therapy in patients with chronic kidney disease: A meta-analysis. PLoS One. 2017; 12(11):e0187550. doi: 10.1371/journal.pone.0187550
94. Tanaka K, Nakayama M, Kanno M, et al. Renoprotective effects of febuxostat in hyperuricemic patients with chronic kidney disease: a parallel-group, randomized, controlled trial. Clin Exp Nephrol. 2015;19(6):1044-53. doi: 10.1007/s10157-015-1095-1
95. Sircar D, Chatterjee S, Waikhom R, et al. Efficacy of febuxostat for slowing the GFR decline in patients with CKD and asymptomatic hyperuricemia: a 6-month, double-blind, randomized, placebo-controlled trial. Am J Kidney Dis. 2015;66:94550. doi: 10.1053/j.ajkd.2015.05.017
96. Baek CH, Kim H, Yang WS, Han DJ, Park SK. Efficacy and Safety of Febuxostat in Kidney Transplant Patients. Exp Clin Transplant. 2018; 16(4):401-6. doi: 10.6002/ect.2016.0367
97. Chou HW, Chiu HT, Tsai CW, et al. Comparative effectiveness of allopurinol, febuxostat and benzbromarone on renal function in chronic kidney disease patients with hyperuricemia: a 13-year inception cohort study. Nephrol Dial Transplant. 2017 Nov 17. doi: 10.1093/ndt/gfx313
98. Juge PA, Truchetet ME, Pillebout E, et al. Efficacy and safety of febuxostat in 73 gouty patients with stage 4/5 chronic kidney disease: A retrospective study of 10 centers. Joint Bone Spine. 2017;84(5):595-8. doi: 10.1016/ j.jbspin.2016.09.020
ФГБНУ «Научно-исследовательский институт ревматологии им. В.А. Насоновой», Москва, Россия
________________________________________________
M.S. Eliseev, A.M. Novikova
V.A. Nasonova Scientific and Research Institute of Reumatology, Moscow, Russia