Циркулирующие микроРНК как потенциальные биомаркеры хронической болезни почек
________________________________________________
Aitbaev K.A., Murkamilov I.T., Fomin V.V. Circulating microRNAs as potential biomarkers of chronic kidney disease. Therapeutic Archive. 2019; 91 (6): 131–136.
DOI: 10.26442/00403660.2019.06.000046
Материалы доступны только для специалистов сферы здравоохранения. Авторизуйтесь или зарегистрируйтесь.
Ключевые слова: хроническая болезнь почек, биомаркер, микроРНК.
________________________________________________
Chronic kidney disease (CKD) is a supra-nosological term that reflects the progressive nature of chronic kidney diseases, which are based on the mechanisms of nephrosclerosis. Diagnosis of CKD at the earliest stages is of great importance, because it allows, by using therapeutic agents, to slow the progression of renal dysfunction and the development of cardiovascular complications. However, the currently available methods for diagnosing renal function impairment, including the determination of endogenous creatinine clearance, can detect renal dysfunction too late, when around 40–50% of the renal parenchyma is already reversibly or irreversibly damaged. In this regard, there is an active search for new, more sensitive and specific biomarkers for early diagnosis of CKD. Recent studies in cellular and animal models of CKD have demonstrated the important role of microRNA, a new class of posttranscriptional regulators of gene expression, in physiology and pathophysiology of kidneys. In particular, it has been shown that their expression profile in blood or urine can reflect changes in cells involved in a particular pathological process, since these cells can secrete a specific population of microRNAs, for example, through secretion of microRNA-containing exosomes. This gave grounds for considering increased or decreased expression of individual microRNAs in renal tissue or biological fluids (including urine) as new biomarkers for the diagnosis and monitoring of CKD. This review presents the results of recent experimental and clinical studies on these issues.
Key words: chronic kidney disease, biomarker, microRNA.
2. Chadban S, Briganti EM, Kerr PG, et al. Prevalence of kidney damage in Australian adults: the AusDiab kidney study. J Am Soc Nephrol. 2003;14 Suppl 2:S131-S138. PMID: 12819318
3. Coresh J, Selvin E, Stevens LA, et al. Prevalence of chronic kidney disease in the United States. JAMA J Am Med Assoc. 2007;298:2038-47. doi: 10.1001/jama.298.17.2038
4. Hallan SI, Coresh J, Astor BC, et al. International comparison of the relationship of chronic kidney disease prevalence and ESRD risk. J Am Soc Nephrol. 2006;17:2275-84. doi: 10.1681/ASN.2005121273
5. Zhang L, Zhang P, Wang F, et al. Prevalence and factors associated with CKD: a population study fr om Beijing. Am J Kidney Dis. 2008;51:373-84. doi: 10.1053/j.ajkd.2007.11.009
6. Levey AS, Atkins R, Coresh J, et al. Chronic kidney disease as a global public health problem: approaches and initiatives – a position statement from Kidney Disease Improving Global Outcomes. Kidney Int. 2007;72:247-59. doi: 10.1038/sj.ki.5002343
7. World Health Organization. The Global Burden of Disease: 2004 Update. Geneva: World Health Organization, 2008.
8. Khan Z, Pandey M. Role of kidney biomarkers of chronic kidney disease: An update. Saudi J Biol Sci. 2014;21:294-9. doi: 10.1016/j.sjbs.2014.07.003
9. Viau A, Karoui KE, Laouari D, et al. Lipocalin 2 is essential for chronic kidney disease in mice and human. J Clin Investig. 2010;120:4065-76. doi: 10.1172/JCI42004
10. Hostetter TH. Progression of renal disease and renal hypertrophy. Annu Rev Physiol. 1995;57:263-78. doi: 10.1146/annurev.ph.57.030195.001403
11. Kliem V, Johnson RJ, Alpers CE, et al. Mechanisms involved in the pathogenesis of tubulointerstitial fibrosis in 5/6-nephrectomized rats. Kidney Int. 1996;49:666-78. PMID: 8648907
12. Pillebout E, Weitzman JB, Burtin M, et al. JunD protects against chronic kidney disease by regulating paracrine mitogens. J Clin Investig. 2003;112:843-52. doi: 10.1172/JCI200317647
13. Steubl D, Block M, Herbst V, et al. Plasma uromodulin correlates with kidney function and identifies early stages in chronic kidney disease patients. Medicine. 2016;95:e3011. doi: 10.1097/MD.0000000000003011
14. Wasung ME, Chawla LS, Madero M. Biomarkers of renal function, which and when? Clin Chim Acta. 2015;438:350-7. doi: 10.1016/j.cca.2014.08.039
15. Fink HA, Ishani A, Taylor BC, et al. Chronic Kidney Disease Stages 1–3: Screening, Monitoring, and Treatment; Agency for Healthcare Research and Quality. Rockville, MD, USA, 2012. PMID: 22439155
16. Khurana R, Ranches G, Schafferer S, et al. Identification of urinary exosomal noncoding RNAs as novel biomarkers in chronic kidney disease. RNA. 2017;23:142-52. doi: 10.1261/rna.058834.116
17. Liu Y. Cellular and molecular mechanisms of renal fibrosis. Nat Rev Nephrol. 2011;7:684-96. doi: 10.1038/nrneph.2011.149
18. Mayer G. Capillary rarefaction, hypoxia, VEGF and angiogenesis in chronic renal disease. Nephrol Dial Transplant. 2011;26:1132-7. doi: 10.1093/ndt/gfq832
19. Quaggin SE, Kreidberg JA. Development of the renal glomerulus: Good neighbours and good fences. Development. 2008;135:609-20. doi: 10.1242/dev.001081
20. Бирагова М.С., Грачева С.А., Мартынов С.А. Нарушения фосфорно-кальциевого обмена у пациентов с сахарным диабетом и хронической болезнью почек. Сахарный диабет. 2012;(4):74-80 [Biragova M.S., Gracheva S.A., Martynov S.A. Compromised calcium and phosphorus metabolism in patients with diabetes mellitus and chronic kidney disease. Sakharnyi diabet = Diabetes mellitus. 2012;(4):74-80. doi: 10.14341/2072-0351-5542 (In Russ.)].
21. Barreto FC, Barreto DV, Liabeuf S, et al. Serum indoxyl sulfate is associated with vascular disease and mortality in chronic kidney disease patients. Clin J Am Soc Nephrol. 2009;4:1551-8. doi: 10.2215/CJN.03980609
22. Смирнов А.В., Карунная А.В., Зарайский М.И. и др. Экспрессия микроРНК-21 в моче у пациентов с нефропатиями. Нефрология. 2014;18(6):59-63 [Smirnov AV, Karunnaya AV, Zarayski MI, et al. Urinary microRNA-21 expression in nephropathies. Nefrologiya = Nephrology (Saint-Petersburg). 2014;18(6):59-63 (In Russ.)].
23. Камышова Е.С., Бобкова И.Н. МикроРНК при хроническом гломерулонефрите: перспективные биомаркеры для диагностики и оценки прогноза. Терапевтический архив. 2017;89(6):89-96 [Kamyshova ES, Bobkova IN. MicroRNAs in chronic glomerulonephritis: Promising biomarkers for diagnosis and prognosis estimation. Therapeutic Archive. 2017;89(6):89-96 (In Russ.)]. doi: 10.17116/terarkh201789689-96
24. Камышова Е.С., Бобкова И.Н., Кутырина И.М. Современные представления о роли микроРНК при диабетической нефропатии: потенциальные биомаркеры и мишени таргентной терапии. Сахарный диабет. 2017;20(1):42-50 [Kamyshova ES, Bobkova IN, Kutyrina IM. New insights on microRNAs in diabetic nephropathy: potential biomarkers for diagnosis and therapeutic targets. Sakharnyi diabet = Diabetes mellitus. 2017;20(1):42-50 (In Russ.)]. doi: 10.14341/DM8237
25. Wang F, Chen C, Wang D. Circulating microRNAs in cardiovascular disease: from biomarkers to therapeutic targets. Front Med. 2014;8:404-18. doi: 10.1007/s11684-014-0379-2
26. Valadi H, Ekström K, Bossios A, et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9:654-9. doi: 10.1038/ncb1596
27. Chim SS, Shing TK, Hung EC, et al. Detection and characterization of placental microRNAs in maternal plasma. Clin Chem. 2008;54:482-90. doi: 10.1373/clinchem.2007.097972
28. Van Craenenbroeck AH, Ledeganck KJ, van Ackeren K, et al. Plasma levels of microRNA in chronic kidney disease: patterns in acute and chronic exercise. Am J Physiol Heart Circ Physiol. 2015;309:H2008-H2016. doi: 10.1152/ajpheart.00346.2015
29. Zhou Y, Fang L, Lu Y, et al. Erythropoietin protects the tubular basement membrane by promoting the bone marrow to release extracellular vesicles containing tPA-targeting miR-144. Am J Physiol Renal Physiol. 2016;310:F27-F40. doi: 10.1152/ajprenal.00303.2015
30. Villarroya Beltri C, Baixauli F, Guttierrez-Vazquez C, et al. Sorting it out: regulation of exosome loading. Semin Cancer Biol. 2014;28:3-13. doi: 10.1016/j.semcancer.2014.04.009
31. Duttagupta R, Jiang R, Gollub J, et al. Impact of cellular miRNAs on circulating miRNA biomarker signatures. PLoS One. 2011;6:e20769. doi: 10.1371/journal.pone.0020769
32. Chen X, Ba Y, Ma L, et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell. 2008;18(10):997-1006. doi: 10.1038/cr.2008.282
33. Mitchell PS, Parkin RK, Kroh EM, et al. Circulating microRNAs as stable blood-based markers for cancer detection. PNAS USA. 2008;105(30):10513-8. doi: 10.1073/pnas.0804549105
34. Harvey SJ, Jarad G, Cunningham J, et al. Podocyte-specific deletion of dicer alters cytoskeletal dynamics and causes glomerular disease. J Am Soc Nephrol. 2008;19:2150-8. doi: 10.1681/ASN.2008020233
35. Ho J, Ng KH, Rosen S, et al. Podocyte-specific loss of functional microRNAs leads to rapid glomerular and tubular injury. J Am Soc Nephrol. 2008;19:2069-75. doi: 10.1681/ASN.2008020162
36. Shi S, Yu L, Chiu C, et al. Podocyte-selective deletion of dicer induces proteinuria and glomerulosclerosis. J Am Soc Nephrol. 2008;19:2159-69. doi: 10.1681/ASN.2008030312
37. Patel V, Hajarnis S, Williams D, et al. MicroRNAs regulate renal tubule maturation through modulation of Pkd1. J Am Soc Nephrol. 2012;23:1941-8. doi: 10.1681/ASN.2012030321
38. Wei Q, Bhatt K, He HZ, et al. Targeted deletion of Dicer from proximal tubules protects against renal ischemia-reperfusion injury. J Am Soc Nephrol. 2010;21:756-61. doi: 10.1681/ASN.2009070718
39. Bhatt K, Zhou L, Mi QS, et al. MicroRNA-34a is induced via p53 during cisplatin nephrotoxicity and contributes to cell survival. Mol Med. 2010;16:409-16. doi: 10.2119/molmed.2010.00002
40. Sequeira-Lopez ML, Weatherford ET, Borges GR, et al. The microRNA processing enzyme dicer maintains juxtaglomerular cells. J Am Soc Nephrol. 2010;21:460-7. doi: 10.1681/ASN.2009090964
41. Nagalakishmi VK, Ren Q, Pugh MM, et al. Dicer regulates the development of nephrogenic and ureteric compartments in mammalian kidney. Kidney Int. 2011;79:317-30. doi: 10.1038/ki.2010.385
42. Chen NX, Kiattisunthorn K, O’Neill KD, et al. Decreased microRNA is involved in the vascular remodeling abnormalities in chronic kidney disease (CKD). PLoS One. 2013;8:e64558. doi: 10.1371/journal.pone.0064558
43. Taibi F, Metzinger-Le Meuth V, M’Baya-Moutoula E, et al. Possible involvement of microRNAs in vascular damage in experimental chronic kidney disease. Biochim Biophys Acta. 2014;1842:88-98. doi: 10.1016/j.bbadis.2013.10.005
44. Rangrez AY, M’Baya-Moutoula E, Metzinger-Le Meuth V, et al. Inorganic phosphate accelerates the migration of vascular smooth muscle cells: evidence for the involvement of miR-223. PLoS One. 2012;7:e47807. doi: 10.1371/journal.pone.0047807
45. Harris TA, Yamakuchi M, Ferlito M, et al. MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1. Proc Natl Acad Sci USA. 2008;105:1516-21. doi: 10.1073/pnas.0707493105
46. Cordes KR, Sheehy NT, White MP, et al. miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature. 2009;460:705-10. doi: 10.1038/nature08195
47. M’Baya-Moutoula E, Louvet L, Metzinger-Le Meuth V, et al. High inorganic phosphate concentration inhibits osteoclastogenesis by modulating miR-223. Biochim Biophys Acta. 2015;1852(10 Pt A):2202-12. doi: 10.1016/j.bbadis.2015.08.003
48. Lovren F, Pan Y, Quan A, et al. MicroRNA-145 targeted therapy reduces atherosclerosis. Circulation. 2012;126:S81-S90. doi: 10.1161/CIRCULATIONAHA.111.084186
49. Chu JYS, Sims-Lucas S, Bushnell DS, et al. Dicer function is required in the metanephric mesenchyme for early kidney development. Am J Physiol Ren Physiol. 2014;306:F764-F772.
50. Leopold JA. MicroRNAs regulate vascular medial calcification. Cells. 2014;3(4):963-80. doi: 10.3390/cells3040963
51. Lal MA, Young KW, Andag U. Targeting the podocyte to treat glomerular kidney disease. Drug Discov Today. 2015;20:1228-34. doi: 10.1016/j.drudis.2015.06.003
52. Merscher S, Pedigo CE, Mendez AJ. Metabolism, energetics, and lipid biology in the podocyte e cellular cholesterol-mediated glomerular injury. Front Endocrinol. 2014;5:169. doi: 10.3389/fendo.2014.00169
53. Hoshi S, Shu Y, Yoshida Fб et al. Podocyte injury promotes progressive nephropathy in zucker diabetic fatty rats. Lab Investig. 2002;82:25-35. PMID: 11796823
54. Nassirpour R, Raj D, Townsend R, Argyropoulos C. MicroRNA biomarkers in clinical renal disease: from diabetic nephropathy renal transplantation and beyond. Food Chem Toxicol. 2016;98:73-88. doi: 10.1016/j.fct.2016.02.018
55. McClelland A, Hagiwara S, Kantharidis P. Wh ere are we in diabetic nephropathy: MicroRNAs and biomarkers? Curr Opin Nephrol Hypertens. 2014;23:80-6. doi: 10.1097/01.mnh.0000437612.50040.ae
56. Trionfini P, Benigni A, Remuzzi G. MicroRNAs in kidney physiology and disease. Nat Rev Nephrol. 2015;11:23-33. doi: 10.1038/nrneph.2014.202
57. Kato M, Arce L, Natarajan R. MicroRNAs and their role in progressive kidney diseases. Clin J Am Soc Nephrol. 2009;4:1255-66. doi: 10.2215/CJN.00520109
58. Chandrasekaran K, Karolina DS, Sepramaniam S, et al. Role of microRNAs in kidney homeostasis and disease. Kidney Int. 2012;81:617-27. doi: 10.1038/ki.2011.448
59. Lawrie CH, Gal S, Dunlop HM, et al. Detection of elevated levels of tumor-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br J Haematol. 2008;141:672-675. doi: 10.1111/j.1365-2141.2008.07077.x
60. Guay C, Regazzi R. Circulating microRNAs as novel biomarkers for diabetes mellitus. Nat Rev Endocrinol. 2013;9:513-21. doi: 10.1038/nrendo.2013.86
61. Raffort J, Hinault C, Dumortier O, et al. Circulating micro RNAs and diabetes: potential applications in medical practise. Diabetologia. 2015;58:1978-92. doi: 10.1007/s00125-015-3680-y
62. Min PK, Chan SY. The biology of circulating microRNAs in cardiovascular disease. Eur J Clin Invest. 2015;45:860-74. doi: 10.1111/eci.12475
63. Kaudwitz D, Zampetaki A, Mayr M. MicroRNA biomarkers for coronary artery disease? Curr Atheroscler Rep. 2015;17:70. doi: 10.1007/s11883-015-0548-z
64. Neal CS, Michael MZ, Pimlott LK, et al. Circulating microRNA expression is reduced in chronic kidney disease. Nephrol Dial Transplant. 2011;26:3794-802. doi: 10.1093/ndt/gfr485
65. Rudnicki M, Perco PD, Haene B, et al. Renal microRNA- and RNA-profiles in progressive chronic kidney disease. Eur J Clin Invest. 2016;46:213-26. doi: 10.1111/eci.12585
66. Brigant B, Metzinger-Le Meuth V, Massy ZA, et al. Serum microRNAs are altered in various stages of chronic kidney disease: a preliminary study. Clin Kidney J. 2017;10:30-7. doi: 10.1093/ckj/sfw060
67. Matas AJ, Smith JM, Skeans MA, et al. OPTN/SRTR 2012 annual data report: Kidney. Am J Transplant. 2014;14:11-44. doi: 10.1111/ajt.12579
68. Ben-Dov IZ, Muthukumar T, Morozov P, et al. MicroRNA sequence profiles of human kidney allografts with or without tubulointerstitial fibrosis. Transplantation. 2012;94:1086-94. doi: 10.1097/TP.0b013e3182751efd
69. Maluf DG, Dumur CI, Suh JL, et al. The urine microRNA profile may help monitor post-transplant renal graft function. Kidney Int. 2014;85:439-49. doi: 10.1038/ki.2013.338
70. Scian MJ, Maluf DG, David KG, et al. MicroRNA profiles in allograft tissues and paired urines associate with chronic allograft dysfunction with IF/TA. Am J Transplant. 2011;11:2110-22. doi: 10.1111/j.1600-6143.2011.03666.x
71. Glowacki F, Savary G, Gnemmi V, et al. Increased circulating miR-21 levels are associated with kidney fibrosis. PLoS ONE. 2013;8:e58014. doi: 10.1371/journal.pone.0058014
72. Lv LL, Cao YH, Ni HF, et al. MicroRNA-29c in urinary exosome/microvesicle as a biomarker of renal fibrosis. Am J Physiol Ren Physiol. 2013;305:F1220-F1227. doi: 10.1152/ajprenal.00148.2013
________________________________________________
1. Codreanu I, Perico N, Sharm SK, et al. Prevention programmes of progressive renal disease in developing nations. Nephrology. 2006;11:321-8. doi: 10.1111/j.1440-1797.2006.00587.x
2. Chadban S, Briganti EM, Kerr PG, et al. Prevalence of kidney damage in Australian adults: the AusDiab kidney study. J Am Soc Nephrol. 2003;14 Suppl 2:S131-S138. PMID: 12819318
3. Coresh J, Selvin E, Stevens LA, et al. Prevalence of chronic kidney disease in the United States. JAMA J Am Med Assoc. 2007;298:2038-47. doi: 10.1001/jama.298.17.2038
4. Hallan SI, Coresh J, Astor BC, et al. International comparison of the relationship of chronic kidney disease prevalence and ESRD risk. J Am Soc Nephrol. 2006;17:2275-84. doi: 10.1681/ASN.2005121273
5. Zhang L, Zhang P, Wang F, et al. Prevalence and factors associated with CKD: a population study fr om Beijing. Am J Kidney Dis. 2008;51:373-84. doi: 10.1053/j.ajkd.2007.11.009
6. Levey AS, Atkins R, Coresh J, et al. Chronic kidney disease as a global public health problem: approaches and initiatives – a position statement from Kidney Disease Improving Global Outcomes. Kidney Int. 2007;72:247-59. doi: 10.1038/sj.ki.5002343
7. World Health Organization. The Global Burden of Disease: 2004 Update. Geneva: World Health Organization, 2008.
8. Khan Z, Pandey M. Role of kidney biomarkers of chronic kidney disease: An update. Saudi J Biol Sci. 2014;21:294-9. doi: 10.1016/j.sjbs.2014.07.003
9. Viau A, Karoui KE, Laouari D, et al. Lipocalin 2 is essential for chronic kidney disease in mice and human. J Clin Investig. 2010;120:4065-76. doi: 10.1172/JCI42004
10. Hostetter TH. Progression of renal disease and renal hypertrophy. Annu Rev Physiol. 1995;57:263-78. doi: 10.1146/annurev.ph.57.030195.001403
11. Kliem V, Johnson RJ, Alpers CE, et al. Mechanisms involved in the pathogenesis of tubulointerstitial fibrosis in 5/6-nephrectomized rats. Kidney Int. 1996;49:666-78. PMID: 8648907
12. Pillebout E, Weitzman JB, Burtin M, et al. JunD protects against chronic kidney disease by regulating paracrine mitogens. J Clin Investig. 2003;112:843-52. doi: 10.1172/JCI200317647
13. Steubl D, Block M, Herbst V, et al. Plasma uromodulin correlates with kidney function and identifies early stages in chronic kidney disease patients. Medicine. 2016;95:e3011. doi: 10.1097/MD.0000000000003011
14. Wasung ME, Chawla LS, Madero M. Biomarkers of renal function, which and when? Clin Chim Acta. 2015;438:350-7. doi: 10.1016/j.cca.2014.08.039
15. Fink HA, Ishani A, Taylor BC, et al. Chronic Kidney Disease Stages 1–3: Screening, Monitoring, and Treatment; Agency for Healthcare Research and Quality. Rockville, MD, USA, 2012. PMID: 22439155
16. Khurana R, Ranches G, Schafferer S, et al. Identification of urinary exosomal noncoding RNAs as novel biomarkers in chronic kidney disease. RNA. 2017;23:142-52. doi: 10.1261/rna.058834.116
17. Liu Y. Cellular and molecular mechanisms of renal fibrosis. Nat Rev Nephrol. 2011;7:684-96. doi: 10.1038/nrneph.2011.149
18. Mayer G. Capillary rarefaction, hypoxia, VEGF and angiogenesis in chronic renal disease. Nephrol Dial Transplant. 2011;26:1132-7. doi: 10.1093/ndt/gfq832
19. Quaggin SE, Kreidberg JA. Development of the renal glomerulus: Good neighbours and good fences. Development. 2008;135:609-20. doi: 10.1242/dev.001081
20. Biragova M.S., Gracheva S.A., Martynov S.A. Compromised calcium and phosphorus metabolism in patients with diabetes mellitus and chronic kidney disease. Sakharnyi diabet = Diabetes mellitus. 2012;(4):74-80. doi: 10.14341/2072-0351-5542 (In Russ.)
21. Barreto FC, Barreto DV, Liabeuf S, et al. Serum indoxyl sulfate is associated with vascular disease and mortality in chronic kidney disease patients. Clin J Am Soc Nephrol. 2009;4:1551-8. doi: 10.2215/CJN.03980609
22. Smirnov AV, Karunnaya AV, Zarayski MI, et al. Urinary microRNA-21 expression in nephropathies. Nefrologiya = Nephrology (Saint-Petersburg). 2014;18(6):59-63 (In Russ.)
23. Kamyshova ES, Bobkova IN. MicroRNAs in chronic glomerulonephritis: Promising biomarkers for diagnosis and prognosis estimation. Therapeutic Archive. 2017;89(6):89-96 (In Russ.) doi: 10.17116/terarkh201789689-96
24. Kamyshova ES, Bobkova IN, Kutyrina IM. New insights on microRNAs in diabetic nephropathy: potential biomarkers for diagnosis and therapeutic targets. Sakharnyi diabet = Diabetes mellitus. 2017;20(1):42-50 (In Russ.) doi: 10.14341/DM8237
25. Wang F, Chen C, Wang D. Circulating microRNAs in cardiovascular disease: from biomarkers to therapeutic targets. Front Med. 2014;8:404-18. doi: 10.1007/s11684-014-0379-2
26. Valadi H, Ekström K, Bossios A, et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9:654-9. doi: 10.1038/ncb1596
27. Chim SS, Shing TK, Hung EC, et al. Detection and characterization of placental microRNAs in maternal plasma. Clin Chem. 2008;54:482-90. doi: 10.1373/clinchem.2007.097972
28. Van Craenenbroeck AH, Ledeganck KJ, van Ackeren K, et al. Plasma levels of microRNA in chronic kidney disease: patterns in acute and chronic exercise. Am J Physiol Heart Circ Physiol. 2015;309:H2008-H2016. doi: 10.1152/ajpheart.00346.2015
29. Zhou Y, Fang L, Lu Y, et al. Erythropoietin protects the tubular basement membrane by promoting the bone marrow to release extracellular vesicles containing tPA-targeting miR-144. Am J Physiol Renal Physiol. 2016;310:F27-F40. doi: 10.1152/ajprenal.00303.2015
30. Villarroya Beltri C, Baixauli F, Guttierrez-Vazquez C, et al. Sorting it out: regulation of exosome loading. Semin Cancer Biol. 2014;28:3-13. doi: 10.1016/j.semcancer.2014.04.009
31. Duttagupta R, Jiang R, Gollub J, et al. Impact of cellular miRNAs on circulating miRNA biomarker signatures. PLoS One. 2011;6:e20769. doi: 10.1371/journal.pone.0020769
32. Chen X, Ba Y, Ma L, et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell. 2008;18(10):997-1006. doi: 10.1038/cr.2008.282
33. Mitchell PS, Parkin RK, Kroh EM, et al. Circulating microRNAs as stable blood-based markers for cancer detection. PNAS USA. 2008;105(30):10513-8. doi: 10.1073/pnas.0804549105
34. Harvey SJ, Jarad G, Cunningham J, et al. Podocyte-specific deletion of dicer alters cytoskeletal dynamics and causes glomerular disease. J Am Soc Nephrol. 2008;19:2150-8. doi: 10.1681/ASN.2008020233
35. Ho J, Ng KH, Rosen S, et al. Podocyte-specific loss of functional microRNAs leads to rapid glomerular and tubular injury. J Am Soc Nephrol. 2008;19:2069-75. doi: 10.1681/ASN.2008020162
36. Shi S, Yu L, Chiu C, et al. Podocyte-selective deletion of dicer induces proteinuria and glomerulosclerosis. J Am Soc Nephrol. 2008;19:2159-69. doi: 10.1681/ASN.2008030312
37. Patel V, Hajarnis S, Williams D, et al. MicroRNAs regulate renal tubule maturation through modulation of Pkd1. J Am Soc Nephrol. 2012;23:1941-8. doi: 10.1681/ASN.2012030321
38. Wei Q, Bhatt K, He HZ, et al. Targeted deletion of Dicer from proximal tubules protects against renal ischemia-reperfusion injury. J Am Soc Nephrol. 2010;21:756-61. doi: 10.1681/ASN.2009070718
39. Bhatt K, Zhou L, Mi QS, et al. MicroRNA-34a is induced via p53 during cisplatin nephrotoxicity and contributes to cell survival. Mol Med. 2010;16:409-16. doi: 10.2119/molmed.2010.00002
40. Sequeira-Lopez ML, Weatherford ET, Borges GR, et al. The microRNA processing enzyme dicer maintains juxtaglomerular cells. J Am Soc Nephrol. 2010;21:460-7. doi: 10.1681/ASN.2009090964
41. Nagalakishmi VK, Ren Q, Pugh MM, et al. Dicer regulates the development of nephrogenic and ureteric compartments in mammalian kidney. Kidney Int. 2011;79:317-30. doi: 10.1038/ki.2010.385
42. Chen NX, Kiattisunthorn K, O’Neill KD, et al. Decreased microRNA is involved in the vascular remodeling abnormalities in chronic kidney disease (CKD). PLoS One. 2013;8:e64558. doi: 10.1371/journal.pone.0064558
43. Taibi F, Metzinger-Le Meuth V, M’Baya-Moutoula E, et al. Possible involvement of microRNAs in vascular damage in experimental chronic kidney disease. Biochim Biophys Acta. 2014;1842:88-98. doi: 10.1016/j.bbadis.2013.10.005
44. Rangrez AY, M’Baya-Moutoula E, Metzinger-Le Meuth V, et al. Inorganic phosphate accelerates the migration of vascular smooth muscle cells: evidence for the involvement of miR-223. PLoS One. 2012;7:e47807. doi: 10.1371/journal.pone.0047807
45. Harris TA, Yamakuchi M, Ferlito M, et al. MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1. Proc Natl Acad Sci USA. 2008;105:1516-21. doi: 10.1073/pnas.0707493105
46. Cordes KR, Sheehy NT, White MP, et al. miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature. 2009;460:705-10. doi: 10.1038/nature08195
47. M’Baya-Moutoula E, Louvet L, Metzinger-Le Meuth V, et al. High inorganic phosphate concentration inhibits osteoclastogenesis by modulating miR-223. Biochim Biophys Acta. 2015;1852(10 Pt A):2202-12. doi: 10.1016/j.bbadis.2015.08.003
48. Lovren F, Pan Y, Quan A, et al. MicroRNA-145 targeted therapy reduces atherosclerosis. Circulation. 2012;126:S81-S90. doi: 10.1161/CIRCULATIONAHA.111.084186
49. Chu JYS, Sims-Lucas S, Bushnell DS, et al. Dicer function is required in the metanephric mesenchyme for early kidney development. Am J Physiol Ren Physiol. 2014;306:F764-F772.
50. Leopold JA. MicroRNAs regulate vascular medial calcification. Cells. 2014;3(4):963-80. doi: 10.3390/cells3040963
51. Lal MA, Young KW, Andag U. Targeting the podocyte to treat glomerular kidney disease. Drug Discov Today. 2015;20:1228-34. doi: 10.1016/j.drudis.2015.06.003
52. Merscher S, Pedigo CE, Mendez AJ. Metabolism, energetics, and lipid biology in the podocyte e cellular cholesterol-mediated glomerular injury. Front Endocrinol. 2014;5:169. doi: 10.3389/fendo.2014.00169
53. Hoshi S, Shu Y, Yoshida Fб et al. Podocyte injury promotes progressive nephropathy in zucker diabetic fatty rats. Lab Investig. 2002;82:25-35. PMID: 11796823
54. Nassirpour R, Raj D, Townsend R, Argyropoulos C. MicroRNA biomarkers in clinical renal disease: from diabetic nephropathy renal transplantation and beyond. Food Chem Toxicol. 2016;98:73-88. doi: 10.1016/j.fct.2016.02.018
55. McClelland A, Hagiwara S, Kantharidis P. Wh ere are we in diabetic nephropathy: MicroRNAs and biomarkers? Curr Opin Nephrol Hypertens. 2014;23:80-6. doi: 10.1097/01.mnh.0000437612.50040.ae
56. Trionfini P, Benigni A, Remuzzi G. MicroRNAs in kidney physiology and disease. Nat Rev Nephrol. 2015;11:23-33. doi: 10.1038/nrneph.2014.202
57. Kato M, Arce L, Natarajan R. MicroRNAs and their role in progressive kidney diseases. Clin J Am Soc Nephrol. 2009;4:1255-66. doi: 10.2215/CJN.00520109
58. Chandrasekaran K, Karolina DS, Sepramaniam S, et al. Role of microRNAs in kidney homeostasis and disease. Kidney Int. 2012;81:617-27. doi: 10.1038/ki.2011.448
59. Lawrie CH, Gal S, Dunlop HM, et al. Detection of elevated levels of tumor-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br J Haematol. 2008;141:672-675. doi: 10.1111/j.1365-2141.2008.07077.x
60. Guay C, Regazzi R. Circulating microRNAs as novel biomarkers for diabetes mellitus. Nat Rev Endocrinol. 2013;9:513-21. doi: 10.1038/nrendo.2013.86
61. Raffort J, Hinault C, Dumortier O, et al. Circulating micro RNAs and diabetes: potential applications in medical practise. Diabetologia. 2015;58:1978-92. doi: 10.1007/s00125-015-3680-y
62. Min PK, Chan SY. The biology of circulating microRNAs in cardiovascular disease. Eur J Clin Invest. 2015;45:860-74. doi: 10.1111/eci.12475
63. Kaudwitz D, Zampetaki A, Mayr M. MicroRNA biomarkers for coronary artery disease? Curr Atheroscler Rep. 2015;17:70. doi: 10.1007/s11883-015-0548-z
64. Neal CS, Michael MZ, Pimlott LK, et al. Circulating microRNA expression is reduced in chronic kidney disease. Nephrol Dial Transplant. 2011;26:3794-802. doi: 10.1093/ndt/gfr485
65. Rudnicki M, Perco PD, Haene B, et al. Renal microRNA- and RNA-profiles in progressive chronic kidney disease. Eur J Clin Invest. 2016;46:213-26. doi: 10.1111/eci.12585
66. Brigant B, Metzinger-Le Meuth V, Massy ZA, et al. Serum microRNAs are altered in various stages of chronic kidney disease: a preliminary study. Clin Kidney J. 2017;10:30-7. doi: 10.1093/ckj/sfw060
67. Matas AJ, Smith JM, Skeans MA, et al. OPTN/SRTR 2012 annual data report: Kidney. Am J Transplant. 2014;14:11-44. doi: 10.1111/ajt.12579
68. Ben-Dov IZ, Muthukumar T, Morozov P, et al. MicroRNA sequence profiles of human kidney allografts with or without tubulointerstitial fibrosis. Transplantation. 2012;94:1086-94. doi: 10.1097/TP.0b013e3182751efd
69. Maluf DG, Dumur CI, Suh JL, et al. The urine microRNA profile may help monitor post-transplant renal graft function. Kidney Int. 2014;85:439-49. doi: 10.1038/ki.2013.338
70. Scian MJ, Maluf DG, David KG, et al. MicroRNA profiles in allograft tissues and paired urines associate with chronic allograft dysfunction with IF/TA. Am J Transplant. 2011;11:2110-22. doi: 10.1111/j.1600-6143.2011.03666.x
71. Glowacki F, Savary G, Gnemmi V, et al. Increased circulating miR-21 levels are associated with kidney fibrosis. PLoS ONE. 2013;8:e58014. doi: 10.1371/journal.pone.0058014
72. Lv LL, Cao YH, Ni HF, et al. MicroRNA-29c in urinary exosome/microvesicle as a biomarker of renal fibrosis. Am J Physiol Ren Physiol. 2013;305:F1220-F1227. doi: 10.1152/ajprenal.00148.2013
1 Научно-исследовательский институт молекулярной биологии и медицины при Национальном центре кардиологии и терапии Минздрава Кыргызской Республики, Бишкек, Кыргызстан;
2 Кыргызская государственная медицинская академия им. И.К. Ахунбаева, Бишкек, Кыргызстан;
3 Кыргызско-Российский Славянский университет им. первого Президента России Б.Н. Ельцина, Бишкек, Кыргызстан;
4 ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова» Минздрава России (Сеченовский Университет), Москва, Россия
________________________________________________
K.A. Aitbaev1, I.T. Murkamilov2,3, V.V. Fomin4
1 Scientific and Research Institute of Molecular Biology and Medicine, Bishkek, Kyrgyzstan;
2 Akhunbaev Kyrgyz State Medical Academy, Bishkek, Kyrgyzstan;
3 Kyrgyz Russian Slavic University named after the First President of Russia B.N. Yeltsin, Bishkek, Kyrgyzstan;
4 Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia