Определение размеров инфаркта миокарда современными методами
________________________________________________
Shigotarova E.A., Galimskaja V.A., Golubeva A.V., Oleynikov V.E. The myocardial infarction size measuring using modern methods. Therapeutic Archive. 2020; 92 (4): 105–110. DOI: 10.26442/00403660.2020.04.000571
Материалы доступны только для специалистов сферы здравоохранения. Авторизуйтесь или зарегистрируйтесь.
Ключевые слова: инфаркт миокарда, площадь некроза миокарда, площадь жизнеспособного миокарда, эхокардиография, speckle tracking, контрастная магнитно-резонансная томография сердца, электрокардиограмма.
________________________________________________
An accurate quantitative assessment of myocardium necrosis area and the viable zone (stunned and hibernating) in patients with myocardial infarction is crucial for the preoperative patient selection and predicting the cardiac surgery effectiveness. Currently, researchers and clinicians are most interested in the problem of determining the viable myocardium zone. However, only the necrosis zone area directly correlates with the patient’s prognosis and determines the heart pathological remodeling processes. In the distant period, the data obtained can be used to predict the post-infarction period course or for analysis the relationship of the necrosis zone with arrhythmogenesis, and a number of other indicators. Thus, the necrosis zone and the viable myocardium zone are two parameters that need to be monitored in dynamics in all patients after myocardial infarction. The most accurate and reproducible method for determining the necrosis area is contrast magnetic resonance imaging of the heart, however, this technique is still inaccessible in most hospitals. In this regard, it remains relevant to estimate the necrotic myocardium area by ubiquitous non-invasive methods such as electrocardiography and echocardiography.
Key words: myocardial infarction, myocardial necrosis area, viable myocardium area, echocardiography, speckle tracking, contrast magnetic resonance imaging of the heart, electrocardiogram.
2. Goldberg RJ, Spencer FA, Gore JM, et al. Thirty-year trends (1975 to 2005) in the magnitude of, management of, and hospital death rates associated with cardiogenic shock in patients with acute myocardial infarction: a population-based perspective. Circulation. 119(9):1211-9. doi: 10.1161/CIRCULATIONAHA.108.814947
3. Timmer SAJ, Teunissen PFA, Danad I, et al. In vivo assessment of myocardial viability after acute myocardial infarction: A head-to-head comparison of the perfusable tissue index by PET and delayed contrast-enhanced CMR. J Nucl Cardiol. 2017;24(2):657-67. doi: 10.1007/s12350-015 0329-7
4. Ibanez B, James S, Agewall S, et al. ESC Scientific Document Group. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. The Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J. 2018 Jan 7;39(2):119-77. doi: 10.1093/eurheartj/ehx393
5. Sharir T, Germano G, Kang X, et al. Prediction of myocardial infarction versus cardiac death by gated myocardial perfusion SPECT: risk stratification by the amount of stress- induced ischemia and the poststress ejection fraction. J Nucl Med. 2001;42(6):831-7.
6. White HD, Norris RM, Brown MA, et al. Left ventricular end-systolic volume as the major determinant of survival after recovery from myocardial infarction. Circulation. 1987;76(1):44-51. doi: 10.1161/01.cir.76.1.44
7. Moss AJ. Risk stratification and survival after myocardial infarction.
N Engl J Med. 1983;309(6):331-6. doi: 10.1056/nejm198308113090602
8. Wu E, Ortiz JT, Tejedor P, et al. Infarct size by contrast enhanced cardiac magnetic resonance is a stronger predictor of outcomes than left ventricular ejection fraction or end-systolic volume index: prospective cohort study. Heart. 2008;94(6):730-6. doi: 10.1136/hrt.2007.122622
9. Lønborg J, Vejlstrup N, Kelbæk H, et al. Final infarct size measured by cardiovascular magnetic resonance in patients with ST elevation myocardial infarction predicts long-term clinical outcome: an observational study. Eur Heart J Cardiovasc Imaging. 2013;14:387-95. doi: 10.1093/ehjci/jes271
10. Eichstaedt HW, Felix R, Dougherty FC, et al. Magnetic Resonance Imaging (MRI) in Different Stages of Myocardial Infarction Using the Contrast Agent Gadolinium-DTPA. Clin Cardiol. 1986;9:527-35. doi: 10.1002/clc.4960091102
11. Tim Lockie, Eike Nagel, Simon Redwood, Sven Plein. Use of Cardiovascular Magnetic Resonance Imaging in Acute Coronary Syndromes. Circulation. 2009;119:1671-81. doi: 10.1161/CIRCULATIONAHA. 108.816512
12. Hombach V, Merkle N, Bernhard P, et al. Prognostic significance of cardiac magnetic resonance imaging: Update 2010. Cardiol J. 2010;17(6):549-57.
13. Стукалова А.В., Синицын В.Е., Терновой С.К. Оценка миокарда у больных ИБС с помощью контрастной МРТ. Медицинская визуализация. 2004;5:18-23 [Stukalova OV, Sinitsyn VE, Ternovoy SK. Myocardial Assessment in Patients with Coronary Artery Disease by Contrast Enhanced Magnetic Resonance Imaging. Medical Visualization. 2004;5:18-23 (In Russ.)].
14. Bulluck H, Dharmakumar R, Arai AE, et al. Cardiovascular Magnetic Resonance in Acute ST-Segment-Elevation Myocardial Infarction: Recent Advances, Controversies, and Future Directions. Circulation. 2018;137(18):1949-64. doi: 10.1161/CIRCULATIONAHA.117.030693
15. Синицын В.Е. Томографические методы диагностики при остром коронарном синдроме. Актуальные вопросы болезней сердца и сосудов. 2008;4:16-8 [Sinicyn VE. Tomographic diagnostic methods for acute coronary syndrome. Actual Issues of Heart and Vascular Diseases. 2008;4:16-8 (In Russ.)].
16. Curtis JW, Lesniak DC, Wible JH, Woodard PK. Cardiac magnetic resonance imaging safety following percutaneous coronary intervention. Int J Cardiovasc Imaging. 2013;29:1485-90. doi: 10.1007/s10554-013-0231-9
17. Shellock FG. Reference Manual for Magnetic Resonance Safety, Implants, and Devices: Edition 2018. Los Angeles, CA: Biomedical Research Publishing Group; 2019.
18. Salerno M, Beller GA. Noninvasive assessment of myocardial perfusion. Circ Cardiovasc Imaging. 2009;2(5):412-24. doi: 10.1161/
CIRCIMAGING.109.854893
19. Birnbaum Y, Drew BJ. The electrocardiogram in ST elevation acute myocardial. infarction: correlation with coronary anatomy and prognosis. Postgrad Med J. 2003;79:490-504. doi: 10.1136/pmj.79.935.490
20. Aldrich HR, Wagner NB, Boswick J, et al. Use of initial ST-segment deviation for prediction of final electrocardiographic size of acute myocardial infarcts. Am J Cardiol. 1988;61:749-53. doi: 10.1016/0002-9149(88)91060-0
21. Clemmensen P, Grande P, Aldrich H, Wagner GS. Evaluation of formulas for estimating the final size of acute myocardial infarcts from quantitative ST-segment elevation on the initial standard 12-lead ECG. J Electrocardiol. 1991;24:77-83. doi: 10.1016/0022-0736(91)90084-y
22. Christian T, Gibbons R, Clements I, et al. Estimates of myocardium at risk and collateral flow in acute myocardial infarction using electrocardiographic indexes with comparison to radionuclide and angiographic measures. J Am Coll Cardiol. 1995;26:388-93. doi: 10.1016/0735-1097(95)80011-5
23. Clements I, Kaufmann P, Bailey K, et al. Electrocardiographic prediction of myocardial area at risk. Mayo Clin Proc. 1991;66:985-90. doi: 10.1016/s0025-6196(12)61733-9
24. Arnold AER, Simoons ML. "Expected infarct size without thrombolysis", a concept that predicts immediate and long-term benefit from thrombolysis for evolving myocardial infarction. Eur Heart J. 1997;18:1736-48. doi: 10.1093/oxfordjournals.eurheartj.a015168
25. Willems JL, Willems RJ, Willems GM, et al. Significance of initial ST segment elevation and depression for the management of thrombolytic therapy in acute myocardial infarction. Circulation. 1990;82:1147-58. doi: 10.1161/01.cir.82.4.1147
26. Vermeer F, Simoons ML, Bar FW, et al. Which patients benefit most from early thrombolytic therapy with intracoronary streptokinase? Circulation. 1986;74:1379-89. doi: 10.1161/01.CIR.74.6.1379
27. Roberts WC, Gardin JM. Location of myocardial infarcts: a confusion of terms and definitions. Am J Cardiol. 1978;42:868-72. doi: 10.1016/0002-9149(78)90110-8
28. Huey BL, Beller GA, Kaiser DL, et al. A comprehensive analysis of myocardial infarction due to left circumflex artery occlusion: comparison with infarction due to right coronary artery and left anterior descending artery occlusion. J Am Coll Cardiol. 1988;12:1156-66. doi: 10.1016/0735-1097(88)92594-6
29. Sclarovsky S, Topaz O, Rechavia E, et al. Ischemic ST segment depression in leads V2-V3 as the presenting electrocardiographic feature of posterolateral wall myocardial infarction. Am Heart J. 1987;113:1085-90. doi: 10.1016/0002-8703(87)90916-1
30. Geft IL, Shah PK, Rodriguez L, et al. ST elevations in leads V1 to V5 may be caused by right coronary artery occlusion and acute right ventricular infarction. Am J Cardiol. 1984;53:991-6. doi: 10.1016/0002-9149(84)90623-4
31. Juergens CP, Fernandes C, Hasche ET, et al. Electrocardiographic measurement of infarct size after thrombolytic therapy. J Am Coll Cardiol. 1996;27:617-24. doi: 10.1016/0735-1097(95)00497-1
32. Hasche ET, Fernandes C, Freedman SB, Jeremy RW. Relation between ischemia time, infarct size, and left ventricular function in humans. Circulation. 1995;92:710-9. doi: 10.1161/01.cir.92.4.710
33. Selvester RH, Samnarco ME, Solomon JC, Wagner GS. The electrocardiogram: QRS change. p. 23. In Wagner GS (ed): Myocardial infarction: measurement and intervention: developments in cardiovascular medicine (Vol. 14). The Hague: Martinus Nijhoff, 1982.
34. Birnbaum Y, Kloner R, Sclarovsky S, et al. Distortion of the terminal portion of the QRS on the admission electrocardiogram in acute myocardial infarction and correlation with infarct size and long term prognosis (Thrombolysis In Myocardial Infarction 4 Trial). Am J Cardiol. 1996;78:396-403. doi: 10.1016/s0002-9149(96)00326-8
35. Birnbaum Y, Maynard C, Wolfe S, et al. Terminal QRS distortion on admission is better than ST-segment measurements in predicting final infarct size and assessing the potential effect of thrombolytic therapy in anterior wall acute myocardial infarction. Am J Cardiol. 1999;84:530-4. doi: 10.1016/s0002-9149(99)00372-0
36. Birnbaum Y, Criger DA, Wagner GS, et al. Prediction of the extent and severity of left ventricular dysfunction in anterior acute myocardial infarction by the admission electrocardiogram. Am Heart J. 2001;141:915-24. doi: 10.1067/mhj.2001.115300
37. Birnbaum Y, Mahaffey KW, Criger DA, et al; AMISTAD (Acute Myocardial Infarction Study of Adenosine) Investigators. Grade III ischemia on presentation with acute myocardial infarction predicts rapid progression of necrosis and less myocardial salvage with thrombolysis. Cardiology. 2002;97:166-74. doi: 10.1159/000063334
38. Shen WK, Khandheria BK, Edwards WD, et al. Value and limitations of two-dimensional echocardiography in predicting myocardial infarct size. Am J Cardiol. 1991;68(11):1143-9. doi: 10.1016/0002-9149(91)90185-n
39. Lieberman AN, Weiss JL, Jugdutt BI, et al. Two-dimensional echocardiography and infarct size: relationship of regional wall motion and thickening to the extent of myocardial infarction in the dog. Circulation. 1981;63(4):739-46. doi: 10.1161/01.cir.63.4.739
40. Крикунов П.В., Васюк Ю.А., Крикунова О.В. Прогностическая значимость эхокардиографии после острого инфаркта миокарда. Часть 1. Российский кардиологический журнал. 2017;12(152):120-8 [Krikunov PV, Vasyuk YA, Krikunova OV. Predictive value of echocardiography in post myocardial infarction setting. Part 1. Russian Journal of Cardiology. 2017;12(152):120-8 (In Russ.)]. doi: 10.15829/1560-4071-2017-12-120-128
41. Amundsen BH, Helle-Valle T, Edvardsen T, et al. Noninvasive myocardial strain measurement by speckle tracking echocardiography validation against sonomicrometry and tagged magnetic resonanceimaging.
J Am Coll Card. 2006;47:789-93. doi: 10.1016/j.jacc.2005.10.040
42. Gjesdal, O, Hopp E, Vartdal T, et al. Global longitudinal strain measured by two-dimensional speckle tracking echocardiography is closely related to myocardial infarct size in chronic ischaemic heart disease. Clin Sci (Lond). 2007;113:287-96. doi: 10.1042/CS20070066
43. Becker M, Hoffmann R, Kühl HP, et al. Analysis of myocardial deformation based on ultrasonic pixel tracking to determine transmurality in chronic myocardial infarction. Eur Heart J. 2006;27:2560-6. doi: 10.1093/eurheartj/ehl288
44. Roes SD, Mollema SA, Lamb HJ, et al. Validation of echocardiographic two-dimensional speckle tracking longitudinal strain imaging for viability assessment in patients with chronic ischemic left ventricular dysfunction and comparison with contrast-enhanced magnetic resonance imaging. Am J Cardiol. 2009;104:312-7. doi: 10.1016/
j.amjcard.2009.03.040
45. Bertini M, Mollema SA, Delgado V, et al. Impact of time to reperfusion after acute myocardial infarction on myocardial damage assessed by left ventricular longitudinal strain. Am J Cardiol. 2009;104:480-5. doi: 10.1016/j.amjcard.2009.04.010
46. Park YH, Kang SJ, Song JK, et al. Prognostic value of longitudinal strain after primary reperfusion therapy in patients with anterior-wall acute myocardial infarction. J Am Soc Echocardiogr. 2008;21:262-7. doi: 10.1016/j.echo.2007.08.026
47. Helle-Valle T, Remme EW, Lyseggen E, et al. Clinical assessment of left ventricular rotation and strain: a novel approach for quantification of function in infarcted myocardium and its border zones. Am J Physiol Heart Circ Physiol. 2009;297:H257-67. doi: 10.1152/
ajpheart.01116.2008
48. Vartdal T, Brunvand H, Pettersen E, et al. Early prediction of infarct size by strain Doppler echocardiography after coronary reperfusion. J Am Coll Cardiol. 2007;49(16):1715-21.
49. Cimino S, Canali E, Petronilli V, et al. Global and regional longitudinal strain assessed by two dimensional speckle tracking echocardiography identifies early myocardial dysfunction and transmural extent of myocardial scar in patients with acute ST elevation myocardial infarction and relatively preserved LV function. Eur Heart J Cardiovasc Imaging. 2013 Aug;14(8):805-11. doi: 10.1093/ehjci/jes295
50. Brown J, Jenkins C, Marwick TH. Use of myocardial strain to assess global left ventricular function: a comparison with cardiac magnetic resonance and 3-dimensional echocardiography. Am Heart J. 2009;157(1):102 e1-5. doi: 10.1016/j.ahj.2008.08.032
51. Jamal F, Kukulski T, Sutherland GR, et al. Can changes in systolic longitudinal deformation quantify regional myocardial function after an acute infarction? An ultrasonic strain rate and strain study. J Am Soc Echocardiogr. 2002;15(7):723-30. doi: 10.1067/mje.2002.118913
52. Kukulski T, Jamal F, D-Hooge J, et al. Acute changes in systolic and diastolic events during clinical coronary angioplasty: a comparison of regional velocity, strain rate, and strain measurement. J Am Soc Echocardiogr. 2002;15(1):1-12. doi: 10.1067/mje.2002.114844
53. Ohara Y, Hiasa Y, Hosokawa S, et al. Usefulness of ultrasonic strain measurements to predict regional wall motion recovery in patients with acute myocardial infarction after percutaneous coronary intervention. Am J Cardiol. 2007;99(6):754-9. doi: 10.1016/j.amjcard.2006.10.030
54. Sugeng L, Weinert L, Lang RM. Left ventricular assessment using real time three dimensional echocardiography. Heart. 2003;89(Suppl. 3):iii29-iii36. doi: 10.1136/heart.89.suppl_3.iii29
55. Geyer H, Caracciolo G, Abe H, et al. Assessment of Myocardial Mechanics Using Speckle Tracking Echocardiography: Fundamentals and Clinical Applications. J Am Soc Echocardiogr. 2010 Apr;23(4):351-69. doi: 10.1016/j.echo.2010.02.015
56. Mannaerts HF, van der Heide JA, Kamp O, et al. Early identification of left ventricular remodeling after myocardial infarction, assessed by transthoracic 3D echocardiography. Eur Heart J. 2004;25:680-7. doi: 10.1016/j.ehj.2004.02.030
________________________________________________
1. Rustamova YK. Actual Problems of Diagnostics of Viable Myocardium. Kardiologiia. 2019;59(2):68-78 (In Russ.) doi: 10.18087/cardio.2019.2.10243
2. Goldberg RJ, Spencer FA, Gore JM, et al. Thirty-year trends (1975 to 2005) in the magnitude of, management of, and hospital death rates associated with cardiogenic shock in patients with acute myocardial infarction: a population-based perspective. Circulation. 119(9):1211-9. doi: 10.1161/CIRCULATIONAHA.108.814947
3. Timmer SAJ, Teunissen PFA, Danad I, et al. In vivo assessment of myocardial viability after acute myocardial infarction: A head-to-head comparison of the perfusable tissue index by PET and delayed contrast-enhanced CMR. J Nucl Cardiol. 2017;24(2):657-67. doi: 10.1007/s12350-015 0329-7
4. Ibanez B, James S, Agewall S, et al. ESC Scientific Document Group. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. The Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J. 2018 Jan 7;39(2):119-77. doi: 10.1093/eurheartj/ehx393
5. Sharir T, Germano G, Kang X, et al. Prediction of myocardial infarction versus cardiac death by gated myocardial perfusion SPECT: risk stratification by the amount of stress- induced ischemia and the poststress ejection fraction. J Nucl Med. 2001;42(6):831-7.
6. White HD, Norris RM, Brown MA, et al. Left ventricular end-systolic volume as the major determinant of survival after recovery from myocardial infarction. Circulation. 1987;76(1):44-51. doi: 10.1161/01.cir.76.1.44
7. Moss AJ. Risk stratification and survival after myocardial infarction.
N Engl J Med. 1983;309(6):331-6. doi: 10.1056/nejm198308113090602
8. Wu E, Ortiz JT, Tejedor P, et al. Infarct size by contrast enhanced cardiac magnetic resonance is a stronger predictor of outcomes than left ventricular ejection fraction or end-systolic volume index: prospective cohort study. Heart. 2008;94(6):730-6. doi: 10.1136/hrt.2007.122622
9. Lønborg J, Vejlstrup N, Kelbæk H, et al. Final infarct size measured by cardiovascular magnetic resonance in patients with ST elevation myocardial infarction predicts long-term clinical outcome: an observational study. Eur Heart J Cardiovasc Imaging. 2013;14:387-95. doi: 10.1093/ehjci/jes271
10. Eichstaedt HW, Felix R, Dougherty FC, et al. Magnetic Resonance Imaging (MRI) in Different Stages of Myocardial Infarction Using the Contrast Agent Gadolinium-DTPA. Clin Cardiol. 1986;9:527-35. doi: 10.1002/clc.4960091102
11. Tim Lockie, Eike Nagel, Simon Redwood, Sven Plein. Use of Cardiovascular Magnetic Resonance Imaging in Acute Coronary Syndromes. Circulation. 2009;119:1671-81. doi: 10.1161/CIRCULATIONAHA. 108.816512
12. Hombach V, Merkle N, Bernhard P, et al. Prognostic significance of cardiac magnetic resonance imaging: Update 2010. Cardiol J. 2010;17(6):549-57.
13. Stukalova OV, Sinitsyn VE, Ternovoy SK. Myocardial Assessment in Patients with Coronary Artery Disease by Contrast Enhanced Magnetic Resonance Imaging. Medical Visualization. 2004;5:18-23 (In Russ.)
14. Bulluck H, Dharmakumar R, Arai AE, et al. Cardiovascular Magnetic Resonance in Acute ST-Segment-Elevation Myocardial Infarction: Recent Advances, Controversies, and Future Directions. Circulation. 2018;137(18):1949-64. doi: 10.1161/CIRCULATIONAHA.117.030693
15. Sinicyn VE. Tomographic diagnostic methods for acute coronary syndrome. Actual Issues of Heart and Vascular Diseases. 2008;4:16-8 (In Russ.)
16. Curtis JW, Lesniak DC, Wible JH, Woodard PK. Cardiac magnetic resonance imaging safety following percutaneous coronary intervention. Int J Cardiovasc Imaging. 2013;29:1485-90. doi: 10.1007/s10554-013-0231-9
17. Shellock FG. Reference Manual for Magnetic Resonance Safety, Implants, and Devices: Edition 2018. Los Angeles, CA: Biomedical Research Publishing Group; 2019.
18. Salerno M, Beller GA. Noninvasive assessment of myocardial perfusion. Circ Cardiovasc Imaging. 2009;2(5):412-24. doi: 10.1161/
CIRCIMAGING.109.854893
19. Birnbaum Y, Drew BJ. The electrocardiogram in ST elevation acute myocardial. infarction: correlation with coronary anatomy and prognosis. Postgrad Med J. 2003;79:490-504. doi: 10.1136/pmj.79.935.490
20. Aldrich HR, Wagner NB, Boswick J, et al. Use of initial ST-segment deviation for prediction of final electrocardiographic size of acute myocardial infarcts. Am J Cardiol. 1988;61:749-53. doi: 10.1016/0002-9149(88)91060-0
21. Clemmensen P, Grande P, Aldrich H, Wagner GS. Evaluation of formulas for estimating the final size of acute myocardial infarcts from quantitative ST-segment elevation on the initial standard 12-lead ECG. J Electrocardiol. 1991;24:77-83. doi: 10.1016/0022-0736(91)90084-y
22. Christian T, Gibbons R, Clements I, et al. Estimates of myocardium at risk and collateral flow in acute myocardial infarction using electrocardiographic indexes with comparison to radionuclide and angiographic measures. J Am Coll Cardiol. 1995;26:388-93. doi: 10.1016/0735-1097(95)80011-5
23. Clements I, Kaufmann P, Bailey K, et al. Electrocardiographic prediction of myocardial area at risk. Mayo Clin Proc. 1991;66:985-90. doi: 10.1016/s0025-6196(12)61733-9
24. Arnold AER, Simoons ML. "Expected infarct size without thrombolysis", a concept that predicts immediate and long-term benefit from thrombolysis for evolving myocardial infarction. Eur Heart J. 1997;18:1736-48. doi: 10.1093/oxfordjournals.eurheartj.a015168
25. Willems JL, Willems RJ, Willems GM, et al. Significance of initial ST segment elevation and depression for the management of thrombolytic therapy in acute myocardial infarction. Circulation. 1990;82:1147-58. doi: 10.1161/01.cir.82.4.1147
26. Vermeer F, Simoons ML, Bar FW, et al. Which patients benefit most from early thrombolytic therapy with intracoronary streptokinase? Circulation. 1986;74:1379-89. doi: 10.1161/01.CIR.74.6.1379
27. Roberts WC, Gardin JM. Location of myocardial infarcts: a confusion of terms and definitions. Am J Cardiol. 1978;42:868-72. doi: 10.1016/0002-9149(78)90110-8
28. Huey BL, Beller GA, Kaiser DL, et al. A comprehensive analysis of myocardial infarction due to left circumflex artery occlusion: comparison with infarction due to right coronary artery and left anterior descending artery occlusion. J Am Coll Cardiol. 1988;12:1156-66. doi: 10.1016/0735-1097(88)92594-6
29. Sclarovsky S, Topaz O, Rechavia E, et al. Ischemic ST segment depression in leads V2-V3 as the presenting electrocardiographic feature of posterolateral wall myocardial infarction. Am Heart J. 1987;113:1085-90. doi: 10.1016/0002-8703(87)90916-1
30. Geft IL, Shah PK, Rodriguez L, et al. ST elevations in leads V1 to V5 may be caused by right coronary artery occlusion and acute right ventricular infarction. Am J Cardiol. 1984;53:991-6. doi: 10.1016/0002-9149(84)90623-4
31. Juergens CP, Fernandes C, Hasche ET, et al. Electrocardiographic measurement of infarct size after thrombolytic therapy. J Am Coll Cardiol. 1996;27:617-24. doi: 10.1016/0735-1097(95)00497-1
32. Hasche ET, Fernandes C, Freedman SB, Jeremy RW. Relation between ischemia time, infarct size, and left ventricular function in humans. Circulation. 1995;92:710-9. doi: 10.1161/01.cir.92.4.710
33. Selvester RH, Samnarco ME, Solomon JC, Wagner GS. The electrocardiogram: QRS change. p. 23. In Wagner GS (ed): Myocardial infarction: measurement and intervention: developments in cardiovascular medicine (Vol. 14). The Hague: Martinus Nijhoff, 1982.
34. Birnbaum Y, Kloner R, Sclarovsky S, et al. Distortion of the terminal portion of the QRS on the admission electrocardiogram in acute myocardial infarction and correlation with infarct size and long term prognosis (Thrombolysis In Myocardial Infarction 4 Trial). Am J Cardiol. 1996;78:396-403. doi: 10.1016/s0002-9149(96)00326-8
35. Birnbaum Y, Maynard C, Wolfe S, et al. Terminal QRS distortion on admission is better than ST-segment measurements in predicting final infarct size and assessing the potential effect of thrombolytic therapy in anterior wall acute myocardial infarction. Am J Cardiol. 1999;84:530-4. doi: 10.1016/s0002-9149(99)00372-0
36. Birnbaum Y, Criger DA, Wagner GS, et al. Prediction of the extent and severity of left ventricular dysfunction in anterior acute myocardial infarction by the admission electrocardiogram. Am Heart J. 2001;141:915-24. doi: 10.1067/mhj.2001.115300
37. Birnbaum Y, Mahaffey KW, Criger DA, et al; AMISTAD (Acute Myocardial Infarction Study of Adenosine) Investigators. Grade III ischemia on presentation with acute myocardial infarction predicts rapid progression of necrosis and less myocardial salvage with thrombolysis. Cardiology. 2002;97:166-74. doi: 10.1159/000063334
38. Shen WK, Khandheria BK, Edwards WD, et al. Value and limitations of two-dimensional echocardiography in predicting myocardial infarct size. Am J Cardiol. 1991;68(11):1143-9. doi: 10.1016/0002-9149(91)90185-n
39. Lieberman AN, Weiss JL, Jugdutt BI, et al. Two-dimensional echocardiography and infarct size: relationship of regional wall motion and thickening to the extent of myocardial infarction in the dog. Circulation. 1981;63(4):739-46. doi: 10.1161/01.cir.63.4.739
40. Крикунов П.В., Васюк Ю.А., Крикунова О.В. Прогностическая значимость эхокардиографии после острого инфаркта миокарда. Часть 1. Российский кардиологический журнал. 2017;12(152):120-8 [Krikunov PV, Vasyuk YA, Krikunova OV. Predictive value of echocardiography in post myocardial infarction setting. Part 1. Russian Journal of Cardiology. 2017;12(152):120-8 (In Russ.)]. doi: 10.15829/1560-4071-2017-12-120-128
41. Amundsen BH, Helle-Valle T, Edvardsen T, et al. Noninvasive myocardial strain measurement by speckle tracking echocardiography validation against sonomicrometry and tagged magnetic resonanceimaging.
J Am Coll Card. 2006;47:789-93. doi: 10.1016/j.jacc.2005.10.040
42. Gjesdal, O, Hopp E, Vartdal T, et al. Global longitudinal strain measured by two-dimensional speckle tracking echocardiography is closely related to myocardial infarct size in chronic ischaemic heart disease. Clin Sci (Lond). 2007;113:287-96. doi: 10.1042/CS20070066
43. Becker M, Hoffmann R, Kühl HP, et al. Analysis of myocardial deformation based on ultrasonic pixel tracking to determine transmurality in chronic myocardial infarction. Eur Heart J. 2006;27:2560-6. doi: 10.1093/eurheartj/ehl288
44. Roes SD, Mollema SA, Lamb HJ, et al. Validation of echocardiographic two-dimensional speckle tracking longitudinal strain imaging for viability assessment in patients with chronic ischemic left ventricular dysfunction and comparison with contrast-enhanced magnetic resonance imaging. Am J Cardiol. 2009;104:312-7. doi: 10.1016/
j.amjcard.2009.03.040
45. Bertini M, Mollema SA, Delgado V, et al. Impact of time to reperfusion after acute myocardial infarction on myocardial damage assessed by left ventricular longitudinal strain. Am J Cardiol. 2009;104:480-5. doi: 10.1016/j.amjcard.2009.04.010
46. Park YH, Kang SJ, Song JK, et al. Prognostic value of longitudinal strain after primary reperfusion therapy in patients with anterior-wall acute myocardial infarction. J Am Soc Echocardiogr. 2008;21:262-7. doi: 10.1016/j.echo.2007.08.026
47. Helle-Valle T, Remme EW, Lyseggen E, et al. Clinical assessment of left ventricular rotation and strain: a novel approach for quantification of function in infarcted myocardium and its border zones. Am J Physiol Heart Circ Physiol. 2009;297:H257-67. doi: 10.1152/
ajpheart.01116.2008
48. Vartdal T, Brunvand H, Pettersen E, et al. Early prediction of infarct size by strain Doppler echocardiography after coronary reperfusion. J Am Coll Cardiol. 2007;49(16):1715-21.
49. Cimino S, Canali E, Petronilli V, et al. Global and regional longitudinal strain assessed by two dimensional speckle tracking echocardiography identifies early myocardial dysfunction and transmural extent of myocardial scar in patients with acute ST elevation myocardial infarction and relatively preserved LV function. Eur Heart J Cardiovasc Imaging. 2013 Aug;14(8):805-11. doi: 10.1093/ehjci/jes295
50. Brown J, Jenkins C, Marwick TH. Use of myocardial strain to assess global left ventricular function: a comparison with cardiac magnetic resonance and 3-dimensional echocardiography. Am Heart J. 2009;157(1):102 e1-5. doi: 10.1016/j.ahj.2008.08.032
51. Jamal F, Kukulski T, Sutherland GR, et al. Can changes in systolic longitudinal deformation quantify regional myocardial function after an acute infarction? An ultrasonic strain rate and strain study. J Am Soc Echocardiogr. 2002;15(7):723-30. doi: 10.1067/mje.2002.118913
52. Kukulski T, Jamal F, D-Hooge J, et al. Acute changes in systolic and diastolic events during clinical coronary angioplasty: a comparison of regional velocity, strain rate, and strain measurement. J Am Soc Echocardiogr. 2002;15(1):1-12. doi: 10.1067/mje.2002.114844
53. Ohara Y, Hiasa Y, Hosokawa S, et al. Usefulness of ultrasonic strain measurements to predict regional wall motion recovery in patients with acute myocardial infarction after percutaneous coronary intervention. Am J Cardiol. 2007;99(6):754-9. doi: 10.1016/j.amjcard.2006.10.030
54. Sugeng L, Weinert L, Lang RM. Left ventricular assessment using real time three dimensional echocardiography. Heart. 2003;89(Suppl. 3):iii29-iii36. doi: 10.1136/heart.89.suppl_3.iii29
55. Geyer H, Caracciolo G, Abe H, et al. Assessment of Myocardial Mechanics Using Speckle Tracking Echocardiography: Fundamentals and Clinical Applications. J Am Soc Echocardiogr. 2010 Apr;23(4):351-69. doi: 10.1016/j.echo.2010.02.015
56. Mannaerts HF, van der Heide JA, Kamp O, et al. Early identification of left ventricular remodeling after myocardial infarction, assessed by transthoracic 3D echocardiography. Eur Heart J. 2004;25:680-7. doi: 10.1016/j.ehj.2004.02.030
1 ГБУЗ «Пензенская областная клиническая больница им. Н.Н. Бурденко» Минздрава Пензенской области, Пенза, Россия;
2 ФГБОУ ВО «Пензенский государственный университет», Пенза, Россия
________________________________________________
E.A. Shigotarova1, V.A. Galimskaja2, A.V. Golubeva2, V.E. Oleynikov2
1 Burdenko Penza Oblast Clinical Hospital, Penza, Russia;
2 Penza State University, Penza, Russia