Влияние физико-химических свойств на фармакокинетические параметры нового представителя бензотиазинонов – противотуберкулезного препарата макозинон
________________________________________________
Khokhlov A.L., Mariandyshev A.O., Shcherbakova V.S., et al. Effect of physicochemical properties on the pharmacokinetic parameters of the new representative of benzothiazinones antituberculosis drug macozinonе. Therapeutic Archive. 2020; 92 (12): 165–171. DOI: 10.26442/00403660.2020.12.200482
Материалы доступны только для специалистов сферы здравоохранения. Авторизуйтесь или зарегистрируйтесь.
Цель. Сравнительная оценка фармакокинетических свойств лекарственной формы макозинона капсулы 80 мг и новой лекарственной формы – диспергируемая таблетка для приготовления раствора для приема внутрь 320 мг.
Материалы и методы. Проводились оценка растворимости макозинона в биорелевантных средах in vitro, изучение проницаемости макозинона в тесте Caco-2 in vitro, а также исследование фармакокинетики на собаках in vivo.
Результаты. Оценка растворимости в биорелевантных средах показала, что в среднем предел растворения субстанции макозинон в среде ацетатного буферного раствора рН 5,0 составил от 6 до 9 мг/л, в среде FaSSIF (натощак) – от 2,5 до 4 мг/л, а в среде FeSSIF (после еды) – от 16,8 до 29 мг/л. Также установлено, что клеточная проницаемость фармацевтической субстанции макозинон в тест-системе Сасо-2 составляет в среднем 2,5¥10-6 cм/с в прямом направлении от апикальной к базолатеральной мембране клеток и 1,5¥10-6 cм/с в обратном направлении, что соответствует низкой проницаемости. Представлены основные фармакокинетические параметры макозинона после дозирования диспергируемой таблетки на фоне приема пищи и натощак, а также капсул 80 мг при введении их натощак собакам.
Обсуждение. В данной работе описаны специфические физико-химические свойства макозинона, проблемы, с которыми пришлось столкнуться в процессе разработки лекарственной формы препарата, а также способы решения некоторых из них.
Заключение. При разработке перспективных для применения в клинической практике лекарственных форм макозинона необходимо учитывать существующие химические свойства субстанции макозинон. Одним из перспективных направлений решения повышения биодоступности, а следовательно, и эффективности является создание принципиально новой лекарственной формы с модифицированным высвобождением, учитывающей узкое окно абсорбции макозинона.
Ключевые слова: туберкулез, макозинон, PBTZ169, бензотиазиноны, ингибиторы DprE1, DprE1, фармакокинетика, растворимость, проницаемость, биофармацевтическая классификационная система (БКС класс), параметры всасывания, лекарственная форма, узкое окно абсорбции.
________________________________________________
Introduction. Tuberculosis (TB) is one of the top ten causes of death worldwide. Improvement of the treatment options via development of new drugs and treatment regimens that would be more convenient for patients is one of key options of improving the effecacy of the TB prevention and careis. Since the creation of new treatment regimens by minimizing the number of the drugs used and reducing the duration of treatment is the most promising and correct direction, macozinone, a new candidate of the benzothiazinone series, can become the basis for development of new chemotherapy regimens for drug-resistant forms of TB including the combination of macozinone with the most effective modern anti-TB drugs.
Aim. Comparative evaluation of the pharmacokinetic properties of macozinone capsules 80 mg and the new dosage form – a dispersible tablet for preparation of oral solution.
Materials and methods. Solubility of the substance macozinone in biorelevant media in vitro, permeability of macozinone in the test Caco-2 in vitro, as well as pharmacokinetics of macozinone in dogs in vivo were evaluated.
Results. The solubility assessment in biorelevant media showed that the average limit of macozinone substance dissolution in the pH 5.0 acetate buffer solution was from 6 to 9 mg/l, in FaSSIF medium (fasted) – from 2.5 to 4 mg/l, and in FeSSIF medium (after meals) – from 16.8 to 29 mg/l.
It is established that the cell permeability of the pharmaceutical substance macozinone in the CACO-2 test system is on average
2.5¥10-6 cm/s in the forward direction from the apical to basolateral cell membrane, and 1.5¥10-6 cm/s in the reverse direction, which corresponds to low permeability. The main pharmacokinetic parameters of macozinone dispersable tablets 160 mg, after dosing with food and on an empty stomach, as well as capsules 80 mg, when administered on an empty stomach in vivo studies in dogs are presented.
Discussion. The specific physicochemical properties of macozinone, the problems of developing the new dosage form, as well as ways of solving some of them are presented.
Conclusion. In the process of new dosage forms development, the existing chemical properties of the macozinone substance should be considered. One of the promising ways of increasing bioavailability and, consiquently, efficacy is development a fundamentally new drug form with modified release within the absorption window.
Keywords: tuberculosis, maсozinone, PBTZ169, benzothiazinones, DprE1, DprE1 inhibitors, pharmacokinetic, solubility, permeability, Biopharmaceutics Classification System (BCS) class, absorption parameters, dosage form, the narrow absorption window.
2. Tiberi S, et al. Тuberculosis: progress and advances in development of new drugs, treatment regimens, and host-directed therapies. Lancet Infect Dis. 2018;18:e183-e198. doi: 10.1016/S1473-3099(18)30110-5
3. World Health Organization, Anti-tuberculosis Drug Resistance in the World: Third Global Report/the WHO/IUATLD Global Project on Anti-tuberculosis Drug Resistance Surveillance. 2004.
4. World Health Organization. The end TB strategy: global strategy and targets for tuberculosis prevention, care and control after 2015. 2015. https://www.who.int/tb/post2015_TBstrategy.pdf?ua=1
5. Общероссийская общественная организация «Российское общество фтизиатров». Клинические рекомендации «Туберкулез у взрослых». 2020 [All-Russian public organization "Russian Society of Phthisiologists". Clinical guidelines "Tuberculosis in adults." 2020 (In Russ.)].
6. Andries K, et al. A Diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science. 2005 Jan 14;307(5707):223-7. doi: 10.1126/science.1106753
7. Matsumoto M, et al. OPC-67683, a nitro-dihydro-imidazooxazole derivative with promising action against tuberculosis in vitro and in mice. PLoS Med. 2006;3(11):e466. doi: 10.1371/journal.pmed.0030466
8. Stover CK, et al. A small-molecule nitroimidazopyran drug candidate for the treatment of tuberculosis. Nature. 2000;405(6789):962-6. doi: 10.1038/35016103
9. Clinical Pipeline. Working Group for New TB Drugs. https://www.newtbdrugs.org/pipeline/clinical
10. WHO. WHO Drug Information. 2018;32(3). https://www.who.int/medicines/publications/druginformation/issues/DrugInformation2018_Vol32-3/en/
11. Makarov V, Mikušová K. Development of macozinone for TB treatment: An update. Appl Sci. 2020;10(7):2269. doi: 10.3390 / app10072269
12. Марьяндышев А.О., Хохлов А.Л., Смердин С.В. и др. Основные результаты клинических исследований эффективности, безопасности и фармакокинетики перспективного противотуберкулезного препарата макозинон (PBTZ169). Терапевтический архив. 2020;92(3):61-72 [Mariandyshev AO, Khokhlov AL, Smerdin SV, et al. The main results of clinical trials of the efficacy, safety and pharmacokinetics of the perspective anti-tuberculosis drug makozinone (PBTZ169). Terapevticheskii arkhiv. 2020;92(3):61-72 (In Russ.)]. doi: 10.26442/00403660.2020.03.000621
13. Makarov V, et al. Benzothiazinones kill Mycobacterium tuberculosis by blocking arabinan synthesis. Science. 2009;324(5928):801-4. doi: 10.1126/science.1171583
14. Zumla AI, et al. Review New antituberculosis drugs, regimens, and adjunct therapies: needs, advances, and future prospects. Lancet Infect Dis. 2014;14:327. www.thelancet.com/infection
15. Pasca MR, et al. Clinical isolates of Mycobacterium tuberculosis in four European hospitals are uniformly susceptible to benzothiazinones. Antimicrob Agents Chemother. 2010;54(4):1616-8. doi: 10.1128/AAC.01676-09
16. Черноусова Л.Н., Андреевская С.Н., Смирнова Т.Г. и др. Активность in vitro лекарственного кандидата PBTZ169, гидрохлорид, в отношении клинических штаммов Mycobacterium tuberculosis с широкой лекарственной устойчивостью. Туберкулез и болезни легких. 2016;94(9):73-9 [Chernousova LN, Andreevskaya SN, Smirnova TG, et al. In vitro action of the drug candidate of pbtz169, hydrochloride action in respect of clinical strains of Mycobacterium tuberculosis with extensive drug resistance. Tuberculosis and Lung Diseases. 2016;94(9):73-9 (In Russ.)]. doi: 10.21292/2075-1230-2016-94-9-73-79
17. Makarov V, et al. Towards a new combination therapy for tuberculosis with next generation benzothiazinones. EMBO Mol Med. 2014;6(3):372-83. doi: 10.1002/emmm.201303575
18. Pio A, Chaulet P. Tuberculosis Handbook. 1998.
19. Zignol M, et al. Population-based resistance of Mycobacterium tuberculosis isolates to pyrazinamide and fluoroquinolones: results from a multicountry surveillance project. Lancet Infect Dis. 2016;16(10):1185-92. doi: 10.1016/S1473-3099(16)30190-6
20. Avalos E, et al. Frequency and geographic distribution of gyrA and gyrB mutations associated with fluoroquinolone resistance in clinical Mycobacterium tuberculosis isolates: A systematic review. PLoS One. 2015;10(3). doi: 10.1371/journal.pone.0120470
21. Nih, Od, Oer, Olaw, Guide Laboratory Animals for the Care and use of Eighth Edition Committee for the Update of the Guide for the Care and Use of Laboratory Animals Institute for Laboratory Animal Research Division on Earth and Life Studies. 2011.
22. ФГУП ВНИЦСМВ, ГОСТ 33044-2014. Принципы надлежащей лабораторной практики. 2015 [FSUE "VNITsSMV" GOST 33044-2014. Principles of Good Laboratory Practice (In Russ.)]
23. СП 2.2.1.3218-14. Санитарно-эпидемиологические требования к устройству, оборудованию и содержанию экспериментально-биологических клиник (вивариев). 2014 [SP 2.2.1.3218-14. Sanitary and Epidemiological Requirements for the Design, Equipment and Maintenance of Experimental Biological Clinics (Vivariums). 2014 (In Russ.)].
24. EMA/CHMP/ICH, Committee for Human Medicinal Products ICH guideline Q8 (R2) on pharmaceutical development. 2017; p. 24.
25. Демина Н.Б. Биофармацевтическая классификационная система как инструмент разработки дизайна и технологии лекарственной формы. Разработка и регистрация лекарственных средств. 2017;2:56-60 [Demina N.B. Biofarmatsevticheskaia klassifikatsionnaia Sistema kak instrument razrabotki dizaina i tekhnologii lekarstvennoi formy. Razrabotka i registratsiia lekarstvennykh sredstv. 2017;2:56-60 (In Russ.)].
26. Головенко Н.Я., Борисюк И.Ю. Биофармацевтическая классификационная система – экспериментальная модель прогнозирования биодоступности лекарственных средств. Биомедицинская химия. 2008;54(4):392-407 [Golovenko NIa, Borisiuk IIu. Biofarmatsevticheskaia klassifikatsionnaia sistema – eksperimental'naia model' prognozirovaniia biodostupnosti lekarstvennykh sredstv. Biomeditsinskaia khimiia. 2008;54(4):392-407 (In Russ.)].
27. Сеткина С.Б., Хишова О.М. Алгоритм биофармацевтической оценки на этапе фармацевтической разработки лекарственных средств. Достижения фундаментальной, клинической медицины и фармации. Материалы 72-й научной сессии сотрудников университета. Витебский гос. мед. ун-т. 2017; с. 307-10 [Setkina SB, Khishova OM. Algoritm biofarmatsevticheskoi otsenki na etape farmatsevticheskoi razrabotki lekarstvennykh sredstv. Dostizheniia fundamental'noi, klinicheskoi meditsiny i farmatsii. Materialy 72-i nauchnoi sessii sotrudnikov universiteta. Vitebskii gos. med. un-t. 2017;
p. 307-10 (In Russ.)].
28. Study to Evaluate the Safety, Tolerability, Pharmacokinetics and Ex-vivo Antitubercular Activity of PBTZ169 Formulation – Full Text View – ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT03423030
29. Study to Evaluate the Safety, Tolerability and Pharmacokinetics of PBTZ169 in Multiple Dosing – Full Text View – ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT03776500
________________________________________________
1. S. WHO: Geneva, Global TB Report 2019, 2019.
2. Tiberi S, et al. Тuberculosis: progress and advances in development of new drugs, treatment regimens, and host-directed therapies. Lancet Infect Dis. 2018;18:e183-e198. doi: 10.1016/S1473-3099(18)30110-5
3. World Health Organization, Anti-tuberculosis Drug Resistance in the World: Third Global Report/the WHO/IUATLD Global Project on Anti-tuberculosis Drug Resistance Surveillance. 2004.
4. World Health Organization. The end TB strategy: global strategy and targets for tuberculosis prevention, care and control after 2015. 2015. https://www.who.int/tb/post2015_TBstrategy.pdf?ua=1
5. [All-Russian public organization "Russian Society of Phthisiologists". Clinical guidelines "Tuberculosis in adults." 2020 (In Russ.)].
6. Andries K, et al. A Diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science. 2005 Jan 14;307(5707):223-7. doi: 10.1126/science.1106753
7. Matsumoto M, et al. OPC-67683, a nitro-dihydro-imidazooxazole derivative with promising action against tuberculosis in vitro and in mice. PLoS Med. 2006;3(11):e466. doi: 10.1371/journal.pmed.0030466
8. Stover CK, et al. A small-molecule nitroimidazopyran drug candidate for the treatment of tuberculosis. Nature. 2000;405(6789):962-6. doi: 10.1038/35016103
9. Clinical Pipeline. Working Group for New TB Drugs. https://www.newtbdrugs.org/pipeline/clinical
10. WHO. WHO Drug Information. 2018;32(3). https://www.who.int/medicines/publications/druginformation/issues/DrugInformation2018_Vol32-3/en/
11. Makarov V, Mikušová K. Development of macozinone for TB treatment: An update. Appl Sci. 2020;10(7):2269. doi: 10.3390 / app10072269
12. [Mariandyshev AO, Khokhlov AL, Smerdin SV, et al. The main results of clinical trials of the efficacy, safety and pharmacokinetics of the perspective anti-tuberculosis drug makozinone (PBTZ169). Terapevticheskii arkhiv. 2020;92(3):61-72 (In Russ.)]. doi: 10.26442/00403660.2020.03.000621
13. Makarov V, et al. Benzothiazinones kill Mycobacterium tuberculosis by blocking arabinan synthesis. Science. 2009;324(5928):801-4. doi: 10.1126/science.1171583
14. Zumla AI, et al. Review New antituberculosis drugs, regimens, and adjunct therapies: needs, advances, and future prospects. Lancet Infect Dis. 2014;14:327. www.thelancet.com/infection
15. Pasca MR, et al. Clinical isolates of Mycobacterium tuberculosis in four European hospitals are uniformly susceptible to benzothiazinones. Antimicrob Agents Chemother. 2010;54(4):1616-8. doi: 10.1128/AAC.01676-09
16. [Chernousova LN, Andreevskaya SN, Smirnova TG, et al. In vitro action of the drug candidate of pbtz169, hydrochloride action in respect of clinical strains of Mycobacterium tuberculosis with extensive drug resistance. Tuberculosis and Lung Diseases. 2016;94(9):73-9 (In Russ.)]. doi: 10.21292/2075-1230-2016-94-9-73-79
17. Makarov V, et al. Towards a new combination therapy for tuberculosis with next generation benzothiazinones. EMBO Mol Med. 2014;6(3):372-83. doi: 10.1002/emmm.201303575
18. Pio A, Chaulet P. Tuberculosis Handbook. 1998.
19. Zignol M, et al. Population-based resistance of Mycobacterium tuberculosis isolates to pyrazinamide and fluoroquinolones: results from a multicountry surveillance project. Lancet Infect Dis. 2016;16(10):1185-92. doi: 10.1016/S1473-3099(16)30190-6
20. Avalos E, et al. Frequency and geographic distribution of gyrA and gyrB mutations associated with fluoroquinolone resistance in clinical Mycobacterium tuberculosis isolates: A systematic review. PLoS One. 2015;10(3). doi: 10.1371/journal.pone.0120470
21. Nih, Od, Oer, Olaw, Guide Laboratory Animals for the Care and use of Eighth Edition Committee for the Update of the Guide for the Care and Use of Laboratory Animals Institute for Laboratory Animal Research Division on Earth and Life Studies. 2011.
22. [FSUE "VNITsSMV" GOST 33044-2014. Principles of Good Laboratory Practice (In Russ.)]
23. [SP 2.2.1.3218-14. Sanitary and Epidemiological Requirements for the Design, Equipment and Maintenance of Experimental Biological Clinics (Vivariums). 2014 (In Russ.)].
24. [Demina N.B. Biofarmatsevticheskaia klassifikatsionnaia Sistema kak instrument razrabotki dizaina i tekhnologii lekarstvennoi formy. Razrabotka i registratsiia lekarstvennykh sredstv. 2017;2:56-60 (In Russ.)].
26. [Golovenko NIa, Borisiuk IIu. Biofarmatsevticheskaia klassifikatsionnaia sistema – eksperimental'naia model' prognozirovaniia biodostupnosti lekarstvennykh sredstv. Biomeditsinskaia khimiia. 2008;54(4):392-407 (In Russ.)].
27. [Setkina SB, Khishova OM. Algoritm biofarmatsevticheskoi otsenki na etape farmatsevticheskoi razrabotki lekarstvennykh sredstv. Dostizheniia fundamental'noi, klinicheskoi meditsiny i farmatsii. Materialy 72-i nauchnoi sessii sotrudnikov universiteta. Vitebskii gos. med. un-t. 2017;
p. 307-10 (In Russ.)].
28. Study to Evaluate the Safety, Tolerability, Pharmacokinetics and Ex-vivo Antitubercular Activity of PBTZ169 Formulation – Full Text View – ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT03423030
29. Study to Evaluate the Safety, Tolerability and Pharmacokinetics of PBTZ169 in Multiple Dosing – Full Text View – ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT03776500
1 ФГБОУ ВО «Ярославский государственный медицинский университет» Минздрава России, Ярославль, Россия;
2 ФГБОУ ВО «Северный государственный медицинский университет» Минздрава России, Архангельск, Россия;
3 ООО «НИАРМЕДИК ФАРМА», Обнинск, Россия;
4 ФГБНУ «Научно-исследовательский институт фармакологии им. В.В. Закусова», Москва, Россия
________________________________________________
A.L. Khokhlov 1, A.O. Mariandyshev 2, V.S. Shcherbakova 3, I.V. Ozerova 4, Yu.G. Kazaishvili 3, O.V. Igumnova 3, A.A. Bolgarina 3, B.A. Rudoy 3
1 Yaroslavl State Medical University, Yaroslavl, Russia;
2 Northern State Medical University, Arkhangelsk, Russia;
3 NEARMEDIC PHARMA LLC., Obninsk, Russia;
4 Zakusov Research Institute of Pharmacology, Moscow, Russia