Москва 125252, ул. Алабяна 13, корпус 1
+7 (495) 098-03-59
Заказать звонок
  • О портале
  • Контакты
  • ...
    Omnidoctor
    Библиотека
    • Издания для врачей
      • Consilium Medicum
      • Педиатрия.Consilium Medicum
      • Современная Онкология
      • Гинекология
      • Терапевтический архив
      • Газета «Участковый терапевт»
      • Газета «Женская консультация»
      • Газета «Участковый педиатр»
      • Справочник поликлинического врача
      • Cardioсоматика
      • Системные гипертензии
    • Издания для провизоров и фармацевтов
      • Газета «Первостольник»
      • Справочник провизора
    • Online-издания
      • Женская консультация
      • Участковый педиатр
      • Участковый терапевт
    Медиатека
    Мероприятия
    Спецпроекты
    • Гормональный оркестр
    • Урологика
    • CardioSPACE
    • Современная Онкология
    • Кардиологические беседы с профессором Жировым И.В.
    • Клуб детских гастроэнтерологов и педиатров
    • Школа профессора М.И.Секачевой. Персонализированная онкология
    • Болезни органов дыхания
    • На приеме пациент с афазией
    Пресс-центр
    Практикум
      Библиотека
      Медиатека
      Мероприятия
      Спецпроекты
      Гормональный оркестр
      Урологика
      CardioSPACE
      Современная Онкология
      Кардиологические беседы с профессором Жировым И.В.
      Клуб детских гастроэнтерологов и педиатров
      Школа профессора М.И.Секачевой. Персонализированная онкология
      Болезни органов дыхания
      На приеме пациент с афазией
      Пресс-центр
      Практикум
      Omnidoctor
      Библиотека
      • Издания для врачей
        • Consilium Medicum
        • Педиатрия.Consilium Medicum
        • Современная Онкология
        • Гинекология
        • Терапевтический архив
        • Газета «Участковый терапевт»
        • Газета «Женская консультация»
        • Газета «Участковый педиатр»
        • Справочник поликлинического врача
        • Cardioсоматика
        • Системные гипертензии
      • Издания для провизоров и фармацевтов
        • Газета «Первостольник»
        • Справочник провизора
      • Online-издания
        • Женская консультация
        • Участковый педиатр
        • Участковый терапевт
      Медиатека
      Мероприятия
      Спецпроекты
      • Гормональный оркестр
      • Урологика
      • CardioSPACE
      • Современная Онкология
      • Кардиологические беседы с профессором Жировым И.В.
      • Клуб детских гастроэнтерологов и педиатров
      • Школа профессора М.И.Секачевой. Персонализированная онкология
      • Болезни органов дыхания
      • На приеме пациент с афазией
      Пресс-центр
      Практикум
        Omnidoctor
        • Библиотека
          • Назад
          • Библиотека
          • Издания для врачей
            • Назад
            • Издания для врачей
            • Consilium Medicum
            • Педиатрия.Consilium Medicum
            • Современная Онкология
            • Гинекология
            • Терапевтический архив
            • Газета «Участковый терапевт»
            • Газета «Женская консультация»
            • Газета «Участковый педиатр»
            • Справочник поликлинического врача
            • Cardioсоматика
            • Системные гипертензии
          • Издания для провизоров и фармацевтов
            • Назад
            • Издания для провизоров и фармацевтов
            • Газета «Первостольник»
            • Справочник провизора
          • Online-издания
            • Назад
            • Online-издания
            • Женская консультация
            • Участковый педиатр
            • Участковый терапевт
        • Медиатека
        • Мероприятия
        • Спецпроекты
          • Назад
          • Спецпроекты
          • Гормональный оркестр
          • Урологика
          • CardioSPACE
          • Современная Онкология
          • Кардиологические беседы с профессором Жировым И.В.
          • Клуб детских гастроэнтерологов и педиатров
          • Школа профессора М.И.Секачевой. Персонализированная онкология
          • Болезни органов дыхания
          • На приеме пациент с афазией
        • Пресс-центр
        • Практикум
        • Мой кабинет
        • +7 (495) 098-03-59
        Москва 125252, ул. Алабяна 13, корпус 1
        info@omnidoctor.ru
        • Вконтакте
        • Telegram
        • YouTube
        • Главная
        • Библиотека
        • Издания для врачей
        • Терапевтический архив
        • Журнал Терапевтический архив 2020 Терапевтический архив
        • Журнал Терапевтический архив №10 Вопросы эндокринологии 2020
        • Кишечная микробиота как фактор риска развития ожирения и сахарного диабета 2-го типа - Журнал Терапевтический архив №10 Вопросы эндокринологии 2020

        Кишечная микробиота как фактор риска развития ожирения и сахарного диабета 2-го типа - Журнал Терапевтический архив №10 Вопросы эндокринологии 2020

        Демидова Т.Ю., Лобанова К.Г., Ойноткинова О.Ш. Кишечная микробиота как фактор риска развития ожирения и сахарного диабета 2-го типа. Терапевтический архив. 2020; 92 (10): 97–104. DOI: 10.26442/00403660.2020.10.000778

        ________________________________________________

        Demidova T.Y., Lobanova K.G., Oinotkinova O.S. Gut microbiota is a factor of risk for obesity and type 2 diabetes. Therapeutic Archive. 2020; 92 (10): 97–104. DOI: 10.26442/00403660.2020.10.000778

        Кишечная микробиота как фактор риска развития ожирения и сахарного диабета 2-го типа

        Демидова Т.Ю., Лобанова К.Г., Ойноткинова О.Ш. Кишечная микробиота как фактор риска развития ожирения и сахарного диабета 2-го типа. Терапевтический архив. 2020; 92 (10): 97–104. DOI: 10.26442/00403660.2020.10.000778

        ________________________________________________

        Demidova T.Y., Lobanova K.G., Oinotkinova O.S. Gut microbiota is a factor of risk for obesity and type 2 diabetes. Therapeutic Archive. 2020; 92 (10): 97–104. DOI: 10.26442/00403660.2020.10.000778

        • Читать PDF
          Кишечная микробиота как фактор риска развития ожирения  и сахарного диабета 2-го типа

        Материалы доступны только для специалистов сферы здравоохранения. Авторизуйтесь или зарегистрируйтесь.

        • Аннотация
        • Список литературы
        • Авторы
        Аннотация
        Кишечная микробиота (КМ) – это совокупность бактерий, заселяющих желудочно-кишечный тракт. КМ и ее активные метаболиты принимают участие в кишечном и печеночном глюконеогенезе, в синтезе инкретиновых гормонов, влияют на регуляцию аппетита. Таким образом, КМ и ее продукты жизнедеятельности участвуют в гомеостазе углеводов и жиров. Дисбаланс состава кишечной флоры резко увеличивает риск развития ожирения и сахарного диабета 2-го типа. В литературе имеются противоречивые данные о роли конкретных микроорганизмов в развитии метаболических нарушений. Необходимы дальнейшие исследования, основанные на выявлении отдельных видов бактерий и продуктов их жизнедеятельности, которые влияют на развитие ожирения и сахарного диабета 2-го типа. 

        Ключевые слова: кишечная микробиота, ожирение, сахарный диабет 2-го типа, короткоцепочечные жирные кислоты.


        ________________________________________________

        Gut microbiota (GM) is a set of bacteria which colonize the gastrointestinal tract. GM and its active metabolites take part in intestinal and hepatic gluconeogenesis, in the synthesis of incretin hormones, and affect the regulation of appetite. Thus, GM and its metabolites participate in the homeostasis of carbohydrates and fats. An imbalance in the set of the intestinal flora and a disturbance of the production of active metabolites sharply increases the risk of developing obesity and type 2 diabetes. There are conflicting data in the literature on the role of specific microorganisms in the development of metabolic disorders. Research is needed to identify specific types of bacteria and their active metabolites which affect the development of obesity and type 2 diabetes.

        Keywords: gut microbiota, short-chain fatty acids, obesity, type 2 diabetes.


        Список литературы
        1. Hugon P, Dufour JC, Colson P, et al. A comprehensive repertoire of prokaryotic species identified in human beings. Lancet Infect Dis. 2015;15(10):1211-9. doi: 10.1016/S1473-3099(15)00293-5 
        2. Nima H. Jazani, Javad Savoj, et al. Impact of Gut Dysbiosis on Neurohormonal Pathways in Chronic Kidney Disease. Diseases. 2019;7(1): 1. doi: 10.3390/diseases7010021
        3. Junjie Qin, Ruiqiang Li, et al. A human gut microbial gene catalog established by metagenomic sequencing. Nature. 2010;464(7285):59-65. doi: 10.1038/nature08821
        4. Ulker İ, Yildiran H. The effects of bariatric surgery on gut microbiota in patients with obesity: a review of the literature. Biosci Microbiota Food Health. 2019;38(1):3-9. doi: 10.12938/bmfh.18-018
        5. Moles L, Gómez M, et al. Bacterial Diversity in Meconium of Preterm Neonates and Evolution of Their Fecal Microbiota during the First Month of Life. PLoS One. 2013;8(6):e66986. doi: 10.1371/journal.pone.0066986
        6. Avershina E, Storrø O, Øien T, et al. Major faecal microbiota shifts in composition and diversity with age in a geographically restricted cohort of mothers and their children. FEMS Microbiol Ecol. 2014;87(Issue 1):280-90. doi: 10.1111/1574-6941.12223
        7. Katherine M. Hunt, James A. Foster, et al. Characterization of the Diversity and Temporal Stability of Bacterial Communities in Human Milk. PLoS One. 2011;6(6):e21313. doi: 10.1371/journal.pone.0021313
        8. Juan Miguel Rodríguez, Kiera Murphy, et al. The composition of the gut microbiota throughout life, with an emphasis on early life. Microb Ecol Health Dis. 2015;26:10.3402/mehd.v26.26050. doi: 10.3402/mehd.v26.26050
        9. Tanya Yatsunenko, Federico E. Rey, et al. Human gut microbiome viewed across age and geography. Nature. 2012;486(7402):222-7. doi: 10.1038/nature11053
        10. Nihal Hasan,  Hongyi Yang. Factors affecting the composition of the gut microbiota, and its modulation. Peer J. 2019;7:e7502. doi: 10.7717/peerj.7502
        11. Thursby E, Juge N. Introduction to the human gut microbiota. Biochem J. 2017;474(11):1823-36. doi: 10.1042/BCJ20160510
        12. Rowland I, Gibson G, et al. Gut microbiota functions: metabolism of nutrients and other food components. Eur J Nutr. 2018;57(1):1-24. doi: 10.1007/s00394-017-1445-8
        13. Cummings JH, Pomare EW, Branch WJ, et al. Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut. 1987;28(10):1221-7. doi: 10.1136/gut.28.10.1221
        14. Louis P, Young P, Holtrop G, et al. Diversity of human colonic butyrate-producing bacteria revealed by analysis of the butyryl-CoA: acetate CoA-transferase gene. Environ Microbiol. 2010;12(2):304-14. doi: 10.1111/j.1462-2920.2009.02066.x
        15. Renan Corrêa-Oliveira, José Luís Fachi, et al. Regulation of immune cell function by short-chain fatty acids. Clin Transl Immunol. 2016;5(4):e73. doi: 10.1038/cti.2016.17
        16. Reichardt N, Duncan SH, et al. Phylogenetic distribution of three pathways for propionate production within the human gut microbiota. 
        ISME J. 2014;8(6):1323-35. doi: 10.1038/ismej.2014.14
        17. Pingitore A, Chambers ES, Hill T, et al. The diet-derived short chain fatty acid propionate improves beta-cell function in humans and stimulates insulin secretion from human islets in vitro. Diabetes Obes Metab. 2017;19(2):257-65. doi: 10.1111/dom.12811
        18. Frost G, Sleeth ML, et al. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat Commun. 2014;5:3611. doi: 10.1038/ncomms4611
        19. Royalty JE, Konradsen G, Eskerod O, et al. Investigation of safety, tolerability, pharmacokinetics and pharmacodynamics of single and multiple doses of a long-acting α-MSH analogue in healthy overweight and obese subjects. J Clin Pharmacol. 2014;54(4):394-404. doi: 10.1002/jcph.211
        20. Asai M, Ramachandrappa S, Joachim M, et al. Loss of function of the melanocortin 2 receptor accessory protein 2 is associated with mammalian obesity. Science. 2013;341(6143):275-8. doi: 10.1126/ science.1233000.40
        21. Загоскин П.П., Загоскина И.П., Савельева Н.А., Ляляев В.А. Современные подходы к проблеме регуляции массы тела (обзор). СТМ. 2014;6(3):104-17 [Zagoskin PP, Zagoskina IP, Savelieva NА, Lyalyaev VА. Modern Approaches to the Problem of Body Weight Regulation (Review). Sovremennye tehnologii v medicine. 2014;6(3):104-17 (In Russ.)].
        22. Bäckberg M, Madjid N, Ogren SO, et al. Downregulated expression of agouti-related protein (AGRP) mRNA in the hypothalamic arcuate nucleus of hyperphagic and obese tub/tub mice. Brain Res Mol Brain Res. 2004;125(1-2):129-39. doi: 10.1016/j.molbrainres.2004.03.012
        23. Xinggui Shen, Mattias Carlström, et al. Microbial Regulation of Host Hydrogen Sulfide Bioavailability and Metabolism. Free Radic Biol Med. 2013;60:195-200. doi: 10.1016/j.freeradbiomed.2013.02.024
        24. Fadi N Salloum. Hydrogen sulfide and cardioprotection – Mechanistic insights and clinical translatability. Pharmacol Ther. 2015;152:11-7. doi: 10.1016/j.pharmthera.2015.04.004
        25. Wei Yang, Guangdong Yang, et al. Activation of KATP channels by H2S in rat insulin-secreting cells and the underlying mechanisms.
         J Physiol. 2005;569(Pt 2):519-31. doi: 10.1113/jphysiol.2005.097642
        26. Pichette J, Fynn-Sackey N, Gagnon J. Hydrogen Sulfide and Sulfate Prebiotic Stimulates the Secretion of GLP-1 and Improves Glycemia in Male Mice. Endocrinology. 2017;158(10):3416-25. doi: 10.1210/en.2017-00391
        27. Wu L, Yang W, Jia X, et al. Pancreatic islet overproduction of H2S and suppressed insulin release in Zucker diabetic rats. Lab Invest. 2009;89(1):59-67. doi: 10.1038/labinvest.2008.109
        28. Asif K Mustafa, Moataz M, et al. H2S Signals Through Protein S-Sulfhydration. Sci Signal. Author manuscript; available in PMC 2010 Dec 8. doi: 10.1126/scisignal.2000464
        29. Tang G, Zhang L, Yang G, et al. Hydrogen sulfide-induced inhibition of L-type Ca2+ channels and insulin secretion in mouse pancreatic beta cells. Diabetologia. 2013;56(3):533-41. doi: 10.1007/s00125-012-2806-8
        30. Pichette J, Gagnon J. Implications of Hydrogen Sulfide in Glucose Regulation: How H2S Can Alter Glucose Homeostasis through Metabolic Hormones. Oxid Med Cell Longev. 2016;2016:3285074. doi: 10.1155/2016/3285074
        31. Bala V, Rajagopal S, et al. Release of GLP-1 and PYY in response to the activation of G protein-coupled bile acid receptor TGR5 is mediated by Epac/PLC-ε pathway and modulated by endogenous H2S. Front Physiol. 2014;5:420. doi: 10.3389/fphys.2014.00420
        32. Tarun Bansal, Robert C Alaniz, et al. The bacterial signal indole increases epithelial-cell tight-junction resistance and attenuates indicators of inflammation. Proc Natl Acad Sci USA. 2010;107(1):228-33. doi: 10.1073/pnas.0906112107
        33. Chimerel C, Emery E, et al. Bacterial Metabolite Indole Modulates Incretin Secretion from Intestinal Enteroendocrine L Cells. Cell Rep. 2014;9(4):1202-8. doi: 10.1016/j.celrep.2014.10.032
        34. Jing Gao, Kang Xu, et al. Impact of the Gut Microbiota on Intestinal Immunity Mediated by Tryptophan Metabolism. Front Cell Infect Microbiol. 2018;8:13. doi: 10.3389/fcimb.2018.00013
        35. Camilleri M. Serotonin in the Gastrointestinal Tract. Curr Opin Endocrinol Diabetes Obes. 2009;16(1):53-9. PMID: 19115522.
        36. Yanqiao Zhang, Xuemei Ge, et al. Loss of FXR Protects against Diet-Induced Obesity and Accelerates Liver Carcinogenesis in ob/ob Mice. Mol Endocrinol. 2012;26(2):272-80. doi: 10.1210/me.2011-1157
        37. Houten SM, Watanabe M, Auwerx J. Endocrine functions of bile acids. EMBO J. 2006;25(7):1419-25. doi: 10.1038/sj.emboj.7601049
        38. Shapiro H, Kolodziejczyk AA, et al. Bile acids in glucose metabolism in health and disease. J Exp Med. 2018;215(2):383-96. doi: 10.1084/jem.20171965
        39. Potthoff MJ, Boney-Montoya J, et al. FGF15/19 Regulates Hepatic Glucose Metabolism By Inhibiting the CREB-PGC-1α Pathway. Cell Metab. 2011 Jun 8;13(6):729-38. doi: 10.1016/j.cmet.2011.03.019
        40. Yanqiao Zhang, Florence Ying Lee, et al. Activation of the nuclear receptor FXR improves hyperglycemia and hyperlipidemia in diabetic mice. Proc Natl Acad Sci USA. 2006;103(4):1006-11. doi: 10.1073/pnas.0506982103
        41. Дедов И.И., Мельниченко Г.А., Шестакова М.В. и др. Национальные клинические рекомендации по лечению морбидного ожирения у взрослых. 3-й пересмотр (Лечение морбидного ожирения у взрослых). Ожирение и метаболизм. 2018;15(1):53-70 [Dedov II, Melnichenko GA, Shestakova MV, et al. Russian national clinical recommendations for morbid obesity treatment in adults. 3rd revision (Morbid obesity treatment in adults). Obesity and metabolism. 2018;15(1):53-70. doi: 10.14341/OMET2018153-70 (In Russ.)].
        42. Turnbaugh PJ, Ley RE, Mahowald MA, et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444(7122):1027-31. doi: 10.1038/nature05414
        43. Кравчук Е.Н., Неймарк А.Е., Гринева Е.Н., Галагудза М.М. Регуляция метаболических процессов, опосредованная кишечной микрофлорой. Сахарный диабет. 2016;19(4):280-5 [Kravchuk EN, Neimark AE, Grineva EN, et al. The role of gut microbiota in metabolic regulation. Diabetes Mellitus. 2016;19(4):280-5. doi: 10.14341/DM7704 (In Russ.)].
        44. Schwiertz A, Taras D, Schäfer K, et al. Microbiota and SCFA in lean and overweight healthy subjects. Obesity (Silver Spring). 2010;18(1):190-5. doi: 10.1038/oby.2009.167
        45. Turnbaugh PJ, Ley RE, Mahowald MA, et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444(7122):1027-31. doi: 10.1038/nature05414
        46. Ley RE, Bäckhed F, et al. Obesity alters gut microbial ecology. Proc Natl Acad Sci USA. 2005;102(31):11070-5. doi: 10.1073/pnas.0504978102
        47. Turnbaugh PJ, Hamady M, et al. A core gut microbiome in obese and lean twins. Nature. 2009;457(7228):480-4. Nature. 2009;457(7228):480-4. doi: 10.1038/nature07540
        48. Turnbaugh PJ, Ley RE, Mahowald MA, et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444(7122):1027-31. doi: 10.1038/nature05414
        49. Armougom F, HenryM, et al. Monitoring Bacterial Community of Human Gut Microbiota Reveals an Increase in Lactobacillus in Obese Patients and Methanogens in Anorexic Patients. PLoS One. 2009;4(9):e7125. doi: 10.1371/journal.pone.0007125
        50. Anni Woting, Nora Pfeiffer, et al. Clostridium ramosum Promotes High-Fat Diet-Induced Obesity in Gnotobiotic Mouse Models. mBio. 2014;5(5):e01530-14. doi: 10.1128/mBio.01530-14
        51. Karlsson F, Tremaroli V, et al. Assessing the Human Gut Microbiota in Metabolic Diseases. Diabetes. 2013;62(10):3341-9. doi: 10.2337/db13-0844
        52. Дедов И.И., Шестакова М.В., Майоров А.Ю. и др. Алгоритмы специализированной медицинской помощи больным сахарным диабетом. 9-й вып. (доп.). М., 2019 [Dedov II, Shestakova MV, Mayorov AYu, et al. Standards of specialized diabetes care. 9th Ed. (revised). Мoscow, 2019. doi: 10.14341/DM221S1(In Russ.)].
        53. Schwartz SS, Epstein S, et al. The Time Is Right for a New Classification System for Diabetes: Rationale and Implications of the β-Cell – Centric Classification Schema. Diabetes Care. 2016;39(2):179-86. doi: 10.2337/dc15-1585
        54. Cani PD, Amar J, Iglesias MA, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007;56(7):1761-72. doi: 10.2337/db06-1491
        55. Creely SJ, McTernan PG, Kusminski CM, et al. Lipopolysaccharide activates an innate immune system response in human adipose tissue in obesity and type 2 diabetes. Am J Physiol Endocrinol Metab. 2007;292(3):E740-7. doi: 10.1152/ajpendo.00302.2006
        56. Noce A, Marrone G, et al. Impact of Gut Microbiota Composition on Onset and Progression of Chronic Non-Communicable Diseases. Nutrients. 2019;11(5):1073. doi: 10.3390/nu11051073
        57. Sikalidis AK, Maykish A. The Gut Microbiome and Type 2 Diabetes Mellitus: Discussing a Complex Relationship. Biomedicines. 2020;8(1).pii: E8. doi: 10.3390/biomedicines8010008
        58. GurungM, Li Zh, You H, et al. Role of gut microbiota in type 2 diabetes pathophysiology. E Bio Med. 2020;51:102590. doi: 10.1016/j.ebiom.2019.11.051
        59. Furet J-P, Kong L-Ch, et al. Differential Adaptation of Human Gut Microbiota to Bariatric Surgery–Induced Weight Loss. Diabetes. 2010;59(12):3049-57. doi: 10.2337/db10-0253
        60. Дедов И.И., Шестакова М.В. и др. Сахарный диабет типа 2: от теории к практике. М.: Медицинское информационное агентство, 2016 [Dedov II, Shestakova MV, et al. Type 2 diabetes mellitus: from theory to practice. Moscow: Medical information Agency, 2016 (In Russ.)]. 
        61. Qin J, Li Y, Cai Z, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490(7418):55-60. doi: 10.1038/nature11450
        62. Karlsson FH, Tremaroli V, Nookaew I, et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature. 2013;498(7452):99-103. doi: 10.1038/nature12198
        63. Covasa M, Stephen RW, et al. Intestinal Sensing by Gut Microbiota: Targeting Gut Peptides. Front Endocrinol (Lausanne). 2019;10:82. doi: 10.3389/fendo.2019.00082
        64. Baothman OA, Zamzami MA, et al. The role of Gut Microbiota in the development of obesity and Diabetes. Lipids Health Dis. 2016;15:108. doi: 10.1186/s12944-016-0278-4
        65. Egshatyan L, Kashtanova D, Popenko A, et al. Gut microbiota and diet in patients with different glucose tolerance. Endocr Connect. 2016;5(1):1-9. doi: 10.1530/EC-15-0094.
        66. Дзгоева Ф.Х., Егшатян Л.В. Кишечная микробиота и сахарный диабет типа 2. Эндокринология: новости, мнения, обучение. 2018;7(3):55-63 [Dzgoeva FKh, Egshatyan LV. Intestinal microbiota and type 2 diabetes mellitus. Endocrinology: News, Opinions, Training. 2018;7(3):55-63. doi: 10.24411/2304-9529-2018-13005 (In Russ.)].
        67. Adeshirlarijaney A, Gewirtz AT. Considering gut microbiota in treatment of type 2 diabetes mellitus. Gut Microbes. 2020. doi: 10.1080/19490976.2020.1717719
        68. Holscher HD. Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes. 2017;8(2):172-84. doi: 10.1080/19490976.2017.1290756
        69. Weickert MO, Pfeiffer AFH. Impact of Dietary Fiber Consumption on Insulin Resistance and the Prevention of Type 2 Diabetes. J Nut. 2018;148(Issue 1):7-12. doi: 10.1093/jn/nxx008
        70. Weickert MO, Pfeiffer AFH. Metabolic Effects of Dietary Fiber Consumption and Prevention of Diabetes. J Nutr. 2008;138(3):439-42. doi: 10.1093/jn/138.3.439
        71. Ahmadi Sh, Nagpalab R, Wanget Sh, et al. Prebiotics from acorn and sago prevent high-fat diet-induced insulin resistance via microbiome-gut-brain axis modulation. J Nutr Biochem. 2019;67:1-13. doi: 10.1016/j.jnutbio.2019.01.011
        72. Jalanka J, Major G, et al. The Effect of Psyllium Husk on Intestinal Microbiota in Constipated Patients and Healthy Controls. Int J Mol Sci. 2019;20(2):433. doi: 10.3390/ijms20020433
        73. Baxter NT, Schmidt AW, et al. Dynamics of Human Gut Microbiota and Short-Chain Fatty Acids in Response to Dietary Interventions with Three Fermentable Fibers. mBio. 2019;10(1):e02566-18. doi: 10.1128/mBio.02566-18
        74. Periyanaina Kesika, Bhagavathi Sundaram Sivamaruthi, Chaiyavat Chaiyasut. Do Probiotics Improve the Health Status of Individuals with Diabetes Mellitus? A Review on Outcomes of Clinical Trials. BioMed Res Intern. 2019. doi: 10.1155/2019/1531567
        75. Sabico Sh, Al-Mashharawi A, Al-Daghri NM, et al. Effects of a 6-month multi-strain probiotics supplementation in endotoxemic, inflammatory and cardiometabolic status of T2DM patients: A randomized, double-blind, placebo-controlled trial. Rand Control Trial. 2019;38(Issue 4):1561-9. doi: 10.1016/j.clnu.2018.08.009
        76. Firouzi S, Majid HA, Ismail A, et al. Effect of multi-strain probiotics (multi-strain microbial cell preparation) on glycemic control and other diabetes-related outcomes in people with type 2 diabetes: a randomized controlled trial. Eur J Nutr. 2017;56:1535-50. doi: 10.1007/s00394-016-1199-8
        77. Kobyliaka N, Falalyeyevab T, Mykhalchyshyna G, et al. Effect of alive probiotic on insulin resistance in type 2 diabetes patients: Randomized clinical trial. Diabetes & Metabolic Syndrome: Clin Res Rev. 2018;12(Issue 5):617-24. doi: 10.1016/j.dsx.2018.04.015
        78. Sabico Sh, Al-Mashharawi A, Al-Daghri NM, et al. Effects of a multi-strain probiotic supplement for 12 weeks in circulating endotoxin levels and cardiometabolic profiles of medication naïve T2DM patients: a randomized clinical trial. J Transl Med. 2017;15(249). doi: 10.1186/s12967-017-1354-x
        79. Zhanga Q, Wub Yu, Feia X. Effect of probiotics on glucose metabolism in patients with type 2 diabetes mellitus: A meta-analysis of randomized controlled trials. Medicina. 2016;52(Issue 1):28-34. doi: 10.1016/j.medici.2015.11.008
        80. Kootte RS, Levin E, Salojärvi J. Improvement of Insulin Sensitivity after Lean Donor Feces in Metabolic Syndrome Is Driven by Baseline Intestinal Microbiota Composition. Clin Translat Rep. 2017;26(Issue 4):611-9. doi: 10.1016/j.cmet.2017.09.008
        81. de Groot P, Scheithauer T, Bakker GJ, et al. Donor Metabolic Characteristics Drive Effects of Faecal Microbiota Transplantation on Recipient Insulin Sensitivity, Energy Expenditure and Intestinal Transit Time. Gut. 2020;69(3):502-12. doi: 10.1136/gutjnl-2019-318320

        ________________________________________________

        1. Hugon P, Dufour JC, Colson P, et al. A comprehensive repertoire of prokaryotic species identified in human beings. Lancet Infect Dis. 2015;15(10):1211-9. doi: 10.1016/S1473-3099(15)00293-5 
        2. Nima H. Jazani, Javad Savoj, et al. Impact of Gut Dysbiosis on Neurohormonal Pathways in Chronic Kidney Disease. Diseases. 2019;7(1): 1. doi: 10.3390/diseases7010021
        3. Junjie Qin, Ruiqiang Li, et al. A human gut microbial gene catalog established by metagenomic sequencing. Nature. 2010;464(7285):59-65. doi: 10.1038/nature08821
        4. Ulker İ, Yildiran H. The effects of bariatric surgery on gut microbiota in patients with obesity: a review of the literature. Biosci Microbiota Food Health. 2019;38(1):3-9. doi: 10.12938/bmfh.18-018
        5. Moles L, Gómez M, et al. Bacterial Diversity in Meconium of Preterm Neonates and Evolution of Their Fecal Microbiota during the First Month of Life. PLoS One. 2013;8(6):e66986. doi: 10.1371/journal.pone.0066986
        6. Avershina E, Storrø O, Øien T, et al. Major faecal microbiota shifts in composition and diversity with age in a geographically restricted cohort of mothers and their children. FEMS Microbiol Ecol. 2014;87(Issue 1):280-90. doi: 10.1111/1574-6941.12223
        7. Katherine M. Hunt, James A. Foster, et al. Characterization of the Diversity and Temporal Stability of Bacterial Communities in Human Milk. PLoS One. 2011;6(6):e21313. doi: 10.1371/journal.pone.0021313
        8. Juan Miguel Rodríguez, Kiera Murphy, et al. The composition of the gut microbiota throughout life, with an emphasis on early life. Microb Ecol Health Dis. 2015;26:10.3402/mehd.v26.26050. doi: 10.3402/mehd.v26.26050
        9. Tanya Yatsunenko, Federico E. Rey, et al. Human gut microbiome viewed across age and geography. Nature. 2012;486(7402):222-7. doi: 10.1038/nature11053
        10. Nihal Hasan,  Hongyi Yang. Factors affecting the composition of the gut microbiota, and its modulation. Peer J. 2019;7:e7502. doi: 10.7717/peerj.7502
        11. Thursby E, Juge N. Introduction to the human gut microbiota. Biochem J. 2017;474(11):1823-36. doi: 10.1042/BCJ20160510
        12. Rowland I, Gibson G, et al. Gut microbiota functions: metabolism of nutrients and other food components. Eur J Nutr. 2018;57(1):1-24. doi: 10.1007/s00394-017-1445-8
        13. Cummings JH, Pomare EW, Branch WJ, et al. Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut. 1987;28(10):1221-7. doi: 10.1136/gut.28.10.1221
        14. Louis P, Young P, Holtrop G, et al. Diversity of human colonic butyrate-producing bacteria revealed by analysis of the butyryl-CoA: acetate CoA-transferase gene. Environ Microbiol. 2010;12(2):304-14. doi: 10.1111/j.1462-2920.2009.02066.x
        15. Renan Corrêa-Oliveira, José Luís Fachi, et al. Regulation of immune cell function by short-chain fatty acids. Clin Transl Immunol. 2016;5(4):e73. doi: 10.1038/cti.2016.17
        16. Reichardt N, Duncan SH, et al. Phylogenetic distribution of three pathways for propionate production within the human gut microbiota. 
        ISME J. 2014;8(6):1323-35. doi: 10.1038/ismej.2014.14
        17. Pingitore A, Chambers ES, Hill T, et al. The diet-derived short chain fatty acid propionate improves beta-cell function in humans and stimulates insulin secretion from human islets in vitro. Diabetes Obes Metab. 2017;19(2):257-65. doi: 10.1111/dom.12811
        18. Frost G, Sleeth ML, et al. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat Commun. 2014;5:3611. doi: 10.1038/ncomms4611
        19. Royalty JE, Konradsen G, Eskerod O, et al. Investigation of safety, tolerability, pharmacokinetics and pharmacodynamics of single and multiple doses of a long-acting α-MSH analogue in healthy overweight and obese subjects. J Clin Pharmacol. 2014;54(4):394-404. doi: 10.1002/jcph.211
        20. Asai M, Ramachandrappa S, Joachim M, et al. Loss of function of the melanocortin 2 receptor accessory protein 2 is associated with mammalian obesity. Science. 2013;341(6143):275-8. doi: 10.1126/ science.1233000.40
        21. Zagoskin PP, Zagoskina IP, Savelieva NА, Lyalyaev VА. Modern Approaches to the Problem of Body Weight Regulation (Review). Sovremennye tehnologii v medicine. 2014;6(3):104-17 (In Russ.)
        22. Bäckberg M, Madjid N, Ogren SO, et al. Downregulated expression of agouti-related protein (AGRP) mRNA in the hypothalamic arcuate nucleus of hyperphagic and obese tub/tub mice. Brain Res Mol Brain Res. 2004;125(1-2):129-39. doi: 10.1016/j.molbrainres.2004.03.012
        23. Xinggui Shen, Mattias Carlström, et al. Microbial Regulation of Host Hydrogen Sulfide Bioavailability and Metabolism. Free Radic Biol Med. 2013;60:195-200. doi: 10.1016/j.freeradbiomed.2013.02.024
        24. Fadi N Salloum. Hydrogen sulfide and cardioprotection – Mechanistic insights and clinical translatability. Pharmacol Ther. 2015;152:11-7. doi: 10.1016/j.pharmthera.2015.04.004
        25. Wei Yang, Guangdong Yang, et al. Activation of KATP channels by H2S in rat insulin-secreting cells and the underlying mechanisms.
         J Physiol. 2005;569(Pt 2):519-31. doi: 10.1113/jphysiol.2005.097642
        26. Pichette J, Fynn-Sackey N, Gagnon J. Hydrogen Sulfide and Sulfate Prebiotic Stimulates the Secretion of GLP-1 and Improves Glycemia in Male Mice. Endocrinology. 2017;158(10):3416-25. doi: 10.1210/en.2017-00391
        27. Wu L, Yang W, Jia X, et al. Pancreatic islet overproduction of H2S and suppressed insulin release in Zucker diabetic rats. Lab Invest. 2009;89(1):59-67. doi: 10.1038/labinvest.2008.109
        28. Asif K Mustafa, Moataz M, et al. H2S Signals Through Protein S-Sulfhydration. Sci Signal. Author manuscript; available in PMC 2010 Dec 8. doi: 10.1126/scisignal.2000464
        29. Tang G, Zhang L, Yang G, et al. Hydrogen sulfide-induced inhibition of L-type Ca2+ channels and insulin secretion in mouse pancreatic beta cells. Diabetologia. 2013;56(3):533-41. doi: 10.1007/s00125-012-2806-8
        30. Pichette J, Gagnon J. Implications of Hydrogen Sulfide in Glucose Regulation: How H2S Can Alter Glucose Homeostasis through Metabolic Hormones. Oxid Med Cell Longev. 2016;2016:3285074. doi: 10.1155/2016/3285074
        31. Bala V, Rajagopal S, et al. Release of GLP-1 and PYY in response to the activation of G protein-coupled bile acid receptor TGR5 is mediated by Epac/PLC-ε pathway and modulated by endogenous H2S. Front Physiol. 2014;5:420. doi: 10.3389/fphys.2014.00420
        32. Tarun Bansal, Robert C Alaniz, et al. The bacterial signal indole increases epithelial-cell tight-junction resistance and attenuates indicators of inflammation. Proc Natl Acad Sci USA. 2010;107(1):228-33. doi: 10.1073/pnas.0906112107
        33. Chimerel C, Emery E, et al. Bacterial Metabolite Indole Modulates Incretin Secretion from Intestinal Enteroendocrine L Cells. Cell Rep. 2014;9(4):1202-8. doi: 10.1016/j.celrep.2014.10.032
        34. Jing Gao, Kang Xu, et al. Impact of the Gut Microbiota on Intestinal Immunity Mediated by Tryptophan Metabolism. Front Cell Infect Microbiol. 2018;8:13. doi: 10.3389/fcimb.2018.00013
        35. Camilleri M. Serotonin in the Gastrointestinal Tract. Curr Opin Endocrinol Diabetes Obes. 2009;16(1):53-9. PMID: 19115522.
        36. Yanqiao Zhang, Xuemei Ge, et al. Loss of FXR Protects against Diet-Induced Obesity and Accelerates Liver Carcinogenesis in ob/ob Mice. Mol Endocrinol. 2012;26(2):272-80. doi: 10.1210/me.2011-1157
        37. Houten SM, Watanabe M, Auwerx J. Endocrine functions of bile acids. EMBO J. 2006;25(7):1419-25. doi: 10.1038/sj.emboj.7601049
        38. Shapiro H, Kolodziejczyk AA, et al. Bile acids in glucose metabolism in health and disease. J Exp Med. 2018;215(2):383-96. doi: 10.1084/jem.20171965
        39. Potthoff MJ, Boney-Montoya J, et al. FGF15/19 Regulates Hepatic Glucose Metabolism By Inhibiting the CREB-PGC-1α Pathway. Cell Metab. 2011 Jun 8;13(6):729-38. doi: 10.1016/j.cmet.2011.03.019
        40. Yanqiao Zhang, Florence Ying Lee, et al. Activation of the nuclear receptor FXR improves hyperglycemia and hyperlipidemia in diabetic mice. Proc Natl Acad Sci USA. 2006;103(4):1006-11. doi: 10.1073/pnas.0506982103
        41. Dedov II, Melnichenko GA, Shestakova MV, et al. Russian national clinical recommendations for morbid obesity treatment in adults. 3rd revision (Morbid obesity treatment in adults). Obesity and metabolism. 2018;15(1):53-70. doi: 10.14341/OMET2018153-70 (In Russ.)
        42. Turnbaugh PJ, Ley RE, Mahowald MA, et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444(7122):1027-31. doi: 10.1038/nature05414
        43. Kravchuk EN, Neimark AE, Grineva EN, et al. The role of gut microbiota in metabolic regulation. Diabetes Mellitus. 2016;19(4):280-5. doi: 10.14341/DM7704 (In Russ.)
        44. Schwiertz A, Taras D, Schäfer K, et al. Microbiota and SCFA in lean and overweight healthy subjects. Obesity (Silver Spring). 2010;18(1):190-5. doi: 10.1038/oby.2009.167
        45. Turnbaugh PJ, Ley RE, Mahowald MA, et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444(7122):1027-31. doi: 10.1038/nature05414
        46. Ley RE, Bäckhed F, et al. Obesity alters gut microbial ecology. Proc Natl Acad Sci USA. 2005;102(31):11070-5. doi: 10.1073/pnas.0504978102
        47. Turnbaugh PJ, Hamady M, et al. A core gut microbiome in obese and lean twins. Nature. 2009;457(7228):480-4. Nature. 2009;457(7228):480-4. doi: 10.1038/nature07540
        48. Turnbaugh PJ, Ley RE, Mahowald MA, et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444(7122):1027-31. doi: 10.1038/nature05414
        49. Armougom F, HenryM, et al. Monitoring Bacterial Community of Human Gut Microbiota Reveals an Increase in Lactobacillus in Obese Patients and Methanogens in Anorexic Patients. PLoS One. 2009;4(9):e7125. doi: 10.1371/journal.pone.0007125
        50. Anni Woting, Nora Pfeiffer, et al. Clostridium ramosum Promotes High-Fat Diet-Induced Obesity in Gnotobiotic Mouse Models. mBio. 2014;5(5):e01530-14. doi: 10.1128/mBio.01530-14
        51. Karlsson F, Tremaroli V, et al. Assessing the Human Gut Microbiota in Metabolic Diseases. Diabetes. 2013;62(10):3341-9. doi: 10.2337/db13-0844
        52. Dedov II, Shestakova MV, Mayorov AYu, et al. Standards of specialized diabetes care. 9th Ed. (revised). Мoscow, 2019. doi: 10.14341/DM221S1(In Russ.)
        53. Schwartz SS, Epstein S, et al. The Time Is Right for a New Classification System for Diabetes: Rationale and Implications of the β-Cell – Centric Classification Schema. Diabetes Care. 2016;39(2):179-86. doi: 10.2337/dc15-1585
        54. Cani PD, Amar J, Iglesias MA, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007;56(7):1761-72. doi: 10.2337/db06-1491
        55. Creely SJ, McTernan PG, Kusminski CM, et al. Lipopolysaccharide activates an innate immune system response in human adipose tissue in obesity and type 2 diabetes. Am J Physiol Endocrinol Metab. 2007;292(3):E740-7. doi: 10.1152/ajpendo.00302.2006
        56. Noce A, Marrone G, et al. Impact of Gut Microbiota Composition on Onset and Progression of Chronic Non-Communicable Diseases. Nutrients. 2019;11(5):1073. doi: 10.3390/nu11051073
        57. Sikalidis AK, Maykish A. The Gut Microbiome and Type 2 Diabetes Mellitus: Discussing a Complex Relationship. Biomedicines. 2020;8(1).pii: E8. doi: 10.3390/biomedicines8010008
        58. GurungM, Li Zh, You H, et al. Role of gut microbiota in type 2 diabetes pathophysiology. E Bio Med. 2020;51:102590. doi: 10.1016/j.ebiom.2019.11.051
        59. Furet J-P, Kong L-Ch, et al. Differential Adaptation of Human Gut Microbiota to Bariatric Surgery–Induced Weight Loss. Diabetes. 2010;59(12):3049-57. doi: 10.2337/db10-0253
        60. Dedov II, Shestakova MV, et al. Type 2 diabetes mellitus: from theory to practice. Moscow: Medical information Agency, 2016 (In Russ.)
        61. Qin J, Li Y, Cai Z, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490(7418):55-60. doi: 10.1038/nature11450
        62. Karlsson FH, Tremaroli V, Nookaew I, et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature. 2013;498(7452):99-103. doi: 10.1038/nature12198
        63. Covasa M, Stephen RW, et al. Intestinal Sensing by Gut Microbiota: Targeting Gut Peptides. Front Endocrinol (Lausanne). 2019;10:82. doi: 10.3389/fendo.2019.00082
        64. Baothman OA, Zamzami MA, et al. The role of Gut Microbiota in the development of obesity and Diabetes. Lipids Health Dis. 2016;15:108. doi: 10.1186/s12944-016-0278-4
        65. Egshatyan L, Kashtanova D, Popenko A, et al. Gut microbiota and diet in patients with different glucose tolerance. Endocr Connect. 2016;5(1):1-9. doi: 10.1530/EC-15-0094.
        66. Dzgoeva FKh, Egshatyan LV. Intestinal microbiota and type 2 diabetes mellitus. Endocrinology: News, Opinions, Training. 2018;7(3):55-63. doi: 10.24411/2304-9529-2018-13005 (In Russ.)
        67. Adeshirlarijaney A, Gewirtz AT. Considering gut microbiota in treatment of type 2 diabetes mellitus. Gut Microbes. 2020. doi: 10.1080/19490976.2020.1717719
        68. Holscher HD. Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes. 2017;8(2):172-84. doi: 10.1080/19490976.2017.1290756
        69. Weickert MO, Pfeiffer AFH. Impact of Dietary Fiber Consumption on Insulin Resistance and the Prevention of Type 2 Diabetes. J Nut. 2018;148(Issue 1):7-12. doi: 10.1093/jn/nxx008
        70. Weickert MO, Pfeiffer AFH. Metabolic Effects of Dietary Fiber Consumption and Prevention of Diabetes. J Nutr. 2008;138(3):439-42. doi: 10.1093/jn/138.3.439
        71. Ahmadi Sh, Nagpalab R, Wanget Sh, et al. Prebiotics from acorn and sago prevent high-fat diet-induced insulin resistance via microbiome-gut-brain axis modulation. J Nutr Biochem. 2019;67:1-13. doi: 10.1016/j.jnutbio.2019.01.011
        72. Jalanka J, Major G, et al. The Effect of Psyllium Husk on Intestinal Microbiota in Constipated Patients and Healthy Controls. Int J Mol Sci. 2019;20(2):433. doi: 10.3390/ijms20020433
        73. Baxter NT, Schmidt AW, et al. Dynamics of Human Gut Microbiota and Short-Chain Fatty Acids in Response to Dietary Interventions with Three Fermentable Fibers. mBio. 2019;10(1):e02566-18. doi: 10.1128/mBio.02566-18
        74. Periyanaina Kesika, Bhagavathi Sundaram Sivamaruthi, Chaiyavat Chaiyasut. Do Probiotics Improve the Health Status of Individuals with Diabetes Mellitus? A Review on Outcomes of Clinical Trials. BioMed Res Intern. 2019. doi: 10.1155/2019/1531567
        75. Sabico Sh, Al-Mashharawi A, Al-Daghri NM, et al. Effects of a 6-month multi-strain probiotics supplementation in endotoxemic, inflammatory and cardiometabolic status of T2DM patients: A randomized, double-blind, placebo-controlled trial. Rand Control Trial. 2019;38(Issue 4):1561-9. doi: 10.1016/j.clnu.2018.08.009
        76. Firouzi S, Majid HA, Ismail A, et al. Effect of multi-strain probiotics (multi-strain microbial cell preparation) on glycemic control and other diabetes-related outcomes in people with type 2 diabetes: a randomized controlled trial. Eur J Nutr. 2017;56:1535-50. doi: 10.1007/s00394-016-1199-8
        77. Kobyliaka N, Falalyeyevab T, Mykhalchyshyna G, et al. Effect of alive probiotic on insulin resistance in type 2 diabetes patients: Randomized clinical trial. Diabetes & Metabolic Syndrome: Clin Res Rev. 2018;12(Issue 5):617-24. doi: 10.1016/j.dsx.2018.04.015
        78. Sabico Sh, Al-Mashharawi A, Al-Daghri NM, et al. Effects of a multi-strain probiotic supplement for 12 weeks in circulating endotoxin levels and cardiometabolic profiles of medication naïve T2DM patients: a randomized clinical trial. J Transl Med. 2017;15(249). doi: 10.1186/s12967-017-1354-x
        79. Zhanga Q, Wub Yu, Feia X. Effect of probiotics on glucose metabolism in patients with type 2 diabetes mellitus: A meta-analysis of randomized controlled trials. Medicina. 2016;52(Issue 1):28-34. doi: 10.1016/j.medici.2015.11.008
        80. Kootte RS, Levin E, Salojärvi J. Improvement of Insulin Sensitivity after Lean Donor Feces in Metabolic Syndrome Is Driven by Baseline Intestinal Microbiota Composition. Clin Translat Rep. 2017;26(Issue 4):611-9. doi: 10.1016/j.cmet.2017.09.008
        81. de Groot P, Scheithauer T, Bakker GJ, et al. Donor Metabolic Characteristics Drive Effects of Faecal Microbiota Transplantation on Recipient Insulin Sensitivity, Energy Expenditure and Intestinal Transit Time. Gut. 2020;69(3):502-12. doi: 10.1136/gutjnl-2019-318320

        Авторы
        Т.Ю. Демидова1, К.Г. Лобанова1, О.Ш. Ойноткинова1–3

        1 ФГБОУ ВО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России, Москва, Россия;
        2 ФГБОУ ВО «Московский государственный университет им. М.В. Ломоносова», Москва, Россия;
        3 ГБУ «Научно-исследовательский институт организации здравоохранения и медицинского менеджмента» Департамента здравоохранения г. Москвы, Москва, Россия

        ________________________________________________

        T.Y. Demidova1, K.G. Lobanova1, O.S. Oinotkinova1–3

        1 Pirogov Russian National Research Medical University, Moscow, Russia;
        2 Lomonosov Moscow State University, Moscow, Russia;
        3 Research Institute of Health Organization and Medical Management, Moscow, Russia


        Поделиться
        Назад к списку
        Цель портала OmniDoctor – предоставление профессиональной информации врачам, провизорам и фармацевтам.

        Ключевые слова

        артериальная гипертензия дети артериальная гипертония лечение сахарный диабет COVID-19 ишемическая болезнь сердца диагностика беременность ожирение сердечно-сосудистые заболевания рак молочной железы хроническая сердечная недостаточность факторы риска метаболический синдром хроническая болезнь почек хроническая обструктивная болезнь легких профилактика качество жизни сахарный диабет 2-го типа бесплодие фибрилляция предсердий инфаркт миокарда антигипертензивная терапия сердечная недостаточность химиотерапия прогноз бронхиальная астма атеросклероз таргетная терапия неалкогольная жировая болезнь печени эффективность амлодипин бактериальный вагиноз нестероидные противовоспалительные препараты витамин D вирус папилломы человека коморбидность ревматоидный артрит атопический дерматит реабилитация эндометриоз эндотелиальная дисфункция гастроэзофагеальная рефлюксная болезнь безопасность пробиотики инсульт инсулинорезистентность болезнь Крона статины
        Узнавайте первым
        Подпишитесь, чтобы получать информацию о самых интересных событиях, последних новостях.
        Рассылка
        Новости
        Мероприятия
        Актуальные вебинары, конференции, семинары и т.д.
        Медиатека
        Записи вебинаров, подкасты, статьи и интервью.
        Библиотека
        Материалы для врачей-клиницистов:
        — Электронная...
        Наши контакты
        +7 (495) 098-03-59
        Заказать звонок
        Москва 125252, ул. Алабяна 13, корпус 1
        info@omnidoctor.ru
        Портал
        О портале
        История
        Лицензии
        Партнеры
        Реквизиты
        Об издательстве "Консилиум Медикум"
        Политика обработки ПД
        Пресс-центр
        Медиатека
        Библиотека
        Издания для врачей
        Издания для провизоров и фармацевтов
        Online-издания
        Мероприятия
        © 2025 Все права защищены.
        Подождите секунду, мы ищем Расширенный поиск
        Мы используем инструмент веб-аналитики Яндекс Метрика, который посредством обработки файлов «cookie» позволяет анализировать данные о посещаемости сайта, что помогает нам улучшить работу сайта, повысить его удобство и производительность. Соответственно, продолжая пользоваться сайтом, вы соглашаетесь на использование файлов «cookie» и их дальнейшую обработку сервисом Яндекс Метрика. Вы можете блокировать и (или) удалять файлы «cookie» в настройках своего веб-браузера.
        Я согласен(-на)