Современные подходы к консервативной терапии поликистозной болезни почек
________________________________________________
Rudenko T.E., Bobkova I.N., Stavrovskaya E.V. Modern approaches to conservative therapy of polycystic kidney disease. Therapeutic Archive. 2019; 91 (6): 116–123. DOI: 10.26442/00403660.2019.06.000299
Материалы доступны только для специалистов сферы здравоохранения. Авторизуйтесь или зарегистрируйтесь.
Ключевые слова: поликистозная болезнь почек, полицистин-1 и -2, фиброцистин, цАМФ, антагонисты V2-рецепторов вазопрессина, ингибиторы mTOR, аналоги соматостатина.
________________________________________________
Polycystic kidney disease (PKD) is a genetically determined pathological process associated with the formation and growth of cysts originating from the epithelial cells of the tubules and/or collecting tubes. PBP is represented by two main types – autosomal dominant (ADPKD) and autosomal recessive PKD (ARPKD), which are different diseases. The main causes of ADPKD are mutations of the PKD1 and PKD2 genes, which encode the formation of polycystin-1 and polycystin-2 proteins. ARPKD-linked mutation in the gene PKHD1, leads to total absence or defective synthesis of receptor protein primary cilia – fibrocystin. There are relationships between the structural and functional defects in the primary cilia and PBP. Mechanisms of cysts formation and growth include a) mutations of polycystines genes located on the cilia; b) increased activity of renal intracellular cAMP; c) vasopressin V2 receptors activation; d) violation of the tubular epithelium polarity (translocation of Na,K-ATPasa from basolateral to apical membrane); е) increased mTOR activity in epithelial cells lining renal cyst. The most promising directions of ADPKD therapy are blockade of vasopressin V2 receptors activation, inhibition of mTOR signaling pathways and reduction of intracellular cAMP level. The review presents clinical studies that assessed the effectiveness of named drugs in ADPKD.
Keywords: polycystic kidney disease, polycystin 1 and 2, fibrocystin, cAMP, vasopressin receptor V2 antagonists, mTOR inhibitors, somatostatin analogues.
2. Collins AJ, Foley RN, Herzog C, Chavers B, Gilbertson D, Ishani A, Johansen K, Kasiske B, Kutner N, Liu J, St. Peter W, Ding S, Guo H, Kats A, Lamb K, Li S, Li S, Roberts T, Skeans M, Snyder J, et al. US Renal Data System 2012 Annual Data Report. Am J Kidney Dis. 2013;61(1 suppl 1):e1-e480. doi: 10.1053/j.ajkd.2012.11.031
3. Solazzo A, Testa F, Giovanella S, Busutti M, Furci L, Carrera P, et al. The prevalence of autosomal dominant polycystic kidney disease (ADPKD): A meta-analysis of European literature and prevalence evaluation in the Italian province of Modena suggest that ADPKD is a rare and underdiagnosed condition. PLoS ONE. 2018;13(1):e0190430. doi: 10.1371/journal.pone.0190430
4. Willey CJ, Blais JD, Hall AK, Krasa H, Makin A, Czerwiec F. Prevalence of autosomal dominant polycystic kidney disease in the European Union. Nephrol Dial Transplant. 2017;32:1356-63. doi: 10.1093/ndt/gfw240
5. Ong AC, Devuyst O, Knebelmann B, Walz G. Autosomal dominant polycystic kidney disease: the changing face of clinical management. Lancet. 2015;385 (9981):1993-2002. doi: 10.1016/S0140-6736(15)60907-2
6. Porath B, Gainullin VG, Cornec-Le Gall E, et al. Mutations in GANAB, encoding the glucosidase II alpha subunit, cause autosomal-dominant polycystic kidney and liver disease. Am J Human Genet. 2016;98(6):1193-207. doi: 10.1016/j.ajhg.2016.05.004
7. Bergmann C, Senderek J, Ellenwindelen F, et al. Clinical consequences of PKHD1 mutations in 164 patients with autosomal-recessive polycystic kidney disease (ARPKD). Kidney Int. 2005;67:829-48.
8. Chebib F, Torres V. Recent Advances in the Management of Autosomal Dominant Polycystic Kidney. CJASN. 2018;13(11):1765-76. doi: 10.2215/CJN.03960318
9. Singla V, Reiter J. The primary cilium as the cell's antenna: signaling at a sensory organelle. Science. 2006;313:629-33. doi: 10.1126/science.1124534
10. Pan J, Seeger-Nukpezah T, Golemis EA. The role of the cilium in normal and abnormal cell cycles: Emphasis on renal cystic pathologies. Cell Mol Life Sci. 2013;70:1849-74. doi: 10.1007/s00018-012-1052-z
11. Kottgen M, Walz G. Subcellular localization and trafficking of polycystins. Iflugers Arch. 2005;451(1):286-93. doi: 10.1007/s00424-005-1417-3
12. Nauli SM, Alenghat FJ, Luo Y, Williams E, Vassilev P, Li X, Elia AE, Lu W, Brown EM, Quinn SJ, Ingber DE, Zhou J. Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat Genet. 2003;33(2):129-37. doi: 10.1038/ng1076
13. Nauli SM, Pala R, Kleene SJ. Calcium channels in primary cilia. Curr Opin Nephrol Hypertens. 2016;25(5):452-8. doi: 10.1097/MNH.0000000000000251
14. Fliegauf M, Benzing T, Omran H. When cilia go bad: cilia defects and ciliopathies. Nat Rev Mol Cell Biol. 2007;8(11):880-93. doi: 10.1038/nrm2278
15. Montesano R, Ghzili H, Carrozzino F, Rossier BC, Feraille E. cAMP-dependent chloride secretion mediates tubule enlargement and cyst formation by cultured mammalian collecting duct cells. Am J Physiol Renal Physiol. 2009;296(2):F446-57. doi: 10.1152/ajprenal.90415.2008
16. Devuyst O, Torres VE. Osmoregulation, vasopressin, and cAMP signaling in autosomal dominant polycystic kidney disease. Curr Opin Nephrol Hypertens. 2013;22(4):459-70. doi: 10.1097/MNH.0b013e3283621510
17. Terryn S, Ho TA, Beauwens RC, Devuyst O. Fluid transport and cystogenesis in autosomal dominant polycystic kidney disease. Biochim Biophys Acta. 2011;1812:1314-21. doi: 10.1016/j.bbadis.2011.01.011
18. Bankir L, Bichet DG. Polycystic kidney disease: An early urea-selective urine-concentrating defect in ADPKD. Nat Rev Nephrol. 2012;8:437-9. doi: 10.1038/nrneph.2012.139
19. Torres V, Grantham JJ, Chapman AB, Mrug M, Bae KT, King BF, et al. Potentially modifiable factors affecting the progression of autosomal dominant polycystic kidney disease. Clin J Am Soc Nephrol. 2011;6:640-7. doi: 10.2215/CJN.03250410
20. Meijer E, Bakker SJ, van der Jagt EJ, et al. Copeptin, a surrogate marker of vasopressin, is associated with disease severity in autosomal dominant polycystic kidney disease. Clin J Am Soc Nephrol. 2011;6:361-8. doi: 10.2215/cjn.04560510
21. Boertien WE, Meijer E, Zittema D, et al. Copeptin, a surrogate marker for vasopressin, is associated with kidney function decline in subjects with autosomal dominant polycystic kidney disease. Nephrol Dial Transplant. 2012;27:4131-7. doi: 10.1093/ndt/gfs070
22. Boertien WE, Meijer E, Li J, et al. Relationship of copeptin, a surrogate marker for arginine vasopressin, with change in total kidney volume and GFR decline in autosomal dominant polycystic kidney disease: results from the CRISP cohort. Am J Kidney Dis. 2013;61:420-9. doi: 10.1053/j.ajkd.2012.08.038
23. Wang X, Wu Y, Ward CJ, Harris PC, Torres VE. Vasopressin directly regulates cyst growth in polycystic kidney disease. J Am Soc Nephrol. 2008;19:102-8. doi: 10.1681/asn.2007060688
24. Grantham JJ, Torres VE. The importance of total kidney volume in evaluating progression of polycystic kidney disease. Nat Rev Nephrol. 2016;12:667-77. doi: 10.1038/nrneph.2016.135
25. McEwan P, Bennett Wilton H, Ong ACM, Orskov B, Sandford R, et al. A model to predict disease progression in patients with autosomal dominant polycystic kidney disease (ADPKD): the ADPKD Outcomes Model. BMC Nephrol. 2018;19:37. doi: 10.1186/s12882-017-0804-2
26. Rahbari-Oskoui FF, Landsittel D, Torres VE. Relationship between renal complications and total kidney volume in autosomal dominant polycystic kidney disease from the Consortium for Radiologic Imaging of Polycystic Kidney Disease Cohort. Presented at: Kidney Week 2013; November 5–10, 2013; Atlanta, GA [abstract]. J Am Soc Nephrol. 2013;24:687A.
27. Alam A, Dahl N, Lipschutz J, Rossetti S, Smith P, Sapir D, Weinstein J, McFarlane P, Bichet D. Total Kidney Volume in Autosomal Dominant Polycystic Kidney Disease: A Biomarker of Disease Progression and Therapeutic Efficacy. Am J Kidney Dis. 2015;66(4):564-76. doi: 10.1053/j.ajkd.2015.01.030
28. Soroka S, Alam A, Bevilacqua M, Girard LP, Komenda P, Loertscher R, McFarlane P, Pandeya S, Tam P, Bichet DG. Updated Canadian Expert Consensus on Assessing Risk of Disease Progression and Pharmacological Management of Autosomal Dominant Polycystic Kidney Disease. Can J Kidney Health Dis. 2018;5:1-15. doi: 10.1177/2054358118801589
29. Ars E, Bernis C, Fraga G, Martínez V, Martins J, Ortiz A, Rodríguez-Pérez JC, Sans L, Torra R. Spanish guidelines for the management of autosomal dominant polycystic kidney disease. Nephrol Dial Transplant. 2014;29(Suppl 4):iv95-105. doi: 10.1093/ndt/gfu186
30. Weimbs T, Shillingford JM, Torres J, Kruger SL, Bourgeois BC. Emerging targeted strategies for the treatment of autosomal dominant polycystic kidney disease. Clin Kidney J. 2018 Dec;11(Suppl 1):i27-i38. doi: 10.1093/ckj/sfy089
31. Bichet DG. Central vasopressin: dendritic and axonal secretion and renal actions. Clin Kidney J. 2014;7:242-7. doi: 10.1093/ckj/sfu050
32. Torres VE, Higashihara E, Devuyst O, Chapman AB, Gansevoort RT, Grantham JJ, Perrone RD, Ouyang J, Blais JD, Czerwiec FS. Effect of Tolvaptan in Autosomal Dominant Polycystic Kidney Disease by CKD Stage: Results from the TEMPO 3:4 Trial. Clin J Am Soc Nephrol. 2016;11(5):803-11. doi: 10.2215/CJN.06300615
33. Gansevoort RT, van Gastel MD, Chapman AB. Copeptin, a surrogate for vasopressin, predicts disease progression and tolvaptan treatment efficacy in ADPKD. Results of the TEMPO 3:4 trial. J Am Soc Nephrol. 2016;27:34A.
34. Torres VE, Chapman AB, Devuyst O, Gansevoort RT, Perrone RD, Koch G, Ouyang J, McQuade RD, Blais JD, Czerwiec FS, Sergeyeva O. Tolvaptan in Later-Stage Autosomal Dominant Polycystic Kidney Disease.; REPRISE Trial Investigators. N Engl J Med. 2017;377:1930-42. doi: 10.1056/NEJMoa1710030
35. Torres VE, Chapman AB, Devuyst O, Gansevoort RT, Perrone RD, Dandurand A, Ouyang J, Czerwiec FS, Blais JD. Multicenter, open-label, extension trial to evaluate the long-term efficacy and safety of early versus delayed treatment with tolvaptan in autosomal dominant polycystic kidney disease: the TEMPO 4:4 Trial. Nephrol Dial Transplant. 2018;33(3):477-89. doi: 10.1093/ndt/gfx043
36. Baur BP, Meaney CJ. Review of tolvaptan for autosomal dominant polycystic kidney disease. Pharmacotherapy. 2014;34(6):605-16. doi: 10.1002/phar.1421
37. Blair HA, Keating GM. Tolvaptan: A Review in Autosomal Dominant Polycystic Kidney Disease. Drugs. 2015;75(15):1797-806. doi: 10.1007/s40265-015-0475-x
38. Poch E, Rodas L, Blasco M, Molina A, Quintana L. An update on tolvaptan for autosomal dominant polycystic kidney disease. Drugs Today (Barc). 2018;54(9):519-33. doi: 10.1358/dot.2018.54.9.2776624
39. Nagao S, Nishii K, Katsuyama M, et al. Increased water intake decreases progression of polycystic kidney disease in the PCK rat. J Am Soc Nephrol. 2006;17:2220-7. doi: 10.1681/asn.2006030251
40. Hopp K, Wang X, Ye H, Irazabal MV, Harris PC, Torres VE. Effects of hydration in rats and mice with polycystic kidney disease. Am J Physiol Renal Physiol. 2015;308:F261-F266. doi: 10.1152/ajprenal.00345.2014
41. Barash I, Ponda MP, Goldfarb DS, Skolnik EY. A pilot clinical study to evaluate changes in urine osmolality and urine cAMP in response to acute and chronic water loading in autosomal dominant polycystic kidney disease. Clin J Am Soc Nephrol. 2010;5:693-97. doi: 10.2215/cjn.04180609
42. Higashihara E, Nutahara K, Tanbo M, Kurahashi T, Marunouchi T, Takahashi H, Wallace DP. Does increased water intake prevent disease progression in autosomal dominant polycystic kidney disease? Nephrol Dial Transplant. 2014;29:1710-9. doi: 10.1093/ndt/gfu093
43. Neijenhuis MK, Gevers TJ, Nevens F, Hogan MC, Torres VE, Kievit W, Drenth JP. Somatostatin analogues improve health-related quality of life in polycystic liver disease: a pooled analysis of two randomised, placebo-controlled trials. Aliment Pharmacol Ther. 2015;42(5):591-8. doi: 10.1111/apt.13301
44. Hopp K, Hommerding CJ, Wang X, Ye H, Harris PC, Torres VE. Tolvaptan plus pasireotide shows enhanced efficacy in a PKD1 model. J Am Soc Nephrol. 2015;26:39-47. doi: 10.1681/ASN.2013121312
45. Wahl PR, Serra AL, Le Hir M, Molle KD, Hall MN, Wuthrich RP. Inhibition of mTOR with sirolimus slows disease progression in Han. SPRD rats with autosomal dominant polycystic kidney disease (ADPKD). Nephrol Dial Transplant. 2006 Mar;21(3):598-604. doi:10.1093/ndt/gfl181
46. Tao Y, Kim J, Schrier R, Edelstein CL. Rapamycin markedly slows disease progression in rat model of polycystic kidney disease. J Am Soc Nephrol. 2005;16(1):46-51. doi: 10.1681/ ASN.2004080660
47. Serra AL, Poster D, Kistler AD, et al. Sirolimus and kidney growth in autosomal dominant polycystic kidney disease. N Engl J Med. 2010;363(9):820-9. doi: 10.1056/NEJMoa0907419
48. Walz G, Budde K, Mannaa M, Nürnberger J, Wanner C, Sommerer C, Kunzendorf U, Banas B, Hörl WH, Obermüller N, Arns W, Pavenstädt H, Gaedeke J, Büchert M, May C, Gschaidmeier H, Kramer S, Eckardt KU. Everolimus in Patients with Autosomal Dominant Polycystic Kidney Disease. N Engl J Med. 2010;363(9):830-40. doi: 10.1056/nejmoa1003491
49. Rajani R, Pastor-Soler NM, Hallows KR. Role of AMP activated protein kinase in kidney tubular transport, metabolism, and disease. Curr Opin Nephrol Hypertens. 2017;26:375-83. doi: 10.1097/mnh.0000000000000349
50. Takiar V, Nishio S, Seo-Mayer P, King JD Jr, Li H, Zhang L, Karihaloo A, Hallows KR, Somlo S, Caplan MJ. Activating AMP activated protein kinase (AMPK) slows renal cystogenesis. Proc Natl Acad Sci USA. 2011;108:2462-7. doi: 10.1073/pnas.1011498108
51. Seliger S, Abebe K, Hallows K, Miskulin D, Perrone R, Watnick T, Bae K. A randomized clinical trial of metformin to treat autosomal dominant polycystic kidney disease. Am J Nephrol. 2018;47:352-60. doi: 10.1159/000488807
52. Grantham J, Torres V, Chapman A, Guay-Woodford L, Bae K, King B, Wetzel L, Baumgarten D, Kenney P, Harris P, Klahr S, Bennett W, Hirschman G, Meyers C, Zhang X, Zhu F, Miller J. Volume Progression in Polycystic Kidney Disease. N Engl J Med. 2006;354:2122-30. doi: 10.1056/nejmoa054341
53. Torres VE, Abebe KZ, Chapman AB, Schrier RW, Braun WE, Steinman TI, Winklhofer FT, Brosnahan G, Czarnecki PG, Hogan MC, Miskulin DC, Rahbari-Oskoui FF, Grantham JJ, Harris PC, Flessner MF, Moore CG, Perrone RD; HALT-PKD Trial Investigators. Angiotensin blockade in late autosomal dominant polycystic kidney disease. N Engl J Med. 2014;371(24):2267-76. doi: 10.1056/NEJMoa1402686
54. Schrier RW, Abebe KZ, Perrone RD, Torres VE, Braun WE, Steinman TI, Winklhofer FT, Brosnahan G, Czarnecki PG, Hogan MC, Miskulin DC, Rahbari-Oskoui FF, Grantham JJ, Harris PC, Flessner MF, Bae KT, Moore CG, Chapman AB; HALT-PKD Trial Investigators. Blood pressure in early autosomal dominant polycystic kidney disease. N Engl J Med. 2014;371(24):2255-66. doi: 10.1056/NEJMoa1402685
55. Irazabal M, Abebe K, Bae K, Perrone R, Chapman A, Schrier R, Yu A, Braun W, Steinman T, Harris P, Flessner M, Torres V. Prognostic enrichment design in clinical trials for autosomal dominant polycystic kidney disease: the HALT-PKD clinical trial. Nephrol Dial Transplant. 2017;32(11):1857-65. doi: 10.1093/ndt/gfw294
56. Schrier R, McFann K, Jonson A, Chapman A, Edelstein C, Brosnahan G, Ecder T, Tison T. Cardiac and Renal Effects of Standard Versus Rigorous Blood Pressure Control in Autosomal-Dominant Polycystic Kidney Disease: Results of a Seven-Year Prospective Randomized Study. J Am Soc Nephrol. 2002;13(7):1733-9. doi: 10.1097/01.asn.0000018407.60002.b9
57. Klahr S, Breyer JA, Beck GJ, Dennis VW, Hartman JA, Roth D, Steinman T, Wang SR, Yamamoto ME. Dietary protein restriction, blood pressure control, and the progression of polycystic kidney disease. Modification of Diet in Renal Disease Study Group. J Am Soc Nephrol. 1995;5(12):2037-47.
58. Torres VE, Grantham JJ, Chapman AB, Mrug M, Bae KT, King BF Jr, Wetzel LH, Martin D, Lockhart ME, Bennett WM, Moxey-Mims M, Abebe KZ, Lin Y, Bost JE; Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease (CRISP). Potentially modifiable factors affecting the progression of autosomal dominant polycystic kidney disease. Clin J Am Soc Nephrol. 2011;6(3):640-7. doi: 10.2215/CJN.03250410
59. Amro OW, Paulus JK, Noubary F, Perrone RD. Low-Osmolar Diet and Adjusted Water Intake for Vasopressin Reduction in Autosomal Dominant Polycystic Kidney Disease: A Pilot Randomized Controlled Trial. Am J Kidney Dis. 2016 Dec;68(6):882-91. doi: 10.1053/j.ajkd.2016.07.023
60. Girardat-Rotar L, Puhan MA, Braun J, Serra AL. Long-term effect of coffee consumption on autosomal dominant polycystic kidneys disease progression: results from the Suisse ADPKD, a Prospective Longitudinal Cohort Study. J Nephrol. 2018;31(1):87-94. doi: 10.1007/s40620-017-0396-8
61. Orth SR, Stockmann A, Conradt C, et alю Smoking as a risk factor for end-stage renal failure in men with primary renal disease. Kidney Int. 1998;54:926-31. doi: 10.1046/j.1523-1755.1998.00067.x
62. Nowak KL, You Z, Gitomer B, Brosnahan G, Torres VE, Chapman AB, Perrone RD, Steinman TI, Abebe KZ, Rahbari-Oskoui FF, Yu ASL, Harris PC, Bae KT, Hogan M, Miskulin D, Chonchol M. Overweight and Obesity Are Predictors of Progression in Early Autosomal Dominant Polycystic Kidney Disease. J Am Soc Nephrol. 2018;29(2):571-8. doi: 10.1681/ASN.2017070819
63. Cadnapaphornchai MA, George DM, McFann K, Wang W, Gitomer B, Strain JD, Schrier RW. Effect of pravastatin on total kidney volume, left ventricular mass index, and microalbuminuria in pediatric autosomal dominant polycystic kidney disease. Clin J Am Soc Nephrol. 2014;9(5):889-96. doi: 10.2215/CJN.08350813
64. Bolignano D, Palmer SC, Ruospo M, Zoccali C, Craig JC, Strippoli GF. Interventions for preventing the progression of autosomal dominant polycystic kidney disease. Cochrane Database Syst Rev. 2015;14(7):CD010294. doi: 10.1002/14651858.CD010294.pub2
________________________________________________
1. Nephrology. National guideline]. Mukhin NА, ed. Moscow: GEOTAR-Media, 2009. 720 p. (In Russ.)
2. Collins AJ, Foley RN, Herzog C, Chavers B, Gilbertson D, Ishani A, Johansen K, Kasiske B, Kutner N, Liu J, St. Peter W, Ding S, Guo H, Kats A, Lamb K, Li S, Li S, Roberts T, Skeans M, Snyder J, et al. US Renal Data System 2012 Annual Data Report. Am J Kidney Dis. 2013;61(1 suppl 1):e1-e480. doi: 10.1053/j.ajkd.2012.11.031
3. Solazzo A, Testa F, Giovanella S, Busutti M, Furci L, Carrera P, et al. The prevalence of autosomal dominant polycystic kidney disease (ADPKD): A meta-analysis of European literature and prevalence evaluation in the Italian province of Modena suggest that ADPKD is a rare and underdiagnosed condition. PLoS ONE. 2018;13(1):e0190430. doi: 10.1371/journal.pone.0190430
4. Willey CJ, Blais JD, Hall AK, Krasa H, Makin A, Czerwiec F. Prevalence of autosomal dominant polycystic kidney disease in the European Union. Nephrol Dial Transplant. 2017;32:1356-63. doi: 10.1093/ndt/gfw240
5. Ong AC, Devuyst O, Knebelmann B, Walz G. Autosomal dominant polycystic kidney disease: the changing face of clinical management. Lancet. 2015;385 (9981):1993-2002. doi: 10.1016/S0140-6736(15)60907-2
6. Porath B, Gainullin VG, Cornec-Le Gall E, et al. Mutations in GANAB, encoding the glucosidase II alpha subunit, cause autosomal-dominant polycystic kidney and liver disease. Am J Human Genet. 2016;98(6):1193-207. doi: 10.1016/j.ajhg.2016.05.004
7. Bergmann C, Senderek J, Ellenwindelen F, et al. Clinical consequences of PKHD1 mutations in 164 patients with autosomal-recessive polycystic kidney disease (ARPKD). Kidney Int. 2005;67:829-48.
8. Chebib F, Torres V. Recent Advances in the Management of Autosomal Dominant Polycystic Kidney. CJASN. 2018;13(11):1765-76. doi: 10.2215/CJN.03960318
9. Singla V, Reiter J. The primary cilium as the cell's antenna: signaling at a sensory organelle. Science. 2006;313:629-33. doi: 10.1126/science.1124534
10. Pan J, Seeger-Nukpezah T, Golemis EA. The role of the cilium in normal and abnormal cell cycles: Emphasis on renal cystic pathologies. Cell Mol Life Sci. 2013;70:1849-74. doi: 10.1007/s00018-012-1052-z
11. Kottgen M, Walz G. Subcellular localization and trafficking of polycystins. Iflugers Arch. 2005;451(1):286-93. doi: 10.1007/s00424-005-1417-3
12. Nauli SM, Alenghat FJ, Luo Y, Williams E, Vassilev P, Li X, Elia AE, Lu W, Brown EM, Quinn SJ, Ingber DE, Zhou J. Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat Genet. 2003;33(2):129-37. doi: 10.1038/ng1076
13. Nauli SM, Pala R, Kleene SJ. Calcium channels in primary cilia. Curr Opin Nephrol Hypertens. 2016;25(5):452-8. doi: 10.1097/MNH.0000000000000251
14. Fliegauf M, Benzing T, Omran H. When cilia go bad: cilia defects and ciliopathies. Nat Rev Mol Cell Biol. 2007;8(11):880-93. doi: 10.1038/nrm2278
15. Montesano R, Ghzili H, Carrozzino F, Rossier BC, Feraille E. cAMP-dependent chloride secretion mediates tubule enlargement and cyst formation by cultured mammalian collecting duct cells. Am J Physiol Renal Physiol. 2009;296(2):F446-57. doi: 10.1152/ajprenal.90415.2008
16. Devuyst O, Torres VE. Osmoregulation, vasopressin, and cAMP signaling in autosomal dominant polycystic kidney disease. Curr Opin Nephrol Hypertens. 2013;22(4):459-70. doi: 10.1097/MNH.0b013e3283621510
17. Terryn S, Ho TA, Beauwens RC, Devuyst O. Fluid transport and cystogenesis in autosomal dominant polycystic kidney disease. Biochim Biophys Acta. 2011;1812:1314-21. doi: 10.1016/j.bbadis.2011.01.011
18. Bankir L, Bichet DG. Polycystic kidney disease: An early urea-selective urine-concentrating defect in ADPKD. Nat Rev Nephrol. 2012;8:437-9. doi: 10.1038/nrneph.2012.139
19. Torres V, Grantham JJ, Chapman AB, Mrug M, Bae KT, King BF, et al. Potentially modifiable factors affecting the progression of autosomal dominant polycystic kidney disease. Clin J Am Soc Nephrol. 2011;6:640-7. doi: 10.2215/CJN.03250410
20. Meijer E, Bakker SJ, van der Jagt EJ, et al. Copeptin, a surrogate marker of vasopressin, is associated with disease severity in autosomal dominant polycystic kidney disease. Clin J Am Soc Nephrol. 2011;6:361-8. doi: 10.2215/cjn.04560510
21. Boertien WE, Meijer E, Zittema D, et al. Copeptin, a surrogate marker for vasopressin, is associated with kidney function decline in subjects with autosomal dominant polycystic kidney disease. Nephrol Dial Transplant. 2012;27:4131-7. doi: 10.1093/ndt/gfs070
22. Boertien WE, Meijer E, Li J, et al. Relationship of copeptin, a surrogate marker for arginine vasopressin, with change in total kidney volume and GFR decline in autosomal dominant polycystic kidney disease: results from the CRISP cohort. Am J Kidney Dis. 2013;61:420-9. doi: 10.1053/j.ajkd.2012.08.038
23. Wang X, Wu Y, Ward CJ, Harris PC, Torres VE. Vasopressin directly regulates cyst growth in polycystic kidney disease. J Am Soc Nephrol. 2008;19:102-8. doi: 10.1681/asn.2007060688
24. Grantham JJ, Torres VE. The importance of total kidney volume in evaluating progression of polycystic kidney disease. Nat Rev Nephrol. 2016;12:667-77. doi: 10.1038/nrneph.2016.135
25. McEwan P, Bennett Wilton H, Ong ACM, Orskov B, Sandford R, et al. A model to predict disease progression in patients with autosomal dominant polycystic kidney disease (ADPKD): the ADPKD Outcomes Model. BMC Nephrol. 2018;19:37. doi: 10.1186/s12882-017-0804-2
26. Rahbari-Oskoui FF, Landsittel D, Torres VE. Relationship between renal complications and total kidney volume in autosomal dominant polycystic kidney disease from the Consortium for Radiologic Imaging of Polycystic Kidney Disease Cohort. Presented at: Kidney Week 2013; November 5–10, 2013; Atlanta, GA [abstract]. J Am Soc Nephrol. 2013;24:687A.
27. Alam A, Dahl N, Lipschutz J, Rossetti S, Smith P, Sapir D, Weinstein J, McFarlane P, Bichet D. Total Kidney Volume in Autosomal Dominant Polycystic Kidney Disease: A Biomarker of Disease Progression and Therapeutic Efficacy. Am J Kidney Dis. 2015;66(4):564-76. doi: 10.1053/j.ajkd.2015.01.030
28. Soroka S, Alam A, Bevilacqua M, Girard LP, Komenda P, Loertscher R, McFarlane P, Pandeya S, Tam P, Bichet DG. Updated Canadian Expert Consensus on Assessing Risk of Disease Progression and Pharmacological Management of Autosomal Dominant Polycystic Kidney Disease. Can J Kidney Health Dis. 2018;5:1-15. doi: 10.1177/2054358118801589
29. Ars E, Bernis C, Fraga G, Martínez V, Martins J, Ortiz A, Rodríguez-Pérez JC, Sans L, Torra R. Spanish guidelines for the management of autosomal dominant polycystic kidney disease. Nephrol Dial Transplant. 2014;29(Suppl 4):iv95-105. doi: 10.1093/ndt/gfu186
30. Weimbs T, Shillingford JM, Torres J, Kruger SL, Bourgeois BC. Emerging targeted strategies for the treatment of autosomal dominant polycystic kidney disease. Clin Kidney J. 2018 Dec;11(Suppl 1):i27-i38. doi: 10.1093/ckj/sfy089
31. Bichet DG. Central vasopressin: dendritic and axonal secretion and renal actions. Clin Kidney J. 2014;7:242-7. doi: 10.1093/ckj/sfu050
32. Torres VE, Higashihara E, Devuyst O, Chapman AB, Gansevoort RT, Grantham JJ, Perrone RD, Ouyang J, Blais JD, Czerwiec FS. Effect of Tolvaptan in Autosomal Dominant Polycystic Kidney Disease by CKD Stage: Results from the TEMPO 3:4 Trial. Clin J Am Soc Nephrol. 2016;11(5):803-11. doi: 10.2215/CJN.06300615
33. Gansevoort RT, van Gastel MD, Chapman AB. Copeptin, a surrogate for vasopressin, predicts disease progression and tolvaptan treatment efficacy in ADPKD. Results of the TEMPO 3:4 trial. J Am Soc Nephrol. 2016;27:34A.
34. Torres VE, Chapman AB, Devuyst O, Gansevoort RT, Perrone RD, Koch G, Ouyang J, McQuade RD, Blais JD, Czerwiec FS, Sergeyeva O. Tolvaptan in Later-Stage Autosomal Dominant Polycystic Kidney Disease.; REPRISE Trial Investigators. N Engl J Med. 2017;377:1930-42. doi: 10.1056/NEJMoa1710030
35. Torres VE, Chapman AB, Devuyst O, Gansevoort RT, Perrone RD, Dandurand A, Ouyang J, Czerwiec FS, Blais JD. Multicenter, open-label, extension trial to evaluate the long-term efficacy and safety of early versus delayed treatment with tolvaptan in autosomal dominant polycystic kidney disease: the TEMPO 4:4 Trial. Nephrol Dial Transplant. 2018;33(3):477-89. doi: 10.1093/ndt/gfx043
36. Baur BP, Meaney CJ. Review of tolvaptan for autosomal dominant polycystic kidney disease. Pharmacotherapy. 2014;34(6):605-16. doi: 10.1002/phar.1421
37. Blair HA, Keating GM. Tolvaptan: A Review in Autosomal Dominant Polycystic Kidney Disease. Drugs. 2015;75(15):1797-806. doi: 10.1007/s40265-015-0475-x
38. Poch E, Rodas L, Blasco M, Molina A, Quintana L. An update on tolvaptan for autosomal dominant polycystic kidney disease. Drugs Today (Barc). 2018;54(9):519-33. doi: 10.1358/dot.2018.54.9.2776624
39. Nagao S, Nishii K, Katsuyama M, et al. Increased water intake decreases progression of polycystic kidney disease in the PCK rat. J Am Soc Nephrol. 2006;17:2220-7. doi: 10.1681/asn.2006030251
40. Hopp K, Wang X, Ye H, Irazabal MV, Harris PC, Torres VE. Effects of hydration in rats and mice with polycystic kidney disease. Am J Physiol Renal Physiol. 2015;308:F261-F266. doi: 10.1152/ajprenal.00345.2014
41. Barash I, Ponda MP, Goldfarb DS, Skolnik EY. A pilot clinical study to evaluate changes in urine osmolality and urine cAMP in response to acute and chronic water loading in autosomal dominant polycystic kidney disease. Clin J Am Soc Nephrol. 2010;5:693-97. doi: 10.2215/cjn.04180609
42. Higashihara E, Nutahara K, Tanbo M, Kurahashi T, Marunouchi T, Takahashi H, Wallace DP. Does increased water intake prevent disease progression in autosomal dominant polycystic kidney disease? Nephrol Dial Transplant. 2014;29:1710-9. doi: 10.1093/ndt/gfu093
43. Neijenhuis MK, Gevers TJ, Nevens F, Hogan MC, Torres VE, Kievit W, Drenth JP. Somatostatin analogues improve health-related quality of life in polycystic liver disease: a pooled analysis of two randomised, placebo-controlled trials. Aliment Pharmacol Ther. 2015;42(5):591-8. doi: 10.1111/apt.13301
44. Hopp K, Hommerding CJ, Wang X, Ye H, Harris PC, Torres VE. Tolvaptan plus pasireotide shows enhanced efficacy in a PKD1 model. J Am Soc Nephrol. 2015;26:39-47. doi: 10.1681/ASN.2013121312
45. Wahl PR, Serra AL, Le Hir M, Molle KD, Hall MN, Wuthrich RP. Inhibition of mTOR with sirolimus slows disease progression in Han. SPRD rats with autosomal dominant polycystic kidney disease (ADPKD). Nephrol Dial Transplant. 2006 Mar;21(3):598-604. doi:10.1093/ndt/gfl181
46. Tao Y, Kim J, Schrier R, Edelstein CL. Rapamycin markedly slows disease progression in rat model of polycystic kidney disease. J Am Soc Nephrol. 2005;16(1):46-51. doi: 10.1681/ ASN.2004080660
47. Serra AL, Poster D, Kistler AD, et al. Sirolimus and kidney growth in autosomal dominant polycystic kidney disease. N Engl J Med. 2010;363(9):820-9. doi: 10.1056/NEJMoa0907419
48. Walz G, Budde K, Mannaa M, Nürnberger J, Wanner C, Sommerer C, Kunzendorf U, Banas B, Hörl WH, Obermüller N, Arns W, Pavenstädt H, Gaedeke J, Büchert M, May C, Gschaidmeier H, Kramer S, Eckardt KU. Everolimus in Patients with Autosomal Dominant Polycystic Kidney Disease. N Engl J Med. 2010;363(9):830-40. doi: 10.1056/nejmoa1003491
49. Rajani R, Pastor-Soler NM, Hallows KR. Role of AMP activated protein kinase in kidney tubular transport, metabolism, and disease. Curr Opin Nephrol Hypertens. 2017;26:375-83. doi: 10.1097/mnh.0000000000000349
50. Takiar V, Nishio S, Seo-Mayer P, King JD Jr, Li H, Zhang L, Karihaloo A, Hallows KR, Somlo S, Caplan MJ. Activating AMP activated protein kinase (AMPK) slows renal cystogenesis. Proc Natl Acad Sci USA. 2011;108:2462-7. doi: 10.1073/pnas.1011498108
51. Seliger S, Abebe K, Hallows K, Miskulin D, Perrone R, Watnick T, Bae K. A randomized clinical trial of metformin to treat autosomal dominant polycystic kidney disease. Am J Nephrol. 2018;47:352-60. doi: 10.1159/000488807
52. Grantham J, Torres V, Chapman A, Guay-Woodford L, Bae K, King B, Wetzel L, Baumgarten D, Kenney P, Harris P, Klahr S, Bennett W, Hirschman G, Meyers C, Zhang X, Zhu F, Miller J. Volume Progression in Polycystic Kidney Disease. N Engl J Med. 2006;354:2122-30. doi: 10.1056/nejmoa054341
53. Torres VE, Abebe KZ, Chapman AB, Schrier RW, Braun WE, Steinman TI, Winklhofer FT, Brosnahan G, Czarnecki PG, Hogan MC, Miskulin DC, Rahbari-Oskoui FF, Grantham JJ, Harris PC, Flessner MF, Moore CG, Perrone RD; HALT-PKD Trial Investigators. Angiotensin blockade in late autosomal dominant polycystic kidney disease. N Engl J Med. 2014;371(24):2267-76. doi: 10.1056/NEJMoa1402686
54. Schrier RW, Abebe KZ, Perrone RD, Torres VE, Braun WE, Steinman TI, Winklhofer FT, Brosnahan G, Czarnecki PG, Hogan MC, Miskulin DC, Rahbari-Oskoui FF, Grantham JJ, Harris PC, Flessner MF, Bae KT, Moore CG, Chapman AB; HALT-PKD Trial Investigators. Blood pressure in early autosomal dominant polycystic kidney disease. N Engl J Med. 2014;371(24):2255-66. doi: 10.1056/NEJMoa1402685
55. Irazabal M, Abebe K, Bae K, Perrone R, Chapman A, Schrier R, Yu A, Braun W, Steinman T, Harris P, Flessner M, Torres V. Prognostic enrichment design in clinical trials for autosomal dominant polycystic kidney disease: the HALT-PKD clinical trial. Nephrol Dial Transplant. 2017;32(11):1857-65. doi: 10.1093/ndt/gfw294
56. Schrier R, McFann K, Jonson A, Chapman A, Edelstein C, Brosnahan G, Ecder T, Tison T. Cardiac and Renal Effects of Standard Versus Rigorous Blood Pressure Control in Autosomal-Dominant Polycystic Kidney Disease: Results of a Seven-Year Prospective Randomized Study. J Am Soc Nephrol. 2002;13(7):1733-9. doi: 10.1097/01.asn.0000018407.60002.b9
57. Klahr S, Breyer JA, Beck GJ, Dennis VW, Hartman JA, Roth D, Steinman T, Wang SR, Yamamoto ME. Dietary protein restriction, blood pressure control, and the progression of polycystic kidney disease. Modification of Diet in Renal Disease Study Group. J Am Soc Nephrol. 1995;5(12):2037-47.
58. Torres VE, Grantham JJ, Chapman AB, Mrug M, Bae KT, King BF Jr, Wetzel LH, Martin D, Lockhart ME, Bennett WM, Moxey-Mims M, Abebe KZ, Lin Y, Bost JE; Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease (CRISP). Potentially modifiable factors affecting the progression of autosomal dominant polycystic kidney disease. Clin J Am Soc Nephrol. 2011;6(3):640-7. doi: 10.2215/CJN.03250410
59. Amro OW, Paulus JK, Noubary F, Perrone RD. Low-Osmolar Diet and Adjusted Water Intake for Vasopressin Reduction in Autosomal Dominant Polycystic Kidney Disease: A Pilot Randomized Controlled Trial. Am J Kidney Dis. 2016 Dec;68(6):882-91. doi: 10.1053/j.ajkd.2016.07.023
60. Girardat-Rotar L, Puhan MA, Braun J, Serra AL. Long-term effect of coffee consumption on autosomal dominant polycystic kidneys disease progression: results from the Suisse ADPKD, a Prospective Longitudinal Cohort Study. J Nephrol. 2018;31(1):87-94. doi: 10.1007/s40620-017-0396-8
61. Orth SR, Stockmann A, Conradt C, et alю Smoking as a risk factor for end-stage renal failure in men with primary renal disease. Kidney Int. 1998;54:926-31. doi: 10.1046/j.1523-1755.1998.00067.x
62. Nowak KL, You Z, Gitomer B, Brosnahan G, Torres VE, Chapman AB, Perrone RD, Steinman TI, Abebe KZ, Rahbari-Oskoui FF, Yu ASL, Harris PC, Bae KT, Hogan M, Miskulin D, Chonchol M. Overweight and Obesity Are Predictors of Progression in Early Autosomal Dominant Polycystic Kidney Disease. J Am Soc Nephrol. 2018;29(2):571-8. doi: 10.1681/ASN.2017070819
63. Cadnapaphornchai MA, George DM, McFann K, Wang W, Gitomer B, Strain JD, Schrier RW. Effect of pravastatin on total kidney volume, left ventricular mass index, and microalbuminuria in pediatric autosomal dominant polycystic kidney disease. Clin J Am Soc Nephrol. 2014;9(5):889-96. doi: 10.2215/CJN.08350813
64. Bolignano D, Palmer SC, Ruospo M, Zoccali C, Craig JC, Strippoli GF. Interventions for preventing the progression of autosomal dominant polycystic kidney disease. Cochrane Database Syst Rev. 2015;14(7):CD010294. doi: 10.1002/14651858.CD010294.pub2
ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова» Минздрава России (Сеченовский Университет), Москва, Россия
________________________________________________
T.E. Rudenko, I.N. Bobkova, E.V. Stavrovskaya
Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia