Фармакогенетика гипогликемий и вариабельности гликемии у пациентов с сахарным диабетом 2-го типа
Фармакогенетика гипогликемий и вариабельности гликемии у пациентов с сахарным диабетом 2-го типа
Черникова Н.А., Камынина Л.Л., Аметов А.С. и др. Фармакогенетика гипогликемий и вариабельности гликемии у пациентов с сахарным диабетом 2-го типа. Терапевтический архив. 2020; 92 (10): 54–62. DOI: 10.26442/00403660.2020.10.000530
________________________________________________
Chernikova N.A., Kamynina L.L., Ametov A.S., et al. The pharmacogenetics of hypoglycemia and the glycemic variability at the patients ith type 2 diabetes mellitus. Therapeutic Archive. 2020; 92 (10): 54–62. DOI: 10.26442/00403660.2020.10.000530
Фармакогенетика гипогликемий и вариабельности гликемии у пациентов с сахарным диабетом 2-го типа
Черникова Н.А., Камынина Л.Л., Аметов А.С. и др. Фармакогенетика гипогликемий и вариабельности гликемии у пациентов с сахарным диабетом 2-го типа. Терапевтический архив. 2020; 92 (10): 54–62. DOI: 10.26442/00403660.2020.10.000530
________________________________________________
Chernikova N.A., Kamynina L.L., Ametov A.S., et al. The pharmacogenetics of hypoglycemia and the glycemic variability at the patients ith type 2 diabetes mellitus. Therapeutic Archive. 2020; 92 (10): 54–62. DOI: 10.26442/00403660.2020.10.000530
Гипогликемии и высокая вариабельность гликемии значительно ухудшают качество гликемического контроля и прогноз пациентов с с сахарным диабетом 2-го типа (СД 2), принимающих препараты сульфонилмочевины (ПСМ), широко используемые вследствие высокой сахароснижающей мощности. Между тем, носительство полиморфных маркеров гена системы цитохрома CYP2C9 [rs1799853 CYP2C9*2 С430Т Arg144cys (C>T) и rs1057910 CYP2C9*3 А1075С ile359Leu (A>C)] оказывает влияние на печеночный метаболизм ПСМ и частоту развития гипогликемий. При этом наиболее точная регистрация гипогликемий достигается при проведении профессионального непрерывного мониторирования гликемии (НМГ). Цель. Исследовать связь между развитием гипогликемий, зарегистрированных при проведении профессионального НМГ, тяжелых гипогликемий на дому и носительством гетеро-/гомозиготных вариантов полиморфных маркеров гена системы цитохрома CYP2C9 (rs1799853 и rs1057910) у пациентов с СД 2, принимающих ПСМ.
Материалы и методы. В исследование «случай-контроль» включены 110 пациентов с СД 2, принимающих ПСМ, у которых методом PCR-RT оценено носительство полиморфных маркеров гена CYP2C9 и выполнено профессиональное НМГ (система iPro2, Medtronic), регистрирующее время нахождения в диапазоне гипогликемии TIR-HYPO, уровень минимальной НМГ-гипогликемии MinGl, НМГ-показатели вариабельности гликемии. Данные о тяжелых гипогликемиях на дому сообщены при визитах. Рассчитано отношение шансов (ОШ) развития метаболических нарушений при носительстве полиморфных маркеров в сравнении с неизмененными аллелями гена CYP2C9. Результаты. Показано, что у пациентов с СД 2, принимающих ПСМ, носительство полиморфных маркеров rs1799853 и rs1057910 ассоциируется с повышением вариабельности гликемии и частоты развития НМГ-гипогликемий (отмечается снижение MinGl, увеличение TIR-HYPO, числа перепадов уровня НМГ-гликемии >4 ммоль/л/ч), а также развития тяжелых гипогликемий на дому (p<0,05). Так, ОШ при носительстве полиморфных маркеров rs1799853 и rs1057910 в сравнении с неизмененным генотипом составило соответственно: при развитии НМГ-гипогликемий – 7,78 (3,02–20,01) и 5,80 (0,23–145,87); перепадов гликемии >4 ммоль/л – 5,76 (2,29–14,43) и 4,44 (1,43–13,76); MinGl<3,9 ммоль/л – 4,39 (1,79–10,75) и 6,26 (1,84–21,30); CV>40% (vs<30%) – 3,63 (1,04–12,62) и 15,22 (0,59–393,94); p<0,05. Заключение. В реальной клинической практике включению ПСМ в схему сахароснижающей терапии СД 2 должна предшествовать оценка носительства полиморфных маркеров гена CYP2C9 для выявления пациентов, имеющих повышенный риск развития гипогликемий и повышения вариабельности гликемии.
Ключевые слова: сахарный диабет 2-го типа, генетика, фармакогенетика, полиморфный маркер, CYP2C9, гипогликемия, вариабельность гликемии, CGM (непрерывное мониторирование гликемии).
________________________________________________
Aim. To investigate the link between the hypoglycemia (registrated accurately by the professional Continuous Glucose Monitoring – CGM; severe hypoglycemia at home) and the hetero-/homozygote carriage of single nucleotide polymorphisms (SNP) of cytochrome system’s gene CYP2C9 (rs1799853 CYP2C9*2 и rs1057910 CYP2C9*3) at the patients with Type 2 Diabetes Mellitus (T2DM) used sulphonylurea (SU).
Materials and methods. In Study “Case-Control” 120 T2DM-SU-patients genotyped by SNPs of gene CYP2C9 (using PCR-RT) had been done the professional CGM (System iPro2, Medtronic) recorded Time in Range of Hypoglycemia (TIR-HYPO), level of Minimal CGM-hypoglycemia (MinGl) and standard CGM-parameters of Glycemic Variability. Severe hypoglycemia at home was recorded from visit to visit. The odds ratio (OR) of metabolic disturbances had been assessed for carriage SNPs in comparison with wide alleles. Results. The Study established that carriage of SNPs rs1799853 and rs1057910 gene CYP2C9 at T2DM-SU-patients associated with rising of Glycemic Variability and frequency of CGM-hypoglycemia (MinGl decreasing, increasing of TIR-HYPO and number of Glycemia Excursion >4 mmol/L/h), as well as increasing severe hypoglycemia at home (p<0.05). Thus, OR at the carriage of rs1799853 and rs1057910 respectively equaled: for CGM-hypoglycemia – 7.78 (3.02–20.01) and 5.80 (0.23–145.87); number of Glycemia Excursion >4 mmol/L/h – 5.76 (2.29–14.43) and 4.44 (1.43–13.76); MinGl<3.9 mmol/L – 4.39 (1.79–10.75) and 6.26 (1.84–21.30); CV>40% (vs<30%) – 3.63 (1.04–12.62) and 15.22 (0.59–393.94); p<0.05. Conclusion. At the real clinical practice the assessment of carriage of SNPs of gene CYP2C9 before inclusion of SU to glucose-lowering scheme of T2DM-therapy it necessary to carry out for the detecting patients with a higher risk of hypoglycemia and rising of Glycemic Variability.
Keywords: type 2 diabetes mellitus, genetics, pharmacogenetics, SNP (single nucleotide polymorphism), CYP2C9, hypoglycemia, glycemic variability, CGM (Continuous Glucose Monitoring).
Список литературы
1. Lo SC, Yang YS, Kornelius E, et al. Early cardiovascular risk and all-cause mortality following an incident of severe hypoglycaemia: A population-based cohort study. Diabetes Obes Metab. 2019;21(8):1878-85. doi: 10.1111/dom.13746
2. Middleton TL, Wong J, Molyneaux L, et al. Cardiac Effects of Sulfonylurea-Related Hypoglycemia. Diabetes Care. 2017;40(5):663-70. doi: 10.2337/dc16-1972
3. Douros A, Dell'Aniello S, Yu OHY, et al. Sulfonylureas as second line drugs in type 2 diabetes and the risk of cardiovascular and hypoglycaemic events: population based cohort study. BMJ. 2018;362:k2693. doi: 10.1136/bmj.k2693
4. Rao AD, Bonyhay I, Dankwa J, et al. Baroreflex Sensitivity Impairment During Hypoglycemia: Implications for Cardiovascular Control. Diabetes. 2016;65(1):209-15. doi: 10.2337/db15-0871
5. Sychev DA, Ashraf GM, Svistunov AA, et al. The cytochrome P450 isoenzyme and some new opportunities for the prediction of negative drug interaction in vivo. Drug Des Devel Ther. 2018;12:1147-56. doi: 10.2147/DDDT.S149069
6. Mannino GC, Andreozzi F, Sesti G. Pharmacogenetics of type 2 diabetes mellitus, the route toward tailored medicine. Diabetes Metab Res Rev. 2019;35(3):e3109. doi: 10.1002/dmrr.3109
7. Holstein A, Beil W, Kovacs P. CYP2C metabolism of oral antidiabetic drugs – impact on pharmacokinetics, drug interactions and pharmacogenetic aspects. Expert Opin Drug Metab Toxicol. 2012;8(12):1549-63. doi: 10.1517/17425255.2012.722619
8. Аметов А.С., Черникова Н.А. Гликемический контроль у пациентов с сахарным диабетом 2-го типа. Consilium Medicum. 2016;18(4):24-7. [Ametov AS, Chernikova NA. Glycemic control in patients with type 2 diabetes mellitus. Consilium Medicum. 2016;18(4):24-7 (In Russ.)].
9. Аметов А.С., Камынина Л.Л., Ахмедова З.Г. Клинические аспекты генетики, нутриогенетики и фармакогенетики сахарного диабета 2-го типа. Терапевтический архив. 2015;87(8):124-31 [Ametov AS, Kamynina LL, Akhmedova ZG. Type 2 diabetes mellitus: Clinical aspects of genetics, nutrigenetics, and pharmacogenetics. Therapeutic Archive. 2015;8:124-31 (In Russ.)]. doi: 10.17116/terarkh2015878124-131
10. Скуратовская Д.А., Вульф М.А., Кириенкова Е.В. и др. Роль полиморфизма Leu260Phe гена рецептора к инкретину GLP-1 в патогенезе сахарного диабета 2 типа при ожирении. Сахарный диабет. 2019;22(3):217-24 [Skuratovskaia DA, Vulf MA, Kirienkova EV, et al. The role of LEU260PHE polymorphism of the receptor gene to GLP-1 incretin in the pathogenesis of diabetes type 2 diabetes with obesity. Diabetes Mellitus. 2019;22(3):217-24 (In Russ.)]. doi: 10.14341/DM9974
11. Бирюкова Е.В. Препараты сульфонилмочевины: эффективное лечение сахарного диабета типа 2. Эффективная фармакотерапия: Эндокринология. 2015;43(5):14-9. [Biryukova Ye.V. Sulfonylureas: efficient treatment of type 2 diabetes mellitus. ournal. Effective pharmacotherapy: Endocrinology. 2015;43(5):14-9 (In Russ.)].
12. Rettie AE, Korzekwa KR, Kunze KL, et al. Hydroxylation of warfarin by human cDNA-expressed cytochrome P-450: a role for P-4502C9 in the etiology of (S)-warfarin-drug interactions. Chem Res Toxicol. 1992;5(1):54-9. doi: 10.1021/tx00025a009
13. Back DJ, Orme ML. Genetic factors influencing the metabolism of tolbutamide. Pharmacol Ther. 1989;44(2):147-55. doi: 10.1016/0163-7258(89)90064-8
14. Botton MR, Lu X, Zhao G, et al. Structural variation at the CYP2C locus: Characterization of deletion and duplication alleles. Hum Mutat. 2019;40(11):e37-e51. doi: 10.1002/humu.23855
15. Läpple F, von Richter O, Fromm MF, et al. Differential expression and function of CYP2C isoforms in human intestine and liver. Pharmacogenetics. 2003;13(9):565-75. doi: 10.1097/00008571-200309000-00005
16. Maruthur NM, Gribble MO, Bennett WL, et al. The pharmacogenetics of type 2 diabetes: a systematic review. Diabetes Care. 2014;37(3):876-86. doi: 10.2337/dc13-1276
17. Ren Q, Xiao D, Han X, et al. Genetic and Clinical Predictive Factors of Sulfonylurea Failure in Patients with Type 2 Diabetes. Diabetes Technol Ther. 2016;18(9):586-93. doi: 10.1089/dia.2015.0427
18. Климонтов В.В., Мякина Н.Е. Вариабельность гликемии при сахарном диабете: инструмент для оценки качества гликемического контроля и риска осложнений. Сахарный диабет. 2014;17(2):76-82 [Klimontov VV, Myakina NE. Glycaemic variability in diabetes: a tool for assessing the quality of glycaemic control and the risk of сomplications. Diabetes Mellitus. 2014;17(2):76-82 (In Russ.)]. doi: 10.14341/DM2014276-82
19. Пашенцева А.В., Вербовой А.Ф., Галкин Р.А. и др. Управление сердечно-сосудистым риском у больных сахарным диабетом 2-го типа. Клин. медицина. 2018;96(8):696-701 [Pashentseva AV, Verbovoy AF, Galkin RA, et al. Management of cardiovascular risk at patients with a diabetes mellitus type 2. Clinical Medicine. 2018;96(8):696-701 (In Russ.)]. doi: 10.18821/0023-2149-2018-96-8-696-701
20. Sattar N, Preiss D. Research digest: hypoglycaemia and glucose variability. Lancet Diabetes Endocrinol. 2017;5(12):938. doi: 10.1016/S2213-8587(17)30374-1
21. Hermanns N, Heinemann L, Freckmann G, et al. Impact of CGM on the Management of Hypoglycemia Problems: Overview and Secondary Analysis of the HypoDE Study. J Diabetes Sci Technol. 2019;13(4):636-44. doi: 10.1177/1932296819831695
22. Danne T, Nimri R, Battelino T, et al. International Consensus on Use of Continuous Glucose Monitoring. Diabetes Care. 2017;40(12):1631-40. doi: 10.2337/dc17-1600
23. Jangam SR, Hayter G, Dunn TC. Individuals with Type 1 and Type 2 Diabetes Mellitus Trade Increased Hyperglycemia for Decreased Hypoglycemia When Glycemic Variability is not Improved. Diabetes Ther. 2018;9(1):395-402. doi: 10.1007/s13300-017-0340-x
24. Gómez AM, Muñoz OM, Marin A, et al. Different Indexes of Glycemic Variability as Identifiers of Patients with Risk of Hypoglycemia in Type 2 Diabetes Mellitus. J Diabetes Sci Technol. 2018;12(5):1007-15. doi: 10.1177/1932296818758105
25. Zhou K, Donnelly L, Burch L, et al. Loss-of-function CYP2C9 variants improve therapeutic response to sulfonylureas in type 2 diabetes: a Go-DARTS study. Clin Pharmacol Ther. 2010;87(1):52-6. doi: 10.1038/clpt.2009.176
26. Chen L, Li JH, Kaur V, et al. The presence of two reduced function variants in CYP2C9 influences the acute response to glipizide. Diabet Med. 2019 Nov 10. doi: 10.1111/dme.14176
27. Klen J, Dolžan V, Janež A. CYP2C9, KCNJ11 and ABCC8 polymorphisms and the response to sulphonylurea treatment in type 2 diabetes patients. Eur J Clin Pharmacol. 2014;70(4):421-8. doi: 10.1007/s00228-014-1641-x
28. Groop L, Storm P, Rosengren A. Can genetics improve precision of therapy in diabetes? Trends Endocrinol Metab. 2014;25(9):440-3. doi: 10.1016/j.tem.2014.06.005
29. Mosikian A, Dolgorukova A, Zalevskaya A. Possible approaches to CYP2C9-guided prescription of sulfonylureas in Russia. Pharmacogenomics. 2016;17(18):2115-26. doi: 10.2217/pgs-2016-0121
________________________________________________
1. Lo SC, Yang YS, Kornelius E, et al. Early cardiovascular risk and all-cause mortality following an incident of severe hypoglycaemia: A population-based cohort study. Diabetes Obes Metab. 2019;21(8):1878-85. doi: 10.1111/dom.13746
2. Middleton TL, Wong J, Molyneaux L, et al. Cardiac Effects of Sulfonylurea-Related Hypoglycemia. Diabetes Care. 2017;40(5):663-70. doi: 10.2337/dc16-1972
3. Douros A, Dell'Aniello S, Yu OHY, et al. Sulfonylureas as second line drugs in type 2 diabetes and the risk of cardiovascular and hypoglycaemic events: population based cohort study. BMJ. 2018;362:k2693. doi: 10.1136/bmj.k2693
4. Rao AD, Bonyhay I, Dankwa J, et al. Baroreflex Sensitivity Impairment During Hypoglycemia: Implications for Cardiovascular Control. Diabetes. 2016;65(1):209-15. doi: 10.2337/db15-0871
5. Sychev DA, Ashraf GM, Svistunov AA, et al. The cytochrome P450 isoenzyme and some new opportunities for the prediction of negative drug interaction in vivo. Drug Des Devel Ther. 2018;12:1147-56. doi: 10.2147/DDDT.S149069
6. Mannino GC, Andreozzi F, Sesti G. Pharmacogenetics of type 2 diabetes mellitus, the route toward tailored medicine. Diabetes Metab Res Rev. 2019;35(3):e3109. doi: 10.1002/dmrr.3109
7. Holstein A, Beil W, Kovacs P. CYP2C metabolism of oral antidiabetic drugs – impact on pharmacokinetics, drug interactions and pharmacogenetic aspects. Expert Opin Drug Metab Toxicol. 2012;8(12):1549-63. doi: 10.1517/17425255.2012.722619
8. Аметов А.С., Черникова Н.А. Гликемический контроль у пациентов с сахарным диабетом 2-го типа. Consilium Medicum. 2016;18(4):24-7. [Ametov AS, Chernikova NA. Glycemic control in patients with type 2 diabetes mellitus. Consilium Medicum. 2016;18(4):24-7 (In Russ.)].
9. Ametov AS, Kamynina LL, Akhmedova ZG. Type 2 diabetes mellitus: Clinical aspects of genetics, nutrigenetics, and pharmacogenetics. Therapeutic Archive. 2015;8:124-31 (In Russ.) doi: 10.17116/terarkh2015878124-131
10. Skuratovskaia DA, Vulf MA, Kirienkova EV, et al. The role of LEU260PHE polymorphism of the receptor gene to GLP-1 incretin in the pathogenesis of diabetes type 2 diabetes with obesity. Diabetes Mellitus. 2019;22(3):217-24 (In Russ.) doi: 10.14341/DM9974
11. Biryukova Ye.V. Sulfonylureas: efficient treatment of type 2 diabetes mellitus. ournal. Effective pharmacotherapy: Endocrinology. 2015;43(5):14-9 (In Russ.)
12. Rettie AE, Korzekwa KR, Kunze KL, et al. Hydroxylation of warfarin by human cDNA-expressed cytochrome P-450: a role for P-4502C9 in the etiology of (S)-warfarin-drug interactions. Chem Res Toxicol. 1992;5(1):54-9. doi: 10.1021/tx00025a009
13. Back DJ, Orme ML. Genetic factors influencing the metabolism of tolbutamide. Pharmacol Ther. 1989;44(2):147-55. doi: 10.1016/0163-7258(89)90064-8
14. Botton MR, Lu X, Zhao G, et al. Structural variation at the CYP2C locus: Characterization of deletion and duplication alleles. Hum Mutat. 2019;40(11):e37-e51. doi: 10.1002/humu.23855
15. Läpple F, von Richter O, Fromm MF, et al. Differential expression and function of CYP2C isoforms in human intestine and liver. Pharmacogenetics. 2003;13(9):565-75. doi: 10.1097/00008571-200309000-00005
16. Maruthur NM, Gribble MO, Bennett WL, et al. The pharmacogenetics of type 2 diabetes: a systematic review. Diabetes Care. 2014;37(3):876-86. doi: 10.2337/dc13-1276
17. Ren Q, Xiao D, Han X, et al. Genetic and Clinical Predictive Factors of Sulfonylurea Failure in Patients with Type 2 Diabetes. Diabetes Technol Ther. 2016;18(9):586-93. doi: 10.1089/dia.2015.0427
18. Klimontov VV, Myakina NE. Glycaemic variability in diabetes: a tool for assessing the quality of glycaemic control and the risk of сomplications. Diabetes Mellitus. 2014;17(2):76-82 (In Russ.) doi: 10.14341/DM2014276-82
19. Pashentseva AV, Verbovoy AF, Galkin RA, et al. Management of cardiovascular risk at patients with a diabetes mellitus type 2. Clinical Medicine. 2018;96(8):696-701 (In Russ.) doi: 10.18821/0023-2149-2018-96-8-696-701
20. Sattar N, Preiss D. Research digest: hypoglycaemia and glucose variability. Lancet Diabetes Endocrinol. 2017;5(12):938. doi: 10.1016/S2213-8587(17)30374-1
21. Hermanns N, Heinemann L, Freckmann G, et al. Impact of CGM on the Management of Hypoglycemia Problems: Overview and Secondary Analysis of the HypoDE Study. J Diabetes Sci Technol. 2019;13(4):636-44. doi: 10.1177/1932296819831695
22. Danne T, Nimri R, Battelino T, et al. International Consensus on Use of Continuous Glucose Monitoring. Diabetes Care. 2017;40(12):1631-40. doi: 10.2337/dc17-1600
23. Jangam SR, Hayter G, Dunn TC. Individuals with Type 1 and Type 2 Diabetes Mellitus Trade Increased Hyperglycemia for Decreased Hypoglycemia When Glycemic Variability is not Improved. Diabetes Ther. 2018;9(1):395-402. doi: 10.1007/s13300-017-0340-x
24. Gómez AM, Muñoz OM, Marin A, et al. Different Indexes of Glycemic Variability as Identifiers of Patients with Risk of Hypoglycemia in Type 2 Diabetes Mellitus. J Diabetes Sci Technol. 2018;12(5):1007-15. doi: 10.1177/1932296818758105
25. Zhou K, Donnelly L, Burch L, et al. Loss-of-function CYP2C9 variants improve therapeutic response to sulfonylureas in type 2 diabetes: a Go-DARTS study. Clin Pharmacol Ther. 2010;87(1):52-6. doi: 10.1038/clpt.2009.176
26. Chen L, Li JH, Kaur V, et al. The presence of two reduced function variants in CYP2C9 influences the acute response to glipizide. Diabet Med. 2019 Nov 10. doi: 10.1111/dme.14176
27. Klen J, Dolžan V, Janež A. CYP2C9, KCNJ11 and ABCC8 polymorphisms and the response to sulphonylurea treatment in type 2 diabetes patients. Eur J Clin Pharmacol. 2014;70(4):421-8. doi: 10.1007/s00228-014-1641-x
28. Groop L, Storm P, Rosengren A. Can genetics improve precision of therapy in diabetes? Trends Endocrinol Metab. 2014;25(9):440-3. doi: 10.1016/j.tem.2014.06.005
29. Mosikian A, Dolgorukova A, Zalevskaya A. Possible approaches to CYP2C9-guided prescription of sulfonylureas in Russia. Pharmacogenomics. 2016;17(18):2115-26. doi: 10.2217/pgs-2016-0121