Влияние малобелковой диеты, дополненной кетоаналогами незаменимых аминокислот, на сывороточные уровни фактора роста фибробластов (FGF-23) и Klotho у больных хронической болезнью почек стадий 3b–4: рандомизированное пилотное исследование
Влияние малобелковой диеты, дополненной кетоаналогами незаменимых аминокислот, на сывороточные уровни фактора роста фибробластов (FGF-23) и Klotho у больных хронической болезнью почек стадий 3b–4: рандомизированное пилотное исследование
Милованова Л.Ю., Козловская (Лысенко) Л.В., Андросова Т.В. и др. Влияние малобелковой диеты, дополненной кетоаналогами незаменимых аминокислот на сывороточные уровни фактора роста фибробластов (FGF-23) и Klotho у больных хронической болезнью почек стадий 3b–4: рандомизированное пилотное исследование. Терапевтический архив. 2019; 91 (6): 47–56.
DOI: 10.26442/00403660.2019.06.000252
________________________________________________
Мilovanova L.Yu., Кozlovskaya (Lysеnkо) L.V., Androsova T.V., et al. Lоw prоtein diеt with еssеntial аminо асids ketoanalogues соmbination can affect serum FGF-23 and Klotho levels in сhronic kidney disease 3b–4 stages patients: randomized pilot study. Therapeutic Archive. 2019; 91 (6): 47–56. DOI: 10.26442/00403660.2019.06.000252
Влияние малобелковой диеты, дополненной кетоаналогами незаменимых аминокислот, на сывороточные уровни фактора роста фибробластов (FGF-23) и Klotho у больных хронической болезнью почек стадий 3b–4: рандомизированное пилотное исследование
Милованова Л.Ю., Козловская (Лысенко) Л.В., Андросова Т.В. и др. Влияние малобелковой диеты, дополненной кетоаналогами незаменимых аминокислот на сывороточные уровни фактора роста фибробластов (FGF-23) и Klotho у больных хронической болезнью почек стадий 3b–4: рандомизированное пилотное исследование. Терапевтический архив. 2019; 91 (6): 47–56.
DOI: 10.26442/00403660.2019.06.000252
________________________________________________
Мilovanova L.Yu., Кozlovskaya (Lysеnkо) L.V., Androsova T.V., et al. Lоw prоtein diеt with еssеntial аminо асids ketoanalogues соmbination can affect serum FGF-23 and Klotho levels in сhronic kidney disease 3b–4 stages patients: randomized pilot study. Therapeutic Archive. 2019; 91 (6): 47–56. DOI: 10.26442/00403660.2019.06.000252
Малобелковая диета (МБД), дополненная кетоаналогами незаменимых аминокислот (КА), вносит вклад в улучшение течения хронической болезни почек (ХБП), однако точные механизмы действия МБД + КА пока не установлены. Мы провели проспективное рандомизированное контролируемое сравнительное исследование влияния МБД + КА и изолированной МБД (МБД без КА) на сывороточные уровни фактора роста фибробластов-23 (FGF-23) и белка Кlotho у больных ХБП. Материалы и методы. В исследование включены 79 больных ХБП 3b–4 стадии недиабетической этиологии, соблюдавшие МБД (0,6 г/кг массы тела в сутки). Пациенты рандомизированы в две группы: 42 пациента, получавшие МБД + КА (1-я группа), и 37 пациентов, продолживших МБД без добавления КА (2-я группа). В дополнение к стандартным методам обследования определяли сывороточный уровень FGF-23 (Human FGF-23 ELISA kit with antibodies to native FGF-23 molecule) и Кlotho (Human soluble Klotho with antiKlotho monoclonal antibodies), а также проводили биоимпедансометрию [оценка мышечной массы тела (ММТ), жировой массы тела (ЖМТ), индекса массы тела (ИМТ) и др.]; сфигмографию [определение центрального (аортального) артериального давления (ЦАД) – систолического и диастолического, индекса аугментации (жесткости) сосудов (ИА) – с помощью аппарата SphygmаCor]; эхокардиографию [оценка степени кальцификации структур сердца (СКС) и индекса массы миокарда левого желудочка (ИММЛЖ)]. Результаты и обсуждение. К концу 14-го месяца наблюдения группа МБД достигла статистически значимого снижения ИМТ (p=0,046), включая ММТ у мужчин (p=0,027) и женщин (p=0,044). Кроме того, в группе МБД в этот момент выявлены более высокий средний уровень FGF-23 (p=0,029) и более низкий уровень Klotho (p=0,037), чем в группе МБД + КА. Повышение ИА (p=0,034), СКС (p=0,048) и ИММЛЖ (p=0,023) также отмечалось более часто в группе МБД без КА на момент окончания исследования (14-й месяц наблюдения принят за момент окончания исследования). Заключение. Применение МБД в сочетании с КА обеспечивает поддержание адекватного нутритивного статуса и вносит вклад в более эффективную коррекцию нарушения соотношения FGF-23 и Klotho, что может способствовать снижению кардиоваскулярной кальцификации и замедлению ремоделирования миокарда при ХБП. В то же время длительное применение МБД без добавления КА может приводить к белково-энергетической недостаточности.
Ключевые слова: хроническая болезнь почек, кетоаналоги незаменимых аминокислот, FGF-23, Кlotho, кальцификация и ремоделирование сердца и сосудов, белково-энергетическая недостаточность.
________________________________________________
Protein restriction diet (PRD) with ketоаnаlоgues of essential amino acids (КА) соmbinatiоn can improve of сhronic kidney disease (СКD) course while, the precise mechanisms of PRD + КАА action in CKD are not known yet. We have сonducted a prospeсtive, randomized, controlled study of PRD and КАА patient’s group in compare with PRD without КАА group in regarding to serum Кlotho and FGF-23 levels in patients with СКD. Materials and methods. The study included 79 СКD 3b–4 stages patients, non-diabetic etiology, used PRD (0.6 g/kg/day). The patients were randomized in two groups: 42 patients, received PRD + КАА (Group 1) and 37 patients continued the PRD without КАА (Group 2). Serum FGF-23 (Human FGF-23 ELISA kit with antibodies to native FGF-23 molecule, Merk Millipore MILLENZFGF-23-32K), Кlotho (Human soluble Klotho with antiKlotho monoclonal antibodies, IBL-Takara 27998-96Well) levels, as well as instrumental examination: bioimpedanсe analysis [assess of musсle body mass (MBM), fat body mass (FBM), body mass index (BMI) and others]; sphygmоgraphy [assess of аugmentation (stiffness) indices (AI), central (aortal) blood pressure (СВP) by «Sphygmасоr» device]; as well as echосаrdiography [assess of cardiac (valvular) саlсification score (ССS) and left ventriсular myосаrdium mass index (LVММI)], were studded in addition to conventional examination. Results and discussion. To the end of 14th month of the study the PRD group reached a bоdy mass index (ВМI) decrease (p=0.046), including MBM in mеn (p=0.027) and wоman (p=0.044). In addition, higher FGF-23 (p=0.029), and lower Кlothо (p=0.037) serum levels were revealed in the PRD group compared to the PRD+КАА group as well as the increase in АI (p=0.034), ССS (p=0.048), and LVММI (p=0.023). Conclusion. Use of PRD + КАА prоvides adequate nutritiоn stаtus and more efficient correction of FGF-23 and Кlothо imbalance in СКD progression that may cоntribute to alleviation of both сardiovаscular сalcificаtion and сardiac remоdeling in СКD. Importantly, a prolonged РRD use without supplementation of КАА may lead to mаlnutrition signs.
Keywords: chronic kidney disease, ketoanalogues of essential amino acids, FGF-23, serum Кlotho (sКlotho), cardiovascular calcification, cardiac remodeling, malnutrition, protein energy wasting.
Список литературы
1. Levin A, Stevens PE, Bilous RW, et al. Kidney disease: Improving global outcomes (KDIGO) CKD work group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl. 2013;3:1-150. doi: 10.1038/kisup.2012.73
2. KDIGO 2017 Сlinical practice guideline for the diagnosis, evolution, prevention, and treatment of Сhronic kidney disease-mineral and bone disorder (CKD-MBD). Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Update Work Group. Kidney Int Suppl (2011). 2017 Jul;7(1):1-59. doi: 10.1016/j.kisu.2017.04.001
3. Piccoli GB, Capizzi I, Vigotti FN, et al. Low protein diets in patients with chronic kidney disease: a bridge between mainstream and complementary-alternative medicines? BMC Nephrol. 2016;17:1-13. doi: 10.1186/s12882-016-0275-x
4. Rysz J, Franczyk B, Ciałkowska-Rysz A. The Effect of Diet on the Survival of Patients with Chronic Kidney Disease. Nutrients. 2017;9(5):495. doi: 10.3390/nu9050495
5. Snelson M, Clarke RE, Coughlan MT. Stirring the Pot: Can Dietary Modification Alleviate the Burden of CKD? Nutrients. 2017;9(3):265. doi: 10.3390/nu9030265
6. Bellizzi V, Di Iorio BR, De Nicola L, et al. Very low protein diet supplemented with ketoanalogs improves blood pressure control in chronic kidney disease. Kidney Int. 2007;71(3):245-51. doi: 10.1038/sj.ki.5001955
7. Zha Y, Qian Q. Protein Nutrition and Malnutrition in CKD and ESRD. Nutrients. 2017;9(3):208. doi: 10.3390/nu9030208
8. Gutiérrez OM, Mannstadt M, Isakova T, et al. Fibroblast Growth Factor 23 and Mortality among Patients Undergoing Hemodialysis. N Engl J Med. 2008;359:584-92. doi: 10.1056/NEJMoa0706130
9. Hu MC, Shi M, Zhang J, et al. Klotho Deficiency Causes Vascular Calcification in Chronic Kidney Disease. J Am Soc Nephrol. 2011;22:124-36. doi: 1681/ASN.2009121311
10. Seiler S, Rogacev KS, Roth HJ, et al. Associations of FGF-23 and sklotho with cardiovascular outcomes among patients with CKD stages 2–4. Clin J Am Soc Nephrol. 2014;9:1049-58. doi: 10.2215/CJN.07870713
11. Krieger NS, Culbertson CD, Kyker-Snowman K, Bushinsky DA. Metabolic acidosis increases fibroblast growth factor 23 in neonatal mouse bone. Am J Physiol Renal Physiol. 2012;303(3):431-6. doi: 10.1152/ajprenal.00199.2012
12. Dalton GD, Xie J, Sung-Wan An. New Insights into the Mechanism of Action of Soluble Klotho. Front Endocrinol (Lausann). 2017;8:323. doi: 10.3389/fendo.2017.00323
13. Bartali B, Semba RD, Araujo AB. Klotho, FGF21 and FGF23: novel pathways to musculoskeletal health? J Frailty Aging. 2013;2(4):179-83. doi: 10.14283/jfa.2013.26
14. Yilmaz MI, Sonmez A, Saglam M, et al. FGF-23 and vascular dysfunction in patients with stage 3 and 4 chronic kidney disease. Kidney Int. 2010;78:679-85. doi: 10.1038/ki.2010.194
15. Lu X, Hu MC. Klotho/FGF23 Axis in Chronic Kidney Disease and Cardiovascular Disease. Kidney Dis (Karger Publishers). 2016;17:1-9. doi: 10.1159/000452880
16. Kuczera P, Adamczak M, Wiecek A. Fibroblast growth factor-23 – A potential uremic toxin. Toxins (Basel). 2016;8(12):369. doi: 10.3390/toxins8120369
17. Isakova T, Wahl P, Vargas GS, et al. Fibroblast growth factor 23 is elevated before parathyroid hormone and phosphate in chronic kidney disease. Kidney Int. 2011;79:1370-8. doi: 10.1038/ki.2011.47
18. Hu MC, Shiizaki K, Kuro-o M. Fibroblast growth factor 23 and klotho: Physiology and pathophysiology of an endocrine network of mineral metabolism. Annu Rev Physiol. 2013; 75:503-33. doi: 10.1146/annurev-physiol-030212-183727
19. Neyra JA, Hu MC. αKlotho and Chronic Kidney Disease. Vitam Horm. 2016;101:257-310. doi: 10.1016/bs.vh.2016.02.007
20. Kuro-o M, Matsumura Y, Aizawa H, et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature. 1997;390:45-51. doi: 10.1038/36285
21. Kurosu H, Yamamoto M, Clark JD, et al. Suppression of Aging in Mice by the Hormone Klotho. Science. 2005;309:1829-33. doi: 10.1126/science.1112766
22. Go AS, Chertow GM, Fan D. Chronic Kidney Disease and the Risks of Death, Cardiovascular Events, and Hospitalization. N Engl J Med (Massachusetts Med Soc). 2004;351:1296-305. doi: 10.1056/NEJMoa041031
23. Hu MC, Kuro-o M, Moe OW. Secreted Klotho And Chronic Kidney Disease. Adv Exp Med Biol. 2012;728:126-57. doi: 10.1007/978-1-4614-0887-1_9
24. Hu M-C, Shi M, Cho HJ, et al. The erythropoietin receptor is a downstream effector of Klotho-induced cytoprotection. Kidney Int. 2013;84:468-81. doi: 10.1038/ki.2013.149
25. De Borst MH, Vervloet MG, Ter Wee PM. Cross talk between the renin-angiotensin-aldosterone system and vitamin D-FGF-23-klotho in chronic kidney disease. J Am Soc Nephrol. 2011;22:1603-9. doi: 10.1681/ASN.2010121251
26. Milovanova L, Fomin VV, Lysenko (Kozlovskaya) LV, et al Disorders in the System of Mineral and Bone Metabolism Regulators – FGF-23, Klotho and Sclerostin – in Chronic Kidney Disease: Clinical Significance and Possibilities for Correction. Chapter in the book «Chronic Kidney Disease». INTECH, 2017. ISBN 978-953-51-5463-1
27. Милованов ЮС, Лысенко ЛВ, Милованова ЛЮ, Шилов ЕМ. Клинические рекомендации «Питание больных на додиализных стадиях ХБП». Разработчик: Научное общество нефрологов России, Ассоциация нефрологов России. Москва, 2014 [Milovanov YuS, Lysenko LV, Milovanova LYu, Shilov EM. Klinicheskie rekomendatsii “Pitanie bol’nykh na dodializnykh stadiyakh HBP” [Clinical guidelines “Nutrition of patients in the predialysis stages of CKD”]. Developer: Scientific Society of Nephrologists of Russia, Association of Nephrologists of Russia. Moscow 2014 (In Russ.)].
28. Cheng H-M, Chuang S-Y, Sung S-H, et al. Derivation and validation of Diagnostic thresholds for Central Blood Pressure Measurements based on Long-Term Cardiovascular Risks. J Am Coll Cardiol. 2013. 62(19):1780-7. doi: 10.1016/j.jacc.2013.06.029
29. Mancia G, De Backer G, Dominiczak A, et al. The Task Force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur Heart J. 2013;34(28):2159–219. doi: 10.1093/eurheartj/eht151
30. Ермоленко В.М., Волгина Г.В., Добронравов В.А. и соавт. Национальные рекомендации по минеральным и костным заболеваниям при хронических заболеваниях почек. Русское Диализное Общество (май 2010). Нефрология и Диализ. 2011;13(1):33-51 [Ermolenko VM, Volgina GV, Dobronravov VA, et al. National recommendations on mineral and bone disorders in chronic kidney disease. Russian Dialysis Society (May 2010). Nephrologia i Dialis. 2011;13(1):33-51 (In Russ)].
31. Garneata L, Stancu A, Dragomir D. Ketoanalogue-Supplemented Vegetarian Very Low-Protein Diet and CKD Progression. J Am Soc Nephrol. 2016;27(7):2164-76. doi: 10.1681/ASN.2015040369
32. Rhee CM, Ahmadi S-F, Kovesdy CP. Low-protein diet for conservative management of chronic kidney disease: a systematic review and meta-analysis of controlled trials. J Cachexia Sarcopenia Muscle. 2018;9(2):235-45. doi: 10.1002/jcsm.12264
33. Милованова Л.Ю., Мухин Н.А., Козловская Л.В. и др. Снижение сывороточного уровня белка клото у пациентов с хронической болезнью почек: клиническое значение. Вестник Российской Академии медицинских наук. 2016;71:288-96 [Milovanova LY, Mukhin NA, Kozlovskaya LV, et al. Decreased serum levels of klotho protein in chronic kidney disease patients: Clinical imortance. Vestnik Rossiyskoy Akademii Meditsinskikh Nauk. 2016;71:288-96. doi: 10.15690/vramn581 (In Russ.)].
34. Neyra JA, Hu MC. Potential application of klotho in human chronic kidney disease. Bone. 2017;100:41-49. doi: 10.1016/j.bone.2017.01.017
35. Xie J, Cha S-K, An S-W, Kuro-o M. Cardioprotection by Klotho through downregulation of TRPC6 channels in the mouse heart. Nat Commun. 2012;3:1238. doi: 10.1038/ncomms2240
36. NasrAllah MM, El-Shehaby AR, Osman NA, Fayad T, Nassef A, Salem MM, et al. The Association between Fibroblast Growth Factor-23 and Vascular Calcification Is Mitigated by Inflammation Markers. Nephron Extra. 2013;3(1):106-12. doi: 10.1159/000356118
37. Steitz SA, Speer MY, Curinga G, et al. Smooth muscle cell phenotypic transition associated with calcification: Upregulation of Cbfa1 and downregulation of smooth muscle lineage markers. Circ Res. 2001;89:1147-54.
38. Zhou D, Tan RJ, Fu H. Wnt/[beta]-catenin signaling in kidney injury and repair: a double-edged sword. Lab Invest. 2016;96:156-67. doi: 10.1038/labinvest.2015.153
39 Fang Y, Ginsberg C, Seifert M, et al. CKD-induced wingless/integration1 inhibitors and phosphorus cause the CKD-mineral and bone disorder. J Am Soc Nephrol. 2014;25:1760-73. doi: 10.1681/ASN.2013080818
________________________________________________
1. Levin A, Stevens PE, Bilous RW, et al. Kidney disease: Improving global outcomes (KDIGO) CKD work group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl. 2013;3:1-150. doi: 10.1038/kisup.2012.73
2. KDIGO 2017 Сlinical practice guideline for the diagnosis, evolution, prevention, and treatment of Сhronic kidney disease-mineral and bone disorder (CKD-MBD). Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Update Work Group. Kidney Int Suppl (2011). 2017 Jul;7(1):1-59. doi: 10.1016/j.kisu.2017.04.001
3. Piccoli GB, Capizzi I, Vigotti FN, et al. Low protein diets in patients with chronic kidney disease: a bridge between mainstream and complementary-alternative medicines? BMC Nephrol. 2016;17:1-13. doi: 10.1186/s12882-016-0275-x
4. Rysz J, Franczyk B, Ciałkowska-Rysz A. The Effect of Diet on the Survival of Patients with Chronic Kidney Disease. Nutrients. 2017;9(5):495. doi: 10.3390/nu9050495
5. Snelson M, Clarke RE, Coughlan MT. Stirring the Pot: Can Dietary Modification Alleviate the Burden of CKD? Nutrients. 2017;9(3):265. doi: 10.3390/nu9030265
6. Bellizzi V, Di Iorio BR, De Nicola L, et al. Very low protein diet supplemented with ketoanalogs improves blood pressure control in chronic kidney disease. Kidney Int. 2007;71(3):245-51. doi: 10.1038/sj.ki.5001955
7. Zha Y, Qian Q. Protein Nutrition and Malnutrition in CKD and ESRD. Nutrients. 2017;9(3):208. doi: 10.3390/nu9030208
8. Gutiérrez OM, Mannstadt M, Isakova T, et al. Fibroblast Growth Factor 23 and Mortality among Patients Undergoing Hemodialysis. N Engl J Med. 2008;359:584-92. doi: 10.1056/NEJMoa0706130
9. Hu MC, Shi M, Zhang J, et al. Klotho Deficiency Causes Vascular Calcification in Chronic Kidney Disease. J Am Soc Nephrol. 2011;22:124-36. doi: 1681/ASN.2009121311
10. Seiler S, Rogacev KS, Roth HJ, et al. Associations of FGF-23 and sklotho with cardiovascular outcomes among patients with CKD stages 2–4. Clin J Am Soc Nephrol. 2014;9:1049-58. doi: 10.2215/CJN.07870713
11. Krieger NS, Culbertson CD, Kyker-Snowman K, Bushinsky DA. Metabolic acidosis increases fibroblast growth factor 23 in neonatal mouse bone. Am J Physiol Renal Physiol. 2012;303(3):431-6. doi: 10.1152/ajprenal.00199.2012
12. Dalton GD, Xie J, Sung-Wan An. New Insights into the Mechanism of Action of Soluble Klotho. Front Endocrinol (Lausann). 2017;8:323. doi: 10.3389/fendo.2017.00323
13. Bartali B, Semba RD, Araujo AB. Klotho, FGF21 and FGF23: novel pathways to musculoskeletal health? J Frailty Aging. 2013;2(4):179-83. doi: 10.14283/jfa.2013.26
14. Yilmaz MI, Sonmez A, Saglam M, et al. FGF-23 and vascular dysfunction in patients with stage 3 and 4 chronic kidney disease. Kidney Int. 2010;78:679-85. doi: 10.1038/ki.2010.194
15. Lu X, Hu MC. Klotho/FGF23 Axis in Chronic Kidney Disease and Cardiovascular Disease. Kidney Dis (Karger Publishers). 2016;17:1-9. doi: 10.1159/000452880
16. Kuczera P, Adamczak M, Wiecek A. Fibroblast growth factor-23 – A potential uremic toxin. Toxins (Basel). 2016;8(12):369. doi: 10.3390/toxins8120369
17. Isakova T, Wahl P, Vargas GS, et al. Fibroblast growth factor 23 is elevated before parathyroid hormone and phosphate in chronic kidney disease. Kidney Int. 2011;79:1370-8. doi: 10.1038/ki.2011.47
18. Hu MC, Shiizaki K, Kuro-o M. Fibroblast growth factor 23 and klotho: Physiology and pathophysiology of an endocrine network of mineral metabolism. Annu Rev Physiol. 2013; 75:503-33. doi: 10.1146/annurev-physiol-030212-183727
19. Neyra JA, Hu MC. αKlotho and Chronic Kidney Disease. Vitam Horm. 2016;101:257-310. doi: 10.1016/bs.vh.2016.02.007
20. Kuro-o M, Matsumura Y, Aizawa H, et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature. 1997;390:45-51. doi: 10.1038/36285
21. Kurosu H, Yamamoto M, Clark JD, et al. Suppression of Aging in Mice by the Hormone Klotho. Science. 2005;309:1829-33. doi: 10.1126/science.1112766
22. Go AS, Chertow GM, Fan D. Chronic Kidney Disease and the Risks of Death, Cardiovascular Events, and Hospitalization. N Engl J Med (Massachusetts Med Soc). 2004;351:1296-305. doi: 10.1056/NEJMoa041031
23. Hu MC, Kuro-o M, Moe OW. Secreted Klotho And Chronic Kidney Disease. Adv Exp Med Biol. 2012;728:126-57. doi: 10.1007/978-1-4614-0887-1_9
24. Hu M-C, Shi M, Cho HJ, et al. The erythropoietin receptor is a downstream effector of Klotho-induced cytoprotection. Kidney Int. 2013;84:468-81. doi: 10.1038/ki.2013.149
25. De Borst MH, Vervloet MG, Ter Wee PM. Cross talk between the renin-angiotensin-aldosterone system and vitamin D-FGF-23-klotho in chronic kidney disease. J Am Soc Nephrol. 2011;22:1603-9. doi: 10.1681/ASN.2010121251
26. Milovanova L, Fomin VV, Lysenko (Kozlovskaya) LV, et al Disorders in the System of Mineral and Bone Metabolism Regulators – FGF-23, Klotho and Sclerostin – in Chronic Kidney Disease: Clinical Significance and Possibilities for Correction. Chapter in the book «Chronic Kidney Disease». INTECH, 2017. ISBN 978-953-51-5463-1
27. Milovanov YuS, Lysenko LV, Milovanova LYu, Shilov EM. Klinicheskie rekomendatsii “Pitanie bol’nykh na dodializnykh stadiyakh HBP” [Clinical guidelines “Nutrition of patients in the predialysis stages of CKD”]. Developer: Scientific Society of Nephrologists of Russia, Association of Nephrologists of Russia. Moscow 2014 (In Russ.)
28. Cheng H-M, Chuang S-Y, Sung S-H, et al. Derivation and validation of Diagnostic thresholds for Central Blood Pressure Measurements based on Long-Term Cardiovascular Risks. J Am Coll Cardiol. 2013. 62(19):1780-7. doi: 10.1016/j.jacc.2013.06.029
29. Mancia G, De Backer G, Dominiczak A, et al. The Task Force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur Heart J. 2013;34(28):2159–219. doi: 10.1093/eurheartj/eht151
30. Ermolenko VM, Volgina GV, Dobronravov VA, et al. National recommendations on mineral and bone disorders in chronic kidney disease. Russian Dialysis Society (May 2010). Nephrologia i Dialis. 2011;13(1):33-51 (In Russ)
31. Garneata L, Stancu A, Dragomir D. Ketoanalogue-Supplemented Vegetarian Very Low-Protein Diet and CKD Progression. J Am Soc Nephrol. 2016;27(7):2164-76. doi: 10.1681/ASN.2015040369
32. Rhee CM, Ahmadi S-F, Kovesdy CP. Low-protein diet for conservative management of chronic kidney disease: a systematic review and meta-analysis of controlled trials. J Cachexia Sarcopenia Muscle. 2018;9(2):235-45. doi: 10.1002/jcsm.12264
33. Milovanova LY, Mukhin NA, Kozlovskaya LV, et al. Decreased serum levels of klotho protein in chronic kidney disease patients: Clinical imortance. Vestnik Rossiyskoy Akademii Meditsinskikh Nauk. 2016;71:288-96. doi: 10.15690/vramn581 (In Russ.)
34. Neyra JA, Hu MC. Potential application of klotho in human chronic kidney disease. Bone. 2017;100:41-49. doi: 10.1016/j.bone.2017.01.017
35. Xie J, Cha S-K, An S-W, Kuro-o M. Cardioprotection by Klotho through downregulation of TRPC6 channels in the mouse heart. Nat Commun. 2012;3:1238. doi: 10.1038/ncomms2240
36. NasrAllah MM, El-Shehaby AR, Osman NA, Fayad T, Nassef A, Salem MM, et al. The Association between Fibroblast Growth Factor-23 and Vascular Calcification Is Mitigated by Inflammation Markers. Nephron Extra. 2013;3(1):106-12. doi: 10.1159/000356118
37. Steitz SA, Speer MY, Curinga G, et al. Smooth muscle cell phenotypic transition associated with calcification: Upregulation of Cbfa1 and downregulation of smooth muscle lineage markers. Circ Res. 2001;89:1147-54.
38. Zhou D, Tan RJ, Fu H. Wnt/[beta]-catenin signaling in kidney injury and repair: a double-edged sword. Lab Invest. 2016;96:156-67. doi: 10.1038/labinvest.2015.153
39 Fang Y, Ginsberg C, Seifert M, et al. CKD-induced wingless/integration1 inhibitors and phosphorus cause the CKD-mineral and bone disorder. J Am Soc Nephrol. 2014;25:1760-73. doi: 10.1681/ASN.2013080818