Гипертрофическая кардиомиопатия: современные возможности фармакологических подходов к лечению
________________________________________________
Gudkova A.Y., Streltsova A.A., Kostareva A.A. Hypertrophic cardiomyopathy: modern aspects of pharmacologic treatment. Therapeutic Archive. 2019; 91 (9): 129–136. DOI: 10.26442/00403660.2019.09.000137
Материалы доступны только для специалистов сферы здравоохранения. Авторизуйтесь или зарегистрируйтесь.
Ключевые слова: гипертрофическая кардиомиопатия, классификации, современные подходы к лечению, фармакотерапия.
________________________________________________
This article discusses recent advances in understanding genetic basis and classification of hypertrophic cardiomyopathy. Here, we review pharmacologic treatment strategies and new developments in disease-specific management of HCM.
Keywords: hypertrophic cardiomyopathy, symptomatic course, sudden cardiac death, chronic heart failure with preserved and reduced ejection fraction, pharmacologic treatment.
2. Biology Interdisciplinary Working Maron BJ, Towbin JA, Thiene G, Antzelevitch C, Corrado D, Arnett D, Moss AJ, Seidman CE, Young JB; American Heart Association; Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; Council on Epidemiology and Prevention. Contemporary definitions and classification of the cardiomyopathies: an American Heart Association Scientific Statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Groups; and Council on Epidemiology and Prevention. Circulation. 2006;113(14):1807-16. doi: 10.1161/CIRCULATIONAHA.106.1742877
3. Maron BJ. The 2006 American Heart Association classification of cardiomyopathies is the gold standard. Circulation: Heart Failure. 2008;1(1):72-76. doi: 10.1161/CIRCHEARTFAILURE.108.770826
4. Arbustini E, Narula N, Dec GW, Reddy KS, Greenberg B, Kushwaha S, Marwick T, Pinney S, Bellazzi R, Favalli V, Kramer C, Roberts R, Zoghbi WA, Bonow R, Tavazzi L, Fuster V, Narula J. The MOGE(S) classification for a phenotype-genotype nomenclature of cardiomyopathy: endorsed by the World Heart Federation. J American College of Cardiology. 2013;62(22):2046-72. doi: 10.1016/j.jacc.2013.08.1644
5. Denoix PF. Nomеnclature des cancers. Bull Inst Nat Hyg (Paris). 1944:69-73.
6. James D. Brierley, Mary K. Gospodarowicz, Christian Wittekind. TNM Classification of Malignant Tumours. Eighth edition. Union for International Cancer Control. 2017
7. Agarwal A, Yousefzai R, Jan MF, Cho C, Shetabi K, Bush M, Khandheria BK, Paterick TE, Treiber S, Sra J, Werner P, Allaqaband S, Bajwa T, Tajik AJ. Clinical application of WHF-MOGE(S) classification for hypertrophic cardiomyopathy. Global Heart. 2015;10(3):209-19. doi: 10.1016/j.gheart. 2015.01.001
8. Authors/Task Force members, Elliott PM, Anastasakis A, Borger MA, Borggrefe M, Cecchi F, Charron P, Hagege AA, Lafont A, Limongelli G, Mahrholdt H, McKenna WJ, Mogensen J, Nihoyannopoulos P, Nistri S, Pieper PG, Pieske B, Rapezzi C, Rutten FH, Tillmanns C, Watkins H. 2014 ESC Guidelines on diagnosis and management of hypertrophic cardiomyopathy: the Task Force for the Diagnosis and Management of Hypertrophic Cardiomyopathy of the European Society of Cardiology (ESC). European Heart J. 2014;35(39):2733-79. doi: 10.1093/eurheartj/ehu 284
9. Semsarian C, Ingles J, Maron MS, Maron BJ. New perspectives on the prevalence of hypertrophic cardiomyopathy. J Am College of Cardiology. 2015;65(12):1249-54. doi: 10.1016/j.jacc.2015.01. 019
10. Lopes LR, Rahman MS, Elliott PM. A systematic review and meta-analysis of genotype-phenotype associations in patients with hypertrophic cardiomyopathy caused by sarcomeric protein mutations. Heart. 2013;99(24):1800-11. doi: 10.1136/heartjnl-2013-303939
11. Marian AJ, Braunwald E. Hypertrophic Cardiomyopathy: Genetics, Pathogenesis, Clinical Manifestations, Diagnosis, and Therapy. Circulation Research. 2017;121(7):749-70. doi: 10.1161/CIRCRESAHA.117.311059
12. Wang P, Zou Y, Fu C, Zhou X, Hui R. MYBPC3 polymorphism is a modifier for expression of cardiac hypertrophy in patients with hypertrophic cardiomyopathy. Biochemical and Biophysical Research Communications. 2005;329(2):796-9. doi: 10.1016/j.bbrc.2005.02.004
13. Marian AJ. Modifier genes for hypertrophic cardiomyopathy. Current Opinion in Cardiology. 2002;17(3):242-52. doi: 10.1097/00001573-200 205000-00006
14. Brugada R, Kelsey W, Lechin M, Zhao G, Yu Q.T, Zoghbi W, Quinones M, Elstein E, Omran A, Rakowski H, Wigle D, Liew CC, Sole M, Roberts R, Marian AJ. Role of candidate modifier genes on the phenotypic expression of hypertrophy in patients with hypertrophic cardiomyopathy. J Investigative Medicine. 1997;45(9):542-51.
15. Arad M, Seidman JG, Seidman CE. Phenotypic diversity in hypertrophic cardiomyopathy. Human Molecular Genetics. 2002;11(20):2499-506. doi: 10.1093/hmg/11.20.2499
16. Dimitrow PP, Czarnecka D, Jaszcz KK, Dubiel JS. Sex differences in age at onset of symptoms in patients with hypertrophic cardiomyopathy. J Cardiovascular Risk. 1997;4(1):33-5. doi: 10.1097/00043798-199702000-00006
17. Lin CL, Chiang CW, Shaw CK, Chu PH, Chang CJ, Ko YL. Gender differences in the presentation of adult obstructive hypertrophic cardiomyopathy with resting gradient: a study of 122 patients. Japanese Circulation J. 1999;63(11):859-64. doi: 10.1253/jcj.63.859
18. Kubo T, Kitaoka H, Okawa M, Hirota T, Hayato K, Yamasaki N, Matsumura Y, Yabe T, Doi YL. Gender-specific differences in the clinical features of hypertrophic cardiomyopathy in a community-based Japanese population: results from Kochi RYOMA study. J Cardiology. 2010;56(3):314-9. doi: 10.1016/j.jjcc.2010.07.004
19. Полякова А.А., Гудкова А.Я., Крутиков А.Н., Семернин Е.Н., Козленок А.В., Пыко С.А., Костарева А.А., Шляхто Е.Н. Гипертрофическая кардиомиопатия в старшей возрастной группе: влияние факторов кардиометаболического риска и полиморфизма гена MADD. Артериальная гипертензия. 2018;24(1):29-40 [Poliakova AA, Gudkova AYa, Krutikov AN, Semernin EN, Kozlenok AV, Pyko SA, Kostareva AA, Shlyakhto EN. Hypertrophic cardiomyopathy in the older age group: the effect of cardiometabolic risk factors and rs2290149 and rs10838692 of the MADD gene. Arterial’naya Gipertenziya = Arterial Hypertension. 2018;24(1):29-40 (In Russ.)]. doi: 10.18705/1607-419X-2018-24-1-29-40
20. Ingles J, Burns C, Bagnall RD, Lam L, Yeates L, Sarina T, Puranik R, Briffa T, Atherton JJ, Driscoll T, Semsarian C. Nonfamilial Hypertrophic Cardiomyopathy: Prevalence, Natural History, and Clinical Implications. Circulation. Cardiovascular Genetics. 2017;10(2). doi: 10.1161/CIRC GENETICS.116.001620
21. Kelly M, Semsarian C. Multiple mutations in genetic cardiovascular disease: a marker of disease severity? Circulation. Cardiovascular Genetics. 2009;2(2):182-90. doi: 10.1161/CIRCGENETICS.108.836478
22. Girolami F, Ho CY, Semsarian C, Baldi M, Will ML, Baldini K, Torricelli F, Yeates L, Cecchi F, Ackerman MJ, Olivotto I. Clinical features and outcome of hypertrophic cardiomyopathy associated with triple sarcomere protein gene mutations. J Am College of Cardiology. 2010;55(14):1444-53. doi: 10.1016/j.jacc.2009.11.062
23. Maron BJ, Rowin EJ, Casey SA, Haas TS, Chan RH, Udelson JE, Garberich RF, Lesser JR, Appelbaum E, Manning WJ, Maron MS. Risk stratification and outcome of patients with hypertrophic cardiomyopathy ≥ 60 years of age. Circulation. 2013;127(5):585-93. doi: 10.1161/CIRCULATIONAHA. 112.136085
24. Агеев Ф.Т, Габрусенко С.А, Постнов А.Ю, Акчурин Р.С, Смирнова М.Д, Карпов Р.С, Шапошник И.И, Лопатин Ю.М, Барбараш О.Л, Галявич А.С. Клинические рекомендации по диагностике и лечению кардиомиопатий (гипертрофическая). Кардиологический вестник. 2016;1:3-22 [Ageev PhT, Gabrusenko SA, Postnov AY, Akchurin RS, Smirnova MD, Karpov RS, Shaposhnik, LopatinYuM, Barbarash OL, Galyavich AS. National clinical guideline on diagnosis and treatment of hypertrophic cardiomyopathy. Kardiologicheskij Vestnik. 2016;1:3-22 (In Russ.)].
25. Philipson DJ, DePasquale EC, Yang EH, Baas AS. Emerging pharmacologic and structural therapies for hypertrophic cardiomyopathy. Heart Failure Reviews. 2017;22(6):879-88. doi: 10.1007/s10741-017-9648-x
26. Semsarian C, Ahmad I, Giewat M, Georgakopoulos D, Schmitt JP, McConnell BK, Reiken S, Mende U, Marks AR, Kass DA, Seidman CE, Seidman JG. The L-type calcium channel inhibitor diltiazem prevents cardiomyopathy in a mouse model. J Clinical Investigation. 2002;109(8):1013-20. doi: 10.1172/JCI200214677
27. Ho CY, Lakdawala NK, Cirino AL, Lipshultz SE, Sparks E, Abbasi SA, Kwong RY, Antman EM, Semsarian C, González A, López B, Diez J, Orav EJ, Colan SD, Seidman CE. Diltiazem treatment for pre-clinical hypertrophic cardiomyopathy sarcomere mutation carriers: a pilot randomized trial to modify disease expression. JACC: Heart Failure. 2015;3(2):180-8. doi: 10.1016/j.jchf.2014.08.003
28. Cooper RM, Raphael CE, Liebregts M, Anavekar NS, Veselka J. New Developments in Hypertrophic Cardiomyopathy. Canadian J Cardiology. 2017;33(10):1254-65. doi: 10.1016/j.cjca.2017.07.007
29. Coppini R, Ferrantini C, Yao L, Fan P, Del Lungo M, Stillitano F, Sartiani L, Tosi B, Suffredini S, Tesi C, Yacoub M, Olivotto I, Belardinelli L, Poggesi C, Cerbai E, Mugelli A. Late sodium current inhibition reverses electromechanical dysfunction in human hypertrophic cardiomyopathy. Circulation. 2013;127(5):575-84. doi: 10.1161/CIRCULATIONAHA.112. 134932
30. Lovelock JD, Monasky MM, Jeong EM, Lardin HA, Liu H, Patel BG, Taglieri DM, Gu L, Kumar P, Pokhrel N, Zeng D, Belardinelli L, Sorescu D, Solaro RJ, Dudley SC Jr. Ranolazine improves cardiac diastolic dysfunction through modulation of myofilament calcium sensitivity. Circulation Research. 2012;110(6):841-50. doi: 10.1161/CIRCRESAHA.111.258251
31. Coppini R, Mazzoni L, Ferrantini C, Gentile F, Pioner JM, Laurino A, Santini L, Bargelli V, Rotellini M, Bartolucci G, Crocini C, Sacconi L, Tesi C, Belardinelli L, Tardiff J, Mugelli A, Olivotto I, Cerbai E, Poggesi C. Ranolazine Prevents Phenotype Development in a Mouse Model of Hypertrophic Cardiomyopathy. Circulation Heart Failure. 2017;10(3). doi: 10.1161/CIRCHEARTFAILURE.116.003565
32. Flenner F, Friedrich FW, Ungeheuer N , Christ T, Geertz B, Reischmann S, Wagner S, Stathopoulou K, Söhren KD, Weinberger F, Schwedhelm E, Cuello F, Maier LS, Eschenhagen T, Carrier L. Ranolazine antagonizes catecholamine-induced dysfunction in isolated cardiomyocytes, but lacks long-term therapeutic effects in vivo in a mouse model of hypertrophic cardiomyopathy. Cardiovascular Research. 2016;109(1):90-102. doi: 10. 1093/cvr/cvv247
33. Gentry JL, 3rd, Mentz RJ, Hurdle M, Wang A. Ranolazine for Treatment of Angina or Dyspnea in Hypertrophic Cardiomyopathy Patients (RHYME). J Am College of Cardiology. 2016;68(16):1815-7. doi: 10.1016/j.jacc. 2016.07.758
34. Olivotto I, Camici PG, Merlini PA, Rapezzi C, Patten M, Climent V, Sinagra G, Tomberli B, Marin F, Ehlermann P, Maier LS, Fornaro A, Jacobshagen C, Ganau A, Moretti L, Hernandez Madrid A, Coppini R, Reggiardo G, Poggesi C, Fattiroli F, Belardinelli L, Gensini G, Mugelli A. Efficacy of Ranolazine in Patients With Symptomatic Hypertrophic Cardiomyopathy: The RESTYLE-HCM Randomized, Double-Blind, Placebo-Controlled Study. Circulation Heart Failure. 2018;11:e004124. doi: 10.1161/CIRCHEARTFAILURE.117.004124
35. Gilead Sciences (2014). Effect of eleclazine (GS-6615) on exercise capacity in subjects with symptomatic hypertrophic cardiomyopathy (LIBERTY-HCM). US National Library of Medicine. https://clinicaltrials.gov/ct2/show/ NCT02291237
36. Green EM, Wakimoto H, Anderson, Evanchik MJ, Gorham JM, Harrison BC, Henze M, Kawas R, Oslob JD, Rodriguez HM, Song Y, Wan W, Leinwand LA, Spudich JA, McDowell RS, Seidman JG, Seidman CE. A small-molecule inhibitor of sarcomere contractility suppresses hypertrophic cardiomyopathy in mice. Science. 2016;351(6273):617-21. doi: 10.1126/ science.aad3456
37. Stern JA, Markova S, Ueda Y, Kim JB, Pascoe PJ, Evanchik MJ, Green EM, Harris SP. A Small Molecule Inhibitor of Sarcomere Contractility Acutely Relieves Left Ventricular Outflow Tract Obstruction in Feline Hypertrophic Cardiomyopathy. PloS One. 2016;11(12):e0168407. doi: 10.1371/journal. pone.0168407
38. MyoKardia Inc. (2016). A Phase 2 Open-label Pilot Study Evaluating MYK-461 in Subjects With Symptomatic Hypertrophic Cardiomyopathy and Left Ventricular Outflow Tract Obstruction (PIONEER-HCM). US National Library of Medicine. https://clinicaltrials.gov/ct2/show/study/NCT02842242
39. Crilley JG, Boehm EA, Blair E, Rajagopalan B, Blamire AM, Styles P, McKenna WJ, Ostman-Smith I, Clarke K, Watkins H. Hypertrophic cardiomyopathy due to sarcomeric gene mutations is characterized by impaired energy metabolism irrespective of the degree of hypertrophy. J Am College of Cardiology. 2003;41(10):1776-82. doi: 10.1016/S0735-1097(02)03009-7
40. Wilder T, Ryba DM, Wieczorek DF, Wolska BM, Solaro RJ. N-acetylcysteine reverses diastolic dysfunction and hypertrophy in familial hypertrophic cardiomyopathy. Am J Physiology. Heart and Circulatory Physiology. 2015;309(10):H1720-30. doi: 10.1152/ajpheart.00 339.2015
41. Lombardi R, Rodriguez G, Chen SN, Ripplinger CM, Li W, Chen J, Willerson JT, Betocchi S, Wickline SA, Efimov IR, Marian AJ. Resolution of established cardiac hypertrophy and fibrosis and prevention of systolic dysfunction in a transgenic rabbit model of human cardiomyopathy through thiol-sensitive mechanisms. Circulation. 2009;119(10):1398-407. doi: 10.11 61/CIRCULATIONAHA.108.790501
42. Marian AJ. The University of Texas Health Science Centre, Houston (2012). Hypertrophic regression with N-Acetylcysteine in HCM (HALT). US National Library of Medicine. https://clinicaltrials.gov/ct2/show/NCT 01537926
43. Abozguia K, Elliott P, McKenna W, Phan TT, Nallur-Shivu G, Ahmed I, Maher AR, Kaur K, Taylor J, Henning A, Ashrafian H, Watkins H, Frenneaux M. Metabolic modulator perhexiline corrects energy deficiency and improves exercise capacity in symptomatic hypertrophic cardiomyopathy. Circulation. 2010;122(16):1562-9. doi: 10.1161/CIRCU LATIONAHA.109.934059
44. Heart Metabolics Limited (2015). Efficacy, safety, and tolerability of perhexiline in subjects with hypertrophic cardiomyopathy and heart failure. US National Library of Medicine. https://clinicaltrials.gov/ct2/show/ NCT02431221
45. Lim DS, Lutucuta S, Bachireddy P, Youker K, Evans A, Entman M, Roberts R, Marian AJ. Angiotensin II blockade reverses myocardial fibrosis in a transgenic mouse model of human hypertrophic cardiomyopathy. Circulation. 2001;103(6):789-92. doi: 10.1161/01.cir.103.6.789
46. Teekakirikul P, Eminaga S, Toka O, Alcalai R, Wang L, Wakimoto H, Nayor M, Konno T, Gorham JM, Wolf CM, Kim JB, Schmitt JP, Molkentin JD, Norris RA, Tager AM, Hoffman SR, Markwald RR, Seidman CE, Seidman JG. Cardiac fibrosis in mice with hypertrophic cardiomyopathy is mediated by non-myocyte proliferation and requires TGF-β. J Clinical Investigation. 2010;120(10):3520-9. doi: 10.1172/JCI42028DS1
47. Yamazaki T, Suzuki J-I, Shimamoto R, Tsuji T, Ohmoto-Sekine Y, Ohtomo K, Nagai R. A new therapeutic strategy for hypertrophic nonobstructive cardiomyopathy in humans. A randomized and prospective study with an angiotensin II receptor blocker. International Heart J. 2007;48(6):715-24. doi: 10.1536/ihj.48.715
48. Penicka M, Gregor P, Kerekes R, et al. The effects of candesartan on left ventricular hypertrophy and function in nonobstructive hypertrophic cardiomyopathy: a pilot, randomized study. J Molecular Diagnostics. 2009;11(1):35-41. doi: 10.2353/jmoldx.2009.080082
49. Axelsson A, Iversen K, Vejlstrup N, Ho CY, Havndrup O, Kofoed KF, Norsk J, Jensen M, Bundgaard H. Functional effects of losartan in hypertrophic cardiomyopathy-a randomised clinical trial. Heart. 2016;102(4):285-91. doi: 10.1136/heartjnl-2015-308343
50. Axelsson A, Iversen K, Vejlstrup N, Ho C, Norsk J, Langhoff L, Ahtarovski K, Corell P, Havndrup O, Jensen M, Bundgaard H. Efficacy and safety of the angiotensin II receptor blocker losartan for hypertrophic cardiomyopathy: the INHERIT randomised, double-blind, placebo-controlled trial. Lancet Diabetes and Endocrinology. 2015;3(2):123-31. doi: 10.1016/S2213-8587 (14)70241-4
51. New England Research Institutes (2013). Valsartan for attenuating desease evolution in early sarcomeric HCM (VANISH). US National Library of Medicine. https://clinicaltrials.gov/ct2/show/NCT01912534
52. Fang L, Ellims AH, Moore XL, White DA, Taylor AJ, Chin-Dusting J, Dart AM. Circulating microRNAs as biomarkers for diffuse myocardial fibrosis in patients with hypertrophic cardiomyopathy. J Translational Medicine. 2015;13:314. doi: 10.1186/s12967-015-0672-0
53. Kim JO, Song DW, Kwon EJ, Hong SE, Song HK, Min CK, Kim DH. MiR-185 plays an anti-hypertrophic role in the heart via multiple targets in the calcium-signaling pathways. PLoS One. 2015;10(3):e0122509. doi: 10.1371/ journal.pone.0122509
54. Wei L, Yuan M, Zhou R, Bai Q, Zhang W, Zhang M, Huang Y, Shi L. MicroRNA-101 inhibits rat cardiac hypertrophy by targeting Rab1a. J Cardiovascular Pharmacology. 2015;65(4):357-63. doi: 10.1097/FJC.000 0000000000203
________________________________________________
1. Elliott P, Andersson B, Arbustini E, Bilinska Z, Cecchi F, Charron P, Dubourg O, Kühl U, Maisch B, McKenna WJ, Monserrat L, Pankuweit S, Rapezzi C, Seferovic P, Tavazzi L, Keren A. Classification of the cardiomyopathies: a position statement from the European Society Of Cardiology Working Group on Myocardial and Pericardial Diseases. European Heart J. 2008;29(2):270-6. doi: 10.1093/eurheartj/ehm 342
2. Biology Interdisciplinary Working Maron BJ, Towbin JA, Thiene G, Antzelevitch C, Corrado D, Arnett D, Moss AJ, Seidman CE, Young JB; American Heart Association; Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; Council on Epidemiology and Prevention. Contemporary definitions and classification of the cardiomyopathies: an American Heart Association Scientific Statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Groups; and Council on Epidemiology and Prevention. Circulation. 2006;113(14):1807-16. doi: 10.1161/CIRCULATIONAHA.106.1742877
3. Maron BJ. The 2006 American Heart Association classification of cardiomyopathies is the gold standard. Circulation: Heart Failure. 2008;1(1):72-76. doi: 10.1161/CIRCHEARTFAILURE.108.770826
4. Arbustini E, Narula N, Dec GW, Reddy KS, Greenberg B, Kushwaha S, Marwick T, Pinney S, Bellazzi R, Favalli V, Kramer C, Roberts R, Zoghbi WA, Bonow R, Tavazzi L, Fuster V, Narula J. The MOGE(S) classification for a phenotype-genotype nomenclature of cardiomyopathy: endorsed by the World Heart Federation. J American College of Cardiology. 2013;62(22):2046-72. doi: 10.1016/j.jacc.2013.08.1644
5. Denoix PF. Nomеnclature des cancers. Bull Inst Nat Hyg (Paris). 1944:69-73.
6. James D. Brierley, Mary K. Gospodarowicz, Christian Wittekind. TNM Classification of Malignant Tumours. Eighth edition. Union for International Cancer Control. 2017
7. Agarwal A, Yousefzai R, Jan MF, Cho C, Shetabi K, Bush M, Khandheria BK, Paterick TE, Treiber S, Sra J, Werner P, Allaqaband S, Bajwa T, Tajik AJ. Clinical application of WHF-MOGE(S) classification for hypertrophic cardiomyopathy. Global Heart. 2015;10(3):209-19. doi: 10.1016/j.gheart. 2015.01.001
8. Authors/Task Force members, Elliott PM, Anastasakis A, Borger MA, Borggrefe M, Cecchi F, Charron P, Hagege AA, Lafont A, Limongelli G, Mahrholdt H, McKenna WJ, Mogensen J, Nihoyannopoulos P, Nistri S, Pieper PG, Pieske B, Rapezzi C, Rutten FH, Tillmanns C, Watkins H. 2014 ESC Guidelines on diagnosis and management of hypertrophic cardiomyopathy: the Task Force for the Diagnosis and Management of Hypertrophic Cardiomyopathy of the European Society of Cardiology (ESC). European Heart J. 2014;35(39):2733-79. doi: 10.1093/eurheartj/ehu 284
9. Semsarian C, Ingles J, Maron MS, Maron BJ. New perspectives on the prevalence of hypertrophic cardiomyopathy. J Am College of Cardiology. 2015;65(12):1249-54. doi: 10.1016/j.jacc.2015.01. 019
10. Lopes LR, Rahman MS, Elliott PM. A systematic review and meta-analysis of genotype-phenotype associations in patients with hypertrophic cardiomyopathy caused by sarcomeric protein mutations. Heart. 2013;99(24):1800-11. doi: 10.1136/heartjnl-2013-303939
11. Marian AJ, Braunwald E. Hypertrophic Cardiomyopathy: Genetics, Pathogenesis, Clinical Manifestations, Diagnosis, and Therapy. Circulation Research. 2017;121(7):749-70. doi: 10.1161/CIRCRESAHA.117.311059
12. Wang P, Zou Y, Fu C, Zhou X, Hui R. MYBPC3 polymorphism is a modifier for expression of cardiac hypertrophy in patients with hypertrophic cardiomyopathy. Biochemical and Biophysical Research Communications. 2005;329(2):796-9. doi: 10.1016/j.bbrc.2005.02.004
13. Marian AJ. Modifier genes for hypertrophic cardiomyopathy. Current Opinion in Cardiology. 2002;17(3):242-52. doi: 10.1097/00001573-200 205000-00006
14. Brugada R, Kelsey W, Lechin M, Zhao G, Yu Q.T, Zoghbi W, Quinones M, Elstein E, Omran A, Rakowski H, Wigle D, Liew CC, Sole M, Roberts R, Marian AJ. Role of candidate modifier genes on the phenotypic expression of hypertrophy in patients with hypertrophic cardiomyopathy. J Investigative Medicine. 1997;45(9):542-51.
15. Arad M, Seidman JG, Seidman CE. Phenotypic diversity in hypertrophic cardiomyopathy. Human Molecular Genetics. 2002;11(20):2499-506. doi: 10.1093/hmg/11.20.2499
16. Dimitrow PP, Czarnecka D, Jaszcz KK, Dubiel JS. Sex differences in age at onset of symptoms in patients with hypertrophic cardiomyopathy. J Cardiovascular Risk. 1997;4(1):33-5. doi: 10.1097/00043798-199702000-00006
17. Lin CL, Chiang CW, Shaw CK, Chu PH, Chang CJ, Ko YL. Gender differences in the presentation of adult obstructive hypertrophic cardiomyopathy with resting gradient: a study of 122 patients. Japanese Circulation J. 1999;63(11):859-64. doi: 10.1253/jcj.63.859
18. Kubo T, Kitaoka H, Okawa M, Hirota T, Hayato K, Yamasaki N, Matsumura Y, Yabe T, Doi YL. Gender-specific differences in the clinical features of hypertrophic cardiomyopathy in a community-based Japanese population: results from Kochi RYOMA study. J Cardiology. 2010;56(3):314-9. doi: 10.1016/j.jjcc.2010.07.004
19. [Poliakova AA, Gudkova AYa, Krutikov AN, Semernin EN, Kozlenok AV, Pyko SA, Kostareva AA, Shlyakhto EN. Hypertrophic cardiomyopathy in the older age group: the effect of cardiometabolic risk factors and rs2290149 and rs10838692 of the MADD gene. Arterial’naya Gipertenziya = Arterial Hypertension. 2018;24(1):29-40 (In Russ.)]. doi: 10.18705/1607-419X-2018-24-1-29-40
20. Ingles J, Burns C, Bagnall RD, Lam L, Yeates L, Sarina T, Puranik R, Briffa T, Atherton JJ, Driscoll T, Semsarian C. Nonfamilial Hypertrophic Cardiomyopathy: Prevalence, Natural History, and Clinical Implications. Circulation. Cardiovascular Genetics. 2017;10(2). doi: 10.1161/CIRC GENETICS.116.001620
21. Kelly M, Semsarian C. Multiple mutations in genetic cardiovascular disease: a marker of disease severity? Circulation. Cardiovascular Genetics. 2009;2(2):182-90. doi: 10.1161/CIRCGENETICS.108.836478
22. Girolami F, Ho CY, Semsarian C, Baldi M, Will ML, Baldini K, Torricelli F, Yeates L, Cecchi F, Ackerman MJ, Olivotto I. Clinical features and outcome of hypertrophic cardiomyopathy associated with triple sarcomere protein gene mutations. J Am College of Cardiology. 2010;55(14):1444-53. doi: 10.1016/j.jacc.2009.11.062
23. Maron BJ, Rowin EJ, Casey SA, Haas TS, Chan RH, Udelson JE, Garberich RF, Lesser JR, Appelbaum E, Manning WJ, Maron MS. Risk stratification and outcome of patients with hypertrophic cardiomyopathy ≥ 60 years of age. Circulation. 2013;127(5):585-93. doi: 10.1161/CIRCULATIONAHA. 112.136085
24.[Ageev PhT, Gabrusenko SA, Postnov AY, Akchurin RS, Smirnova MD, Karpov RS, Shaposhnik, LopatinYuM, Barbarash OL, Galyavich AS. National clinical guideline on diagnosis and treatment of hypertrophic cardiomyopathy. Kardiologicheskij Vestnik. 2016;1:3-22 (In Russ.)].
25. Philipson DJ, DePasquale EC, Yang EH, Baas AS. Emerging pharmacologic and structural therapies for hypertrophic cardiomyopathy. Heart Failure Reviews. 2017;22(6):879-88. doi: 10.1007/s10741-017-9648-x
26. Semsarian C, Ahmad I, Giewat M, Georgakopoulos D, Schmitt JP, McConnell BK, Reiken S, Mende U, Marks AR, Kass DA, Seidman CE, Seidman JG. The L-type calcium channel inhibitor diltiazem prevents cardiomyopathy in a mouse model. J Clinical Investigation. 2002;109(8):1013-20. doi: 10.1172/JCI200214677
27. Ho CY, Lakdawala NK, Cirino AL, Lipshultz SE, Sparks E, Abbasi SA, Kwong RY, Antman EM, Semsarian C, González A, López B, Diez J, Orav EJ, Colan SD, Seidman CE. Diltiazem treatment for pre-clinical hypertrophic cardiomyopathy sarcomere mutation carriers: a pilot randomized trial to modify disease expression. JACC: Heart Failure. 2015;3(2):180-8. doi: 10.1016/j.jchf.2014.08.003
28. Cooper RM, Raphael CE, Liebregts M, Anavekar NS, Veselka J. New Developments in Hypertrophic Cardiomyopathy. Canadian J Cardiology. 2017;33(10):1254-65. doi: 10.1016/j.cjca.2017.07.007
29. Coppini R, Ferrantini C, Yao L, Fan P, Del Lungo M, Stillitano F, Sartiani L, Tosi B, Suffredini S, Tesi C, Yacoub M, Olivotto I, Belardinelli L, Poggesi C, Cerbai E, Mugelli A. Late sodium current inhibition reverses electromechanical dysfunction in human hypertrophic cardiomyopathy. Circulation. 2013;127(5):575-84. doi: 10.1161/CIRCULATIONAHA.112. 134932
30. Lovelock JD, Monasky MM, Jeong EM, Lardin HA, Liu H, Patel BG, Taglieri DM, Gu L, Kumar P, Pokhrel N, Zeng D, Belardinelli L, Sorescu D, Solaro RJ, Dudley SC Jr. Ranolazine improves cardiac diastolic dysfunction through modulation of myofilament calcium sensitivity. Circulation Research. 2012;110(6):841-50. doi: 10.1161/CIRCRESAHA.111.258251
31. Coppini R, Mazzoni L, Ferrantini C, Gentile F, Pioner JM, Laurino A, Santini L, Bargelli V, Rotellini M, Bartolucci G, Crocini C, Sacconi L, Tesi C, Belardinelli L, Tardiff J, Mugelli A, Olivotto I, Cerbai E, Poggesi C. Ranolazine Prevents Phenotype Development in a Mouse Model of Hypertrophic Cardiomyopathy. Circulation Heart Failure. 2017;10(3). doi: 10.1161/CIRCHEARTFAILURE.116.003565
32. Flenner F, Friedrich FW, Ungeheuer N , Christ T, Geertz B, Reischmann S, Wagner S, Stathopoulou K, Söhren KD, Weinberger F, Schwedhelm E, Cuello F, Maier LS, Eschenhagen T, Carrier L. Ranolazine antagonizes catecholamine-induced dysfunction in isolated cardiomyocytes, but lacks long-term therapeutic effects in vivo in a mouse model of hypertrophic cardiomyopathy. Cardiovascular Research. 2016;109(1):90-102. doi: 10. 1093/cvr/cvv247
33. Gentry JL, 3rd, Mentz RJ, Hurdle M, Wang A. Ranolazine for Treatment of Angina or Dyspnea in Hypertrophic Cardiomyopathy Patients (RHYME). J Am College of Cardiology. 2016;68(16):1815-7. doi: 10.1016/j.jacc. 2016.07.758
34. Olivotto I, Camici PG, Merlini PA, Rapezzi C, Patten M, Climent V, Sinagra G, Tomberli B, Marin F, Ehlermann P, Maier LS, Fornaro A, Jacobshagen C, Ganau A, Moretti L, Hernandez Madrid A, Coppini R, Reggiardo G, Poggesi C, Fattiroli F, Belardinelli L, Gensini G, Mugelli A. Efficacy of Ranolazine in Patients With Symptomatic Hypertrophic Cardiomyopathy: The RESTYLE-HCM Randomized, Double-Blind, Placebo-Controlled Study. Circulation Heart Failure. 2018;11:e004124. doi: 10.1161/CIRCHEARTFAILURE.117.004124
35. Gilead Sciences (2014). Effect of eleclazine (GS-6615) on exercise capacity in subjects with symptomatic hypertrophic cardiomyopathy (LIBERTY-HCM). US National Library of Medicine. https://clinicaltrials.gov/ct2/show/ NCT02291237
36. Green EM, Wakimoto H, Anderson, Evanchik MJ, Gorham JM, Harrison BC, Henze M, Kawas R, Oslob JD, Rodriguez HM, Song Y, Wan W, Leinwand LA, Spudich JA, McDowell RS, Seidman JG, Seidman CE. A small-molecule inhibitor of sarcomere contractility suppresses hypertrophic cardiomyopathy in mice. Science. 2016;351(6273):617-21. doi: 10.1126/ science.aad3456
37. Stern JA, Markova S, Ueda Y, Kim JB, Pascoe PJ, Evanchik MJ, Green EM, Harris SP. A Small Molecule Inhibitor of Sarcomere Contractility Acutely Relieves Left Ventricular Outflow Tract Obstruction in Feline Hypertrophic Cardiomyopathy. PloS One. 2016;11(12):e0168407. doi: 10.1371/journal. pone.0168407
38. MyoKardia Inc. (2016). A Phase 2 Open-label Pilot Study Evaluating MYK-461 in Subjects With Symptomatic Hypertrophic Cardiomyopathy and Left Ventricular Outflow Tract Obstruction (PIONEER-HCM). US National Library of Medicine. https://clinicaltrials.gov/ct2/show/study/NCT02842242
39. Crilley JG, Boehm EA, Blair E, Rajagopalan B, Blamire AM, Styles P, McKenna WJ, Ostman-Smith I, Clarke K, Watkins H. Hypertrophic cardiomyopathy due to sarcomeric gene mutations is characterized by impaired energy metabolism irrespective of the degree of hypertrophy. J Am College of Cardiology. 2003;41(10):1776-82. doi: 10.1016/S0735-1097(02)03009-7
40. Wilder T, Ryba DM, Wieczorek DF, Wolska BM, Solaro RJ. N-acetylcysteine reverses diastolic dysfunction and hypertrophy in familial hypertrophic cardiomyopathy. Am J Physiology. Heart and Circulatory Physiology. 2015;309(10):H1720-30. doi: 10.1152/ajpheart.00 339.2015
41. Lombardi R, Rodriguez G, Chen SN, Ripplinger CM, Li W, Chen J, Willerson JT, Betocchi S, Wickline SA, Efimov IR, Marian AJ. Resolution of established cardiac hypertrophy and fibrosis and prevention of systolic dysfunction in a transgenic rabbit model of human cardiomyopathy through thiol-sensitive mechanisms. Circulation. 2009;119(10):1398-407. doi: 10.11 61/CIRCULATIONAHA.108.790501
42. Marian AJ. The University of Texas Health Science Centre, Houston (2012). Hypertrophic regression with N-Acetylcysteine in HCM (HALT). US National Library of Medicine. https://clinicaltrials.gov/ct2/show/NCT 01537926
43. Abozguia K, Elliott P, McKenna W, Phan TT, Nallur-Shivu G, Ahmed I, Maher AR, Kaur K, Taylor J, Henning A, Ashrafian H, Watkins H, Frenneaux M. Metabolic modulator perhexiline corrects energy deficiency and improves exercise capacity in symptomatic hypertrophic cardiomyopathy. Circulation. 2010;122(16):1562-9. doi: 10.1161/CIRCU LATIONAHA.109.934059
44. Heart Metabolics Limited (2015). Efficacy, safety, and tolerability of perhexiline in subjects with hypertrophic cardiomyopathy and heart failure. US National Library of Medicine. https://clinicaltrials.gov/ct2/show/ NCT02431221
45. Lim DS, Lutucuta S, Bachireddy P, Youker K, Evans A, Entman M, Roberts R, Marian AJ. Angiotensin II blockade reverses myocardial fibrosis in a transgenic mouse model of human hypertrophic cardiomyopathy. Circulation. 2001;103(6):789-92. doi: 10.1161/01.cir.103.6.789
46. Teekakirikul P, Eminaga S, Toka O, Alcalai R, Wang L, Wakimoto H, Nayor M, Konno T, Gorham JM, Wolf CM, Kim JB, Schmitt JP, Molkentin JD, Norris RA, Tager AM, Hoffman SR, Markwald RR, Seidman CE, Seidman JG. Cardiac fibrosis in mice with hypertrophic cardiomyopathy is mediated by non-myocyte proliferation and requires TGF-β. J Clinical Investigation. 2010;120(10):3520-9. doi: 10.1172/JCI42028DS1
47. Yamazaki T, Suzuki J-I, Shimamoto R, Tsuji T, Ohmoto-Sekine Y, Ohtomo K, Nagai R. A new therapeutic strategy for hypertrophic nonobstructive cardiomyopathy in humans. A randomized and prospective study with an angiotensin II receptor blocker. International Heart J. 2007;48(6):715-24. doi: 10.1536/ihj.48.715
48. Penicka M, Gregor P, Kerekes R, et al. The effects of candesartan on left ventricular hypertrophy and function in nonobstructive hypertrophic cardiomyopathy: a pilot, randomized study. J Molecular Diagnostics. 2009;11(1):35-41. doi: 10.2353/jmoldx.2009.080082
49. Axelsson A, Iversen K, Vejlstrup N, Ho CY, Havndrup O, Kofoed KF, Norsk J, Jensen M, Bundgaard H. Functional effects of losartan in hypertrophic cardiomyopathy-a randomised clinical trial. Heart. 2016;102(4):285-91. doi: 10.1136/heartjnl-2015-308343
50. Axelsson A, Iversen K, Vejlstrup N, Ho C, Norsk J, Langhoff L, Ahtarovski K, Corell P, Havndrup O, Jensen M, Bundgaard H. Efficacy and safety of the angiotensin II receptor blocker losartan for hypertrophic cardiomyopathy: the INHERIT randomised, double-blind, placebo-controlled trial. Lancet Diabetes and Endocrinology. 2015;3(2):123-31. doi: 10.1016/S2213-8587 (14)70241-4
51. New England Research Institutes (2013). Valsartan for attenuating desease evolution in early sarcomeric HCM (VANISH). US National Library of Medicine. https://clinicaltrials.gov/ct2/show/NCT01912534
52. Fang L, Ellims AH, Moore XL, White DA, Taylor AJ, Chin-Dusting J, Dart AM. Circulating microRNAs as biomarkers for diffuse myocardial fibrosis in patients with hypertrophic cardiomyopathy. J Translational Medicine. 2015;13:314. doi: 10.1186/s12967-015-0672-0
53. Kim JO, Song DW, Kwon EJ, Hong SE, Song HK, Min CK, Kim DH. MiR-185 plays an anti-hypertrophic role in the heart via multiple targets in the calcium-signaling pathways. PLoS One. 2015;10(3):e0122509. doi: 10.1371/ journal.pone.0122509
54. Wei L, Yuan M, Zhou R, Bai Q, Zhang W, Zhang M, Huang Y, Shi L. MicroRNA-101 inhibits rat cardiac hypertrophy by targeting Rab1a. J Cardiovascular Pharmacology. 2015;65(4):357-63. doi: 10.1097/FJC.000 0000000000203
1 ФБГОУ ВО «Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлова» Минздрава России, Санкт-Петербург, Россия;
2 ФГБУ «Национальный медицинский исследовательский центр им. В.А. Алмазова» Минздрава России, Санкт-Петербург, Россия
________________________________________________
A.Ya. Gudkova 1,2, A.A Streltsova 2, A.A. Kostareva 1,2
1 Pavlov Medical University, St. Petersburg, Russia;
2 Almazov Federal Medical Research Centre, St. Petersburg, Russia