Цель. Изучение активирующих мутаций генов (NRAS, KRAS, FLT3, JAK2, CRLF2) сигнальных каскадов RAS/RAF/MEK/ERK и JAK/STAT при В-клеточном остром лимфобластном лейкозе (В-ОЛЛ) у взрослых больных, включенных в российские многоцентровые исследования. Материалы и методы. В многоцентровое исследование включены 119 взрослых пациентов с впервые установленным В-ОЛЛ. Исследование носило проспективный и ретроспективный характер. Группа с BCR-ABL1-негативным В-ОЛЛ составила 93 больных (48 женщин и 45 мужчин от 17 до 59 лет, медиана возраста – 31 год), им проводили терапию по протоколам ОЛЛ-2009, ОЛЛ-2016. Медиана наблюдения составила 19 мес (1–119). В группу с BCR-ABL1-позитивным В-ОЛЛ включены 26 пациентов (16 женщин и 10 мужчин от 23 до 78 лет, медиана возраста – 34 года). Лечение проводили по протоколам ОЛЛ-2009 и ОЛЛ-2012 в сочетании с ингибиторами тирозинкиназ. Медиана наблюдения составила 23 мес (4–120). Молекулярный анализ активирующих мутаций для генов NRAS, KRAS (сигнальный путь RAS/RAF/MEK/ERK) и генов JAK2, CRLF2 (сигнальный путь JAK/STAT) проводился методом секвенирования по Сэнгеру. Внутренние тандемные повторы (ITD) гена FLT3 – рецепторной внутриклеточной тирозинкиназы, приводящие к запуску целого каскада реакций, относящихся к различным сигнальным путям, включая RAS/RAF/MEK/ERK и JAK/STAT, исследованы методом фрагментного анализа. Экспрессию белка CRLF2 оценивали методом проточной цитофлуориметрии. Результаты. Активирующие мутации в генах NRAS, KRAS, FLT3 обнаружены у 22 (23,6%) больных BCR-ABL1-негативным В-ОЛЛ. В общей сложности выявлено 23 мутации в генах NRAS (n=9), KRAS (n=12), FLT3 (n=2), что статистически значимо чаще, чем при BCR-ABL1-позитивном В-ОЛЛ, где мутации этих генов не выявлены ни у одного больного (р=0,007). Частота обнаружения мутаций в генах KRAS и NRAS у больных BCR-ABL1-негативным В-ОЛЛ сопоставима – 12,9% (12 из 93) и 9,7% (9 из 93) соответственно (р=0,488).
У одного больного выявлено одновременно 2 мутации в гене KRAS (в кодонах 13 и 61). Мутацию FLT3-ITD детектировали в 3,5% (2 из 57) случаев BCR-ABL1-негативных В-ОЛЛ. У больных BCR-ABL1-позитивным В-ОЛЛ мутацию FLT3-ITD не оценивали. Нарушения в сигнальном каскаде JAK/STAT обнаружены у 4 (4,3%) больных BCR-ABL1-негативным В-ОЛЛ. Они представлены миссенс-мутациями гена JAK2 (n=3) и гиперэкспрессией CRLF2 (n=2), у одного больного обнаружены одновременно гиперэкспрессия CRLF2 и мутация в гене JAK2. В гене CRLF2 мутации не выявлены. У больных BCR-ABL1-позитивным В-ОЛЛ мутаций гена JAK2 не выявлено. При анализе демографических и клинико-лабораторных показателей между группами больных с мутациями и без таковых статистически значимых различий не получено. В анализируемых группах больных долгосрочные результаты терапии в зависимости от наличия мутаций в генах NRAS, KRAS, FLT3, JAK2 не различались. Также не показано значимых отличий в скорости достижения негативного статуса минимальной остаточной болезни между пациентами с активирующими мутациями и без в контрольные сроки протокола (на 70, 133 и 190-й день). Заключение. Активирующие мутации генов NRAS, KRAS, FLT3, JAK2 не влияют на долгосрочные результаты терапии и скорость достижения негативного статуса минимальной остаточной болезни у больных BCR-ABL1-негативным В-ОЛЛ при применении протоколов российского многоцентрового исследования.
Issue. The study of activating mutations (NRAS, KRAS, FLT3, JAK2, CRLF2 genes) of RAS/RAF/MEK/ERK and JAK/STAT signaling pathways in B-cell acute lymphoblastic leukemia (B-ALL) in adult patients which are included in Russian multicenter clinical trials. Materials and methods. Within the multicenter study there were 119 adult patients included with de novo B-ALL. The study was considered as prospective and retrospective. The group with BCR-ABL1-negative B-ALL consisted of up to 93 patients (45 male and 48 female, at the age of 17 to 59, the median age – 31), they were treated according to the protocols ALL-2009, ALL-2016. The median follow-up lasted for 19 months (1–119). The group with BCR-ABL1-positive B-ALL with up to 26 patients (10 male and 16 female, at the age of 23 to 78, the median age 34 years) was included in the study as well. The treatment was carried out according to the protocols ALL-2009 and ALL-2012 in combination with tyrosine kinase inhibitors. The median follow-up lasted for 23 months (4–120). The molecular analysis of activating mutations in NRAS, KRAS genes (RAS/RAF/MEK/ERK signaling pathway) and JAK2, CRLF2 genes (JAK/STAT signaling cascade) was performed via Sanger sequencing. The internal tandem duplications (ITDs) in FLT3 gene were studied by fragment analysis. The evaluation of CRLF2 expression was fulfilled via flow cytometry. Results. Activating mutations in NRAS, KRAS, FLT3 genes were found in 22 (23.6%) patients with BCR-ABL1-negative B-ALL. In total, 23 mutations were revealed in the NRAS (n=9), KRAS (n=12), and FLT3 (n=2) genes, according to statistics that was significantly more frequent than with BCR-ABL1-positive B-ALL, these genes mutations were not identified in patients (p=0.007).
The frequency of mutations detection in KRAS and NRAS genes in patients with BCR-ABL1-negative B-ALL was comparable as 12.9% (12 of 93) to 9.7% (9 of 93), respectively (p=0.488). One patient was simultaneously revealed 2 mutations in the KRAS gene (in codons 13 and 61). FLT3-ITD mutations were detected in 3.5% (2 of 57) cases of BCR-ABL1-negative B-ALL. In patients with BCR-ABL1-positive B-ALL FLT3-ITD mutations were not assessed. Violations in the JAK/STAT signaling cascade were detected in 4 (4.3%) patients with BCR-ABL1-negative B-ALL. They were represented by the missense mutations of JAK2 gene (n=3) and the overexpression of CRLF2 (n=2); in one patient were detected the overexpression of CRLF2 and a mutation in JAK2 gene simultaneously. No mutations were found in CRLF2 gene. In patients with BCR-ABL1-positive B-ALL no JAK2 mutations were detected. As long as analyzing demographic and clinical laboratory parameters between groups of patients with and without mutations, there were no statistically significant differences obtained. In the analyzed groups of patients, long-term therapy results did not differentiate according to the mutations presence in NRAS, KRAS, FLT3, JAK2 genes. Also, substantive differences were not shown in the rate of the negative status achievement of the minimum residual disease between patients with and without activating mutations in the control points of the protocol (on the 70th, 133rd and 190th days). Conclusion. NRAS, KRAS, FLT3, JAK2 activating mutations do not affect the long-term results of the therapy and the rate of the negative status achievement of the minimum residual disease in patients with BCR-ABL1-negative B-ALL treated by the Russian multicenter clinical trials.
1. Moorman AV. New and emerging prognostic and predictive genetic biomarkers in B-cell precursor acute lymphoblastic leukemia. Haematologica. 2016;101(4):407-16. doi: 10.3324/haematol.2015.141101
2. Программное лечение заболеваний системы крови: сборник алгоритмов диагностики и протоколов лечения заболеваний системы крови. Под ред. В.Г. Савченко. М.: Практика, 2012; c. 289-342 [Programmnoe lechenie zabolevanij sistemy krovi: sbornik algoritmov diagnostiki i protokolov lecheniya zabolevanij sistemy krovi. In: VG Savchenko eds. Moscow: Praktika; 2012; p. 289-342 (In Russ.)].
3. Inaba H, Greaves M, Mullighan CG. Acute lymphoblastic leukaemia. Lancet. 2013;381(9881). doi: 10.1016/S0140-6736(12)62187-4
4. Harrison CJ. Key pathways as therapeutic targets. Blood. 2011;118(11):2935-6.
doi: 10.1182/blood-2011-07-362723
5. Harrison CJ. Targeting signaling pathways in acute lymphoblastic leukemia: new insights. Hematology Am Soc Hematol Educ Program. 2013;2013:118-25.
doi: 10.1182/asheducation-2013.1.118
6. Herrmann C. Ras-effector interactions: after one decade. Current Opinion in Structural Biology. 2003;13(1):122-9. doi: 10.1016/s0959-440x(02)00007-6
7. Arcaro A. The Small GTP-binding Protein Rac Promotes the Dissociation of Gelsolin from Actin Filaments in Neutrophils. J Biol Chem. 1998;273(2):805-13.
doi: 10.1074/jbc.273.2.805
8. Schubbert S, Shannon K, Bollag G. Hyperactive Ras in Developmental Disorders and Cancer. Nat Rev Cancer. 2007;7(4):295-308. doi: 10.1038/nrc2109
9. Ward AF, Braun BS, Shannon KM. Targeting Oncogenic Ras Signaling in Hematologic Malignancies. Blood. 2012;120(17):3397-406. doi: 10.1182/blood-2012-05-378596
10. Neri A, Knowles DM, Greco A, et al. Analysis of RAS oncogene mutations in human lymphoid malignancies. Proc Natl Acad Sci U S A. 1988;85(23):9268-72.
doi: 10.1073/pnas.85.23.9268
11. Zhang J, Mullighan CG, Harvey RC, et al. Key pathways are frequently mutated in high-risk childhood acute lymphoblastic leukemia: a report from the Children’s Oncology Group. Blood. 2011;118(11):3080-7. doi: 10.1182/blood-2011-03-341412
12. Paulsson K, Lilljebjörn H, Biloglav A, et al. The genomic landscape of high hyperdiploid childhood acute lymphoblastic leukemia. Nat Genet. 2015;47(6):672-6.
doi: 10.1038/ng.3301
13. Holmfeldt L, Wei L, Diaz-Flores E, et al. The Genomic Landscape of Hypodiploid Acute Lymphoblastic Leukemia. Nat Genet. 2013;45(3):242-52. doi: 10.1038/ng.2532
14. Andersson AK, Ma J, Wang J, et al. The Landscape of Somatic Mutations in Infant MLL-rearranged Acute Lymphoblastic Leukemias. Nat Genet. 2015;47(4):330-7.
doi: 10.1038/ng.3230
15. Ma X, Edmonson M, Yergeau D, et al. Rise and Fall of Subclones From Diagnosis to Relapse in Pediatric B-acute Lymphoblastic Leukaemia. Nat Commun. 2015;6:6604.
doi: 10.1038/ncomms7604
16. Oshima K, Khiabanian H, Silva-Almeida AC, et al. Mutational Landscape, Clonal Evolution Patterns, and Role of RAS Mutations in Relapsed Acute Lymphoblastic Leukemia. Proc Natl Acad Sci U S A. 2016;113(40):11306-11.
doi: 10.1073/pnas.1608420113
17. Irving J, Matheson E, Minto L, et al. Ras Pathway Mutations Are Prevalent in Relapsed Childhood Acute Lymphoblastic Leukemia and Confer Sensitivity to MEK Inhibition. Blood. 2014;124(23):3420-30. doi: 10.1182/blood-2014-04-531871
18. Case M, Matheson E, Minto L, et al. Mutation of Genes Affecting the RAS Pathway Is Common in Childhood Acute Lymphoblastic Leukemia. Cancer Res. 2008;68(16):6803-9. doi: 10.1158/0008-5472.CAN-08-0101
19. Irving J, Matheson E, Minto L, et al. Ras Pathway Mutations Are Prevalent in Relapsed Childhood Acute Lymphoblastic Leukemia and Confer Sensitivity to MEK Inhibition. Blood. 2014;124(23):3420-30. doi: 10.1182/blood-2014-04-531871
20. Smith CA, Fan G. The Saga of JAK2 Mutations and Translocations in Hematologic Disorders: Pathogenesis, Diagnostic and Therapeutic Prospects, and Revised World Health Organization Diagnostic Criteria for Myeloproliferative Neoplasms. Hum Pathol. 2008;39(6):795-810. doi: 10.1016/j.humpath.2008.02.004
21. Mullighan CG, Zhang J, Harvey RC, et al. JAK Mutations in High-Risk Childhood Acute Lymphoblastic Leukemia. Proc Natl Acad Sci U S A. 2009;106(23):9414-8.
doi: 10.1073/pnas.0811761106
22. Bercovich D, Ganmore I, Scott LM, et al. Mutations of JAK2 in acute lymphoblastic leukaemias associated with Down’s syndrome. Lancet. 2008;372(9648):1484-92.
doi: 10.1016/S0140-6736(08)61341-0
23. Vainchenker W, Constantinescu SN. JAK/STAT signaling in hematological malignancies. Oncogene. 2013;32(21):2601-13. doi: 10.1038/onc.2012.347
24. Chen E, Staudt LM, Green AR. Janus kinase deregulation in leukemia and lymphoma. Immunity. 2012;36(4):529-41. doi: 10.1016/j.immuni.2012.03.017
25. Li F, Guo HY, Wang M, et al. The Effects of R683S (G) Genetic Mutations on the JAK2 Activity, Structure and Stability. Int J Biol Macromol. 2013;60:186-95.
doi: 10.1016/j.ijbiomac.2013.05.029
26. Herold T, Schneider S, Metzeler KH, et al. Adults With Philadelphia Chromosome-Like Acute Lymphoblastic Leukemia Frequently Have IGH-CRLF2 and JAK2 Mutations, Persistence of Minimal Residual Disease and Poor Prognosis. Haematologica. 2017;102(1):130-8. doi: 10.3324/haematol.2015.136366
27. Harvey RC, Mullighan CG, Chen IM, et al. Rearrangement of CRLF2 Is Associated With Mutation of JAK Kinases, Alteration of IKZF1, Hispanic/Latino Ethnicity, and a Poor Outcome in Pediatric B-progenitor Acute Lymphoblastic Leukemia. Blood. 2010;115(26):5312-21. doi: 10.1182/blood-2009-09-245944
28. Schmäh J, Fedders B, Panzer-Grümayer R, et al. Molecular Characterization of Acute Lymphoblastic Leukemia With High CRLF2 Gene Expression in Childhood. Pediatr Blood Cancer. 2017;64(10). doi: 10.1002/pbc.26539
29. Russell LJ, Capasso M, Vater I, et al. Deregulated Expression of Cytokine Receptor Gene, CRLF2, Is Involved in Lymphoid Transformation in B-cell Precursor Acute Lymphoblastic Leukemia. Blood. 2009;114(13):2688-98. doi: 10.1182/blood-2009-03-208397
30. Choudhary C, Müller-Tidow C, Berdel WE, Serve H. Signal Transduction of Oncogenic FLT3. Int J Hematol. 2005;82(2):93-9. doi: 10.1532/IJH97.05090
31. Hayakawa F, Towatari M, Kiyoi H, et al. Tandem-duplicated FLT3 Constitutively Activates STAT5 and MAP Kinase and Introduces Autonomous Cell Growth in IL-3-dependent Cell Lines. Oncogene. 2000;19(5):624-31. doi: 10.1038/sj.onc.1203354
32. Nakao M, Yokota S, Iwai T, et al. Internal tandem duplication of the FLT3 gene found in acute myeloid leukemia. Leukemia. 1996;10(12):1911-8.
33. Rombouts WJ, Blokland I, Löwenberg B, Ploemacher RE. Biological characteristics and prognosis of adult acute myeloid leukemia with internal tandem duplications in the FLT3 gene. Leukemia. 2000;14(4):675-83. doi: 10.1038/sj.leu.2401731
34. Armstrong SA, Look AT. Molecular Genetics of Acute Lymphoblastic Leukemia. J Clin Oncol. 2005;23(26):6306-15. doi: 10.1200/JCO.2005.05.047
35. Пискунова И.С., Обухова Т.Н., Паровичникова Е.Н. и др. Прогностическое значение делеции локуса гена CDKN2a/9p21 у взрослых пациентов с Ph-негативным острым лимфобластным лейкозом на терапии по протоколу ОЛЛ-2009. Онкогематология. 2017;12(3):17-24 [Piskunova IS, Obukhova TN, Parovichnikova EN, et al. CDKN2a/9p21 deletion is not a poor prognostic factor in adult acute lymphoblastic leukemia patients treated according to protocol RALL-2009. Oncogematologiya. 2017;12(3):17-24 (In Russ.)]. doi: 10.17650/1818-8346-2017-12-3-17-24
36. Пискунова И.С., Обухова Т.Н., Паровичникова Е.Н. и др. Структура и значение цитогенетических перестроек у взрослых больных Ph-негативным острым лимфобластным лейкозом. Терапевтический архив. 2018;90(7):30-7 [Piskunova IS, Obukhova TN, Parovichnikova EN, et al. Structure and importance of cytogenetic rejections in adult patients with Ph-negative acute lymphoblastic leukemia. Therapeutic Archive. 2018;90(7):30-7 (In Russ.)]. doi: 10.26442/terarkh201890730-37
37. Басхаева Г.А., Паровичникова Е.Н., Бидерман Б.В. и др. Роль мутаций гена IKZF1 при В-клеточном остром лимфобластном лейкозе у взрослых больных, получающих лечение по протоколам российского многоцентрового исследования. Гематология и трансфузиология. 2018;63(1):16-30 [Bashaeva GA, Parovichnikova EN, Biderman BV, et al. The role of IKZF1 gene mutations in-cellular acute lymphoblastic leukemia in adult patients receiving treatment under russian multicenter research protocols. Gematologiya i Transfusiologiya. 2018;63(1):16-30 (In Russ.)]. doi: 10.25837/HAT.2018.80..1..002
38. Паровичникова Е.Н., Клясова Г.А., Исаев В.Г. и др. Первые итоги терапии Ph-негативных острых лимфобластных лейкозов взрослых по протоколу Научно-исследовательской группы гематологических центров России ОЛЛ-2009. Терапевтический архив. 2011;83(7):7-11. [Parovichnikova EN, Kliasova GA, Isaev VG, et al. Pilot results of therapy of adult Ph-negative acute lymphoblastic leukemia according to the protocol of Research Group of Russian Hematological Centers ALL-2009. Therapeutic Archive. 2011;83(7):7–11 (In Russ.)].
39. Паровичникова Е.Н., Троицкая В.В., Соколов А.Н. и др. Промежуточные результаты по лечению острых Ph-негативных лимфобластных лейкозов у взрослых больных [итоги Российской исследовательской группы по лечению острых лимфобластных лейкозов (RALL)]. Онкогематология. 2014;9(3):6-15 [Parovichnikova EN, Troitskaya VV, Sokolov AN, et al. Interim results of the Ph-negative acute lymphoblastic leukemia treatment in adult patients [results of Russian research group of ALL treatment (RALL)]. Oncohematology. 2014;9(3):6-15 (In Russ.)]. doi: 10.17650/1818-8346-2014-9-3-6-15
40. Паровичникова Е.Н., Троицкая В.В., Соколов А.Н. и др. Острые В-лимфобластные лейкозы взрослых: выводы из российского проспективного многоцентрового исследования ОЛЛ-2009. Терапевтический архив. 2017;89(7):10-7 [Parovichnikova EN, Troitskaya VV, Sokolov AN, et al. Adult B-cell acute lymphoblastic leukemias: Conclusions of the russian prospective multicenter study ALL-2009. Ostrye V-limfoblastnye leĭkozy vzroslykh: vyvody iz rossiĭskogo prospektivnogo mnogotsentrovogo issledovaniia OLL-2009. Therapeutic Archive. 2017;89(7):10-7 (In Russ.)].
doi: 10.17116/terarkh2017897 10-17
41. Паровичникова Е.Н., Савченко В.Г. Российские многоцентровые исследования по лечению острых лейкозов. Терапевтический архив. 2019;91(7):4-13 [Parovichnikova EN, Savchenko VG. Russian multicenter clinical trials in acute leukemias. Therapeutic Archive. 2019;91(7):4-13 (In Russ.)].
doi: 10.26442/00403660.2019.07.000325
42. Гаврилина О.А., Паровичникова Е.Н., Троицкая В.В. и др. Результаты ретроспективного многоцентрового исследования терапии больных Ph-позитивным острым лимфобластным лейкозом по протоколам российской исследовательской группы. Гематология и трансфузиология. 2017;62(4):172-80 [Gavrilina OA, Parovichnikova EN, Troitskaya VV, et al. The results of the retrospective multicentre study of the therapy of Ph-positive acute lymphoblastic leukemia according to the protocols of the Russian research group. Gematologiya i Transfusiologiya. 2017;62(4):172-80 (In Russ.)]. doi: 10.18821/0234-5730-2017-62-4-172-180
43. Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391-405. doi: 10.1182/blood-2016-03-643544
44. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series. 1999;41:95-8.
45. Pylayeva-Gupta Y, Grabocka E, Bar-Sagi D. RAS oncogenes: weaving a tumorigenic web. Nat Rev Cancer. 2011;11(11):761-74. doi: 10.1038/nrc3106
46. Macedo MP, Andrade L, Coudry R, et al. Multiple Mutations in the Kras Gene in Colorectal Cancer: Review of the Literature With Two Case Reports. Int J Colorectal Dis. 2011;26(10):1241-8. doi: 10.1007/s00384-011-1238-0
47. Barbacid M. Ras Genes. Annu Rev Biochem. 1987;56:779-827.
doi: 10.1146/annurev.bi.56.070187.004023
48. Bos JL. The ras gene family and human carcinogenesis. Mutat Res. 1988;195(3):255-71. doi: 10.1016/0165-1110(88)90004-8
49. Зарубина К.И., Паровичникова Е.Н., Басхаева Г.А. и др. Трудности диагностики и терапии Ph-подобных острых лимфобластных лейкозов: описание 3 клинических случаев. Терапевтический архив. 2018;90(7):110-7 [Zarubina KI, Parovichnikova EN, Baskhaeva GA, et al. Diagnostics and Treatment Challenges of Ph-like Acute Lymphoblastic Leukemia: A Description of 3 Clinical Cases. Therapeutic Archive. 2018;90(7):110-7 (In Russ.)]. doi: 10.26442/terarkh2018907110-117
50. Kobold S, Kılıç N, Scharlau J, et al. FLT3 – ITD Positive Acute Lymphocytic Leukemia, Does It Impact on Disease´s Course? Turk J Haematol. 2010;27(2):133-4. doi: 10.5152/tjh.2010.18
51. Harvey RC, Mullighan CG, Wang X, et al. Identification of Novel Cluster Groups in Pediatric High-Risk B-precursor Acute Lymphoblastic Leukemia With Gene Expression Profiling: Correlation With Genome-Wide DNA Copy Number Alterations, Clinical Characteristics, and Outcome. Blood. 2010;116(23):4874-84. doi: 10.1182/blood-2009-08-239681
52. Den Boer ML, van Slegtenhorst M, De Menezes RX, et al. A subtype of childhood acute lymphoblastic leukaemia with poor treatment outcome: a genome-wide classification study. Lancet Oncol. 2009;10(2):125-34. doi: 10.1016/S1470-2045(08)70339-5
53. Roberts KG, Morin RD, Zhang J, et al. Genetic alterations activating kinase and cytokine receptor signaling in high-risk acute lymphoblastic leukemia. Cancer Cell. 2012;22(2):153-66. doi: 10.1016/j.ccr.2012.06.005
54. Mullighan CG, Collins-Underwood JR, Phillips LA, et al. Rearrangement of CRLF2 in B-progenitor- and Down syndrome-associated acute lymphoblastic leukemia. Nat Genet. 2009;41(11):1243-6. doi: 10.1038/ng.469
55. Paulsson K, Horvat A, Strömbeck B, et al. Mutations of FLT3, NRAS, KRAS, and PTPN11 Are Frequent and Possibly Mutually Exclusive in High Hyperdiploid Childhood Acute Lymphoblastic Leukemia. Genes Chromosomes Cancer. 2008;47(1):26-33. doi: 10.1002/gcc.20502
56. Wiemels JL, Zhang Y, Chang J, et al. RAS Mutation Is Associated With Hyperdiploidy and Parental Characteristics in Pediatric Acute Lymphoblastic Leukemia. Leukemia. 2005;19(3):415-9. doi: 10.1038/sj.leu.2403641
57. Reshmi SC, Harvey RC, Roberts KG, et al. Targetable kinase gene fusions in high-risk B-ALL: a study from the Children’s Oncology Group. Blood. 2017;129(25):3352-61. doi: 10.1182/blood-2016-12-758979
58. Roberts KG, Reshmi SC, Harvey RC, et al. Genomic and Outcome Analyses of Ph-like ALL in NCI Standard-Risk Patients: A Report From the Children's Oncology Group. Blood. 2018;132(8):815-24. doi: 10.1182/blood-2018-04-841676
59. Roberts KG, Gu Z, Payne-Turner D, et al. High Frequency and Poor Outcome of Philadelphia Chromosome-Like Acute Lymphoblastic Leukemia in Adults. J Clin Oncol. 2017;35(4):394-401. doi: 10.1200/JCO.2016.69.0073
60. Perentesis JP, Bhatia S, Boyle E, et al. RAS oncogene mutations and outcome of therapy for childhood acute lymphoblastic leukemia. Leukemia. 2004;18(4):685-92. doi: 10.1038/sj.leu.2403272
61. Driessen EM, Van Roon EHJ, Spijkers-Hagelstein JA, et al. Frequencies and prognostic impact of RAS mutations in MLL-rearranged acute lymphoblastic leukemia in infants. Haematologica. 2013;98(6):937-44. doi: 10.3324/haematol.2012.067983
62. Messina M, Chiaretti S, Wang J, et al. Prognostic and therapeutic role of targetable lesions in B-lineage acute lymphoblastic leukemia without recurrent fusion genes. Oncotarget. 2016;7(12):13886-901. doi: 10.18632/oncotarget.7356
63. Sokolov N, Parovichnikova EN, Troitskaya VV, et al. Blinatumomab + Tyrosine Kinase Inhibitors with No Chemotherapy in BCR-ABL-Positive or IKZF1-Deleted or FLT3-ITD-Positive Relapsed/Refractory Acute Lymphoblastic Leukemia Patients: High Molecular Remission Rate and Toxicity Profile. Blood. 2017;130(Suppl. 1): 3884. doi: 10.1182/blood.
V130.Suppl_1.3884.3884
64. Зарубина К.И., Усикова Е.В., Абрамова А.В. и др. Достижение полной молекулярной ремиссии у больного острым лимфобластным лейкозом с мутацией FLT3-ITD при терапии сорафенибом и блинатумомабом. Клин. онкогематология. 2017;10(4)540-1 [Zarubina KI, Usikova EV, Abramova AV, et al. Clin Oncohematology. 2017;10(4)540-1 (In Russ.)]. doi: 10.26442/terarkh2018907110-117
65. Sokolov A, Parovichnikova E, Troitskaya V, et al. Targetable blinatumomab + tyrosine kinase inhibitors treatment in relapsed/refractory acute lymphoblastic leukemia patients: clinical effectiveness and peripheral lymphocytes subpopulations kinetics. Haematologica. 2017;102(s2):354-5.
66. Sokolov AN, Parovichnikova EN, Troitskaya VV, et al. BCR/ABL, IKZF deletions and FLT3-ITD as the targets for relapsed/refractory B-cell acute lymphoblastic leukemia treatment: Blinatumomab combined with Tyrosine kinase inhibitors and ATRA. Cellular Therapy and Transplantation. 2020;9(1):38-45. doi: 10.18620/ctt-1866-8836-2020-9-1-38-46
________________________________________________
1. Moorman AV. New and emerging prognostic and predictive genetic biomarkers in B-cell precursor acute lymphoblastic leukemia. Haematologica. 2016;101(4):407-16. doi: 10.3324/haematol.2015.141101
2. Programmnoe lechenie zabolevanij sistemy krovi: sbornik algoritmov diagnostiki i protokolov lecheniya zabolevanij sistemy krovi. In: VG Savchenko eds. Moscow: Praktika; 2012; p. 289-342 (In Russ.)
3. Inaba H, Greaves M, Mullighan CG. Acute lymphoblastic leukaemia. Lancet. 2013;381(9881). doi: 10.1016/S0140-6736(12)62187-4
4. Harrison CJ. Key pathways as therapeutic targets. Blood. 2011;118(11):2935-6. doi: 10.1182/blood-2011-07-362723
5. Harrison CJ. Targeting signaling pathways in acute lymphoblastic leukemia: new insights. Hematology Am Soc Hematol Educ Program. 2013;2013:118-25. doi: 10.1182/asheducation-2013.1.118
6. Herrmann C. Ras-effector interactions: after one decade. Current Opinion in Structural Biology. 2003;13(1):122-9. doi: 10.1016/s0959-440x(02)00007-6
7. Arcaro A. The Small GTP-binding Protein Rac Promotes the Dissociation of Gelsolin from Actin Filaments in Neutrophils. J Biol Chem. 1998;273(2):805-13. doi: 10.1074/jbc.273.2.805
8. Schubbert S, Shannon K, Bollag G. Hyperactive Ras in Developmental Disorders and Cancer. Nat Rev Cancer. 2007;7(4):295-308. doi: 10.1038/nrc2109
9. Ward AF, Braun BS, Shannon KM. Targeting Oncogenic Ras Signaling in Hematologic Malignancies. Blood. 2012;120(17):3397-406. doi: 10.1182/blood-2012-05-378596
10. Neri A, Knowles DM, Greco A, et al. Analysis of RAS oncogene mutations in human lymphoid malignancies. Proc Natl Acad Sci U S A. 1988;85(23):9268-72. doi: 10.1073/pnas.85.23.9268
11. Zhang J, Mullighan CG, Harvey RC, et al. Key pathways are frequently mutated in high-risk childhood acute lymphoblastic leukemia: a report from the Children’s Oncology Group. Blood. 2011;118(11):3080-7. doi: 10.1182/blood-2011-03-341412
12. Paulsson K, Lilljebjörn H, Biloglav A, et al. The genomic landscape of high hyperdiploid childhood acute lymphoblastic leukemia. Nat Genet. 2015;47(6):672-6. doi: 10.1038/ng.3301
13. Holmfeldt L, Wei L, Diaz-Flores E, et al. The Genomic Landscape of Hypodiploid Acute Lymphoblastic Leukemia. Nat Genet. 2013;45(3):242-52. doi: 10.1038/ng.2532
14. Andersson AK, Ma J, Wang J, et al. The Landscape of Somatic Mutations in Infant MLL-rearranged Acute Lymphoblastic Leukemias. Nat Genet. 2015;47(4):330-7. doi: 10.1038/ng.3230
15. Ma X, Edmonson M, Yergeau D, et al. Rise and Fall of Subclones From Diagnosis to Relapse in Pediatric B-acute Lymphoblastic Leukaemia. Nat Commun. 2015;6:6604. doi: 10.1038/ncomms7604
16. Oshima K, Khiabanian H, Silva-Almeida AC, et al. Mutational Landscape, Clonal Evolution Patterns, and Role of RAS Mutations in Relapsed Acute Lymphoblastic Leukemia. Proc Natl Acad Sci U S A. 2016;113(40):11306-11. doi: 10.1073/pnas.1608420113
17. Irving J, Matheson E, Minto L, et al. Ras Pathway Mutations Are Prevalent in Relapsed Childhood Acute Lymphoblastic Leukemia and Confer Sensitivity to MEK Inhibition. Blood. 2014;124(23):3420-30. doi: 10.1182/blood-2014-04-531871
18. Case M, Matheson E, Minto L, et al. Mutation of Genes Affecting the RAS Pathway Is Common in Childhood Acute Lymphoblastic Leukemia. Cancer Res. 2008;68(16):6803-9. doi: 10.1158/0008-5472.CAN-08-0101
19. Irving J, Matheson E, Minto L, et al. Ras Pathway Mutations Are Prevalent in Relapsed Childhood Acute Lymphoblastic Leukemia and Confer Sensitivity to MEK Inhibition. Blood. 2014;124(23):3420-30. doi: 10.1182/blood-2014-04-531871
20. Smith CA, Fan G. The Saga of JAK2 Mutations and Translocations in Hematologic Disorders: Pathogenesis, Diagnostic and Therapeutic Prospects, and Revised World Health Organization Diagnostic Criteria for Myeloproliferative Neoplasms. Hum Pathol. 2008;39(6):795-810. doi: 10.1016/j.humpath.2008.02.004
21. Mullighan CG, Zhang J, Harvey RC, et al. JAK Mutations in High-Risk Childhood Acute Lymphoblastic Leukemia. Proc Natl Acad Sci U S A. 2009;106(23):9414-8. doi: 10.1073/pnas.0811761106
22. Bercovich D, Ganmore I, Scott LM, et al. Mutations of JAK2 in acute lymphoblastic leukaemias associated with Down’s syndrome. Lancet. 2008;372(9648):1484-92. doi: 10.1016/S0140-6736(08)61341-0
23. Vainchenker W, Constantinescu SN. JAK/STAT signaling in hematological malignancies. Oncogene. 2013;32(21):2601-13. doi: 10.1038/onc.2012.347
24. Chen E, Staudt LM, Green AR. Janus kinase deregulation in leukemia and lymphoma. Immunity. 2012;36(4):529-41. doi: 10.1016/j.immuni.2012.03.017
25. Li F, Guo HY, Wang M, et al. The Effects of R683S (G) Genetic Mutations on the JAK2 Activity, Structure and Stability. Int J Biol Macromol. 2013;60:186-95. doi: 10.1016/j.ijbiomac.2013.05.029
26. Herold T, Schneider S, Metzeler KH, et al. Adults With Philadelphia Chromosome-Like Acute Lymphoblastic Leukemia Frequently Have IGH-CRLF2 and JAK2 Mutations, Persistence of Minimal Residual Disease and Poor Prognosis. Haematologica. 2017;102(1):130-8. doi: 10.3324/haematol.2015.136366
27. Harvey RC, Mullighan CG, Chen IM, et al. Rearrangement of CRLF2 Is Associated With Mutation of JAK Kinases, Alteration of IKZF1, Hispanic/Latino Ethnicity, and a Poor Outcome in Pediatric B-progenitor Acute Lymphoblastic Leukemia. Blood. 2010;115(26):5312-21. doi: 10.1182/blood-2009-09-245944
28. Schmäh J, Fedders B, Panzer-Grümayer R, et al. Molecular Characterization of Acute Lymphoblastic Leukemia With High CRLF2 Gene Expression in Childhood. Pediatr Blood Cancer. 2017;64(10). doi: 10.1002/pbc.26539
29. Russell LJ, Capasso M, Vater I, et al. Deregulated Expression of Cytokine Receptor Gene, CRLF2, Is Involved in Lymphoid Transformation in B-cell Precursor Acute Lymphoblastic Leukemia. Blood. 2009;114(13):2688-98. doi: 10.1182/blood-2009-03-208397
30. Choudhary C, Müller-Tidow C, Berdel WE, Serve H. Signal Transduction of Oncogenic FLT3. Int J Hematol. 2005;82(2):93-9. doi: 10.1532/IJH97.05090
31. Hayakawa F, Towatari M, Kiyoi H, et al. Tandem-duplicated FLT3 Constitutively Activates STAT5 and MAP Kinase and Introduces Autonomous Cell Growth in IL-3-dependent Cell Lines. Oncogene. 2000;19(5):624-31. doi: 10.1038/sj.onc.1203354
32. Nakao M, Yokota S, Iwai T, et al. Internal tandem duplication of the FLT3 gene found in acute myeloid leukemia. Leukemia. 1996;10(12):1911-8.
33. Rombouts WJ, Blokland I, Löwenberg B, Ploemacher RE. Biological characteristics and prognosis of adult acute myeloid leukemia with internal tandem duplications in the FLT3 gene. Leukemia. 2000;14(4):675-83. doi: 10.1038/sj.leu.2401731
34. Armstrong SA, Look AT. Molecular Genetics of Acute Lymphoblastic Leukemia. J Clin Oncol. 2005;23(26):6306-15. doi: 10.1200/JCO.2005.05.047
35. Piskunova IS, Obukhova TN, Parovichnikova EN, et al. CDKN2a/9p21 deletion is not a poor prognostic factor in adult acute lymphoblastic leukemia patients treated according to protocol RALL-2009. Oncogematologiya. 2017;12(3):17-24 (In Russ.) doi: 10.17650/1818-8346-2017-12-3-17-24
36. Piskunova IS, Obukhova TN, Parovichnikova EN, et al. Structure and importance of cytogenetic rejections in adult patients with Ph-negative acute lymphoblastic leukemia. Therapeutic Archive. 2018;90(7):30-7 (In Russ.) doi: 10.26442/terarkh201890730-37
37. Bashaeva GA, Parovichnikova EN, Biderman BV, et al. The role of IKZF1 gene mutations in-cellular acute lymphoblastic leukemia in adult patients receiving treatment under russian multicenter research protocols. Gematologiya i Transfusiologiya. 2018;63(1):16-30 (In Russ.) doi: 10.25837/HAT.2018.80..1..002
38. Parovichnikova EN, Kliasova GA, Isaev VG, et al. Pilot results of therapy of adult Ph-negative acute lymphoblastic leukemia according to the protocol of Research Group of Russian Hematological Centers ALL-2009. Therapeutic Archive. 2011;83(7):7–11 (In Russ.)
39. Parovichnikova EN, Troitskaya VV, Sokolov AN, et al. Interim results of the Ph-negative acute lymphoblastic leukemia treatment in adult patients [results of Russian research group of ALL treatment (RALL)]. Oncohematology. 2014;9(3):6-15 (In Russ.) doi: 10.17650/1818-8346-2014-9-3-6-15
40. Parovichnikova EN, Troitskaya VV, Sokolov AN, et al. Adult B-cell acute lymphoblastic leukemias: Conclusions of the russian prospective multicenter study ALL-2009. Ostrye V-limfoblastnye leĭkozy vzroslykh: vyvody iz rossiĭskogo prospektivnogo mnogotsentrovogo issledovaniia OLL-2009. Therapeutic Archive. 2017;89(7):10-7 (In Russ.) doi: 10.17116/terarkh2017897 10-17
41. Parovichnikova EN, Savchenko VG. Russian multicenter clinical trials in acute leukemias. Therapeutic Archive. 2019;91(7):4-13 (In Russ.)
doi: 10.26442/00403660.2019.07.000325
42. Gavrilina OA, Parovichnikova EN, Troitskaya VV, et al. The results of the retrospective multicentre study of the therapy of Ph-positive acute lymphoblastic leukemia according to the protocols of the Russian research group. Gematologiya i Transfusiologiya. 2017;62(4):172-80 (In Russ.) doi: 10.18821/0234-5730-2017-62-4-172-180
43. Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391-405. doi: 10.1182/blood-2016-03-643544
44. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series. 1999;41:95-8.
45. Pylayeva-Gupta Y, Grabocka E, Bar-Sagi D. RAS oncogenes: weaving a tumorigenic web. Nat Rev Cancer. 2011;11(11):761-74. doi: 10.1038/nrc3106
46. Macedo MP, Andrade L, Coudry R, et al. Multiple Mutations in the Kras Gene in Colorectal Cancer: Review of the Literature With Two Case Reports. Int J Colorectal Dis. 2011;26(10):1241-8. doi: 10.1007/s00384-011-1238-0
47. Barbacid M. Ras Genes. Annu Rev Biochem. 1987;56:779-827. doi: 10.1146/annurev.bi.56.070187.004023
48. Bos JL. The ras gene family and human carcinogenesis. Mutat Res. 1988;195(3):255-71. doi: 10.1016/0165-1110(88)90004-8
49. Zarubina KI, Parovichnikova EN, Baskhaeva GA, et al. Diagnostics and Treatment Challenges of Ph-like Acute Lymphoblastic Leukemia: A Description of 3 Clinical Cases. Therapeutic Archive. 2018;90(7):110-7 (In Russ.) doi: 10.26442/terarkh2018907110-117
50. Kobold S, Kılıç N, Scharlau J, et al. FLT3 – ITD Positive Acute Lymphocytic Leukemia, Does It Impact on Disease´s Course? Turk J Haematol. 2010;27(2):133-4. doi: 10.5152/tjh.2010.18
51. Harvey RC, Mullighan CG, Wang X, et al. Identification of Novel Cluster Groups in Pediatric High-Risk B-precursor Acute Lymphoblastic Leukemia With Gene Expression Profiling: Correlation With Genome-Wide DNA Copy Number Alterations, Clinical Characteristics, and Outcome. Blood. 2010;116(23):4874-84. doi: 10.1182/blood-2009-08-239681
52. Den Boer ML, van Slegtenhorst M, De Menezes RX, et al. A subtype of childhood acute lymphoblastic leukaemia with poor treatment outcome: a genome-wide classification study. Lancet Oncol. 2009;10(2):125-34. doi: 10.1016/S1470-2045(08)70339-5
53. Roberts KG, Morin RD, Zhang J, et al. Genetic alterations activating kinase and cytokine receptor signaling in high-risk acute lymphoblastic leukemia. Cancer Cell. 2012;22(2):153-66. doi: 10.1016/j.ccr.2012.06.005
54. Mullighan CG, Collins-Underwood JR, Phillips LA, et al. Rearrangement of CRLF2 in B-progenitor- and Down syndrome-associated acute lymphoblastic leukemia. Nat Genet. 2009;41(11):1243-6. doi: 10.1038/ng.469
55. Paulsson K, Horvat A, Strömbeck B, et al. Mutations of FLT3, NRAS, KRAS, and PTPN11 Are Frequent and Possibly Mutually Exclusive in High Hyperdiploid Childhood Acute Lymphoblastic Leukemia. Genes Chromosomes Cancer. 2008;47(1):26-33. doi: 10.1002/gcc.20502
56. Wiemels JL, Zhang Y, Chang J, et al. RAS Mutation Is Associated With Hyperdiploidy and Parental Characteristics in Pediatric Acute Lymphoblastic Leukemia. Leukemia. 2005;19(3):415-9. doi: 10.1038/sj.leu.2403641
57. Reshmi SC, Harvey RC, Roberts KG, et al. Targetable kinase gene fusions in high-risk B-ALL: a study from the Children’s Oncology Group. Blood. 2017;129(25):3352-61. doi: 10.1182/blood-2016-12-758979
58. Roberts KG, Reshmi SC, Harvey RC, et al. Genomic and Outcome Analyses of Ph-like ALL in NCI Standard-Risk Patients: A Report From the Children's Oncology Group. Blood. 2018;132(8):815-24. doi: 10.1182/blood-2018-04-841676
59. Roberts KG, Gu Z, Payne-Turner D, et al. High Frequency and Poor Outcome of Philadelphia Chromosome-Like Acute Lymphoblastic Leukemia in Adults. J Clin Oncol. 2017;35(4):394-401. doi: 10.1200/JCO.2016.69.0073
60. Perentesis JP, Bhatia S, Boyle E, et al. RAS oncogene mutations and outcome of therapy for childhood acute lymphoblastic leukemia. Leukemia. 2004;18(4):685-92. doi: 10.1038/sj.leu.2403272
61. Driessen EM, Van Roon EHJ, Spijkers-Hagelstein JA, et al. Frequencies and prognostic impact of RAS mutations in MLL-rearranged acute lymphoblastic leukemia in infants. Haematologica. 2013;98(6):937-44. doi: 10.3324/haematol.2012.067983
62. Messina M, Chiaretti S, Wang J, et al. Prognostic and therapeutic role of targetable lesions in B-lineage acute lymphoblastic leukemia without recurrent fusion genes. Oncotarget. 2016;7(12):13886-901. doi: 10.18632/oncotarget.7356
63. Sokolov N, Parovichnikova EN, Troitskaya VV, et al. Blinatumomab + Tyrosine Kinase Inhibitors with No Chemotherapy in BCR-ABL-Positive or IKZF1-Deleted or FLT3-ITD-Positive Relapsed/Refractory Acute Lymphoblastic Leukemia Patients: High Molecular Remission Rate and Toxicity Profile. Blood. 2017;130(Suppl. 1): 3884. doi: 10.1182/blood.
V130.Suppl_1.3884.3884
64. Zarubina KI, Usikova EV, Abramova AV, et al. Clin Oncohematology. 2017;10(4)540-1 (In Russ.) doi: 10.26442/terarkh2018907110-117
65. Sokolov A, Parovichnikova E, Troitskaya V, et al. Targetable blinatumomab + tyrosine kinase inhibitors treatment in relapsed/refractory acute lymphoblastic leukemia patients: clinical effectiveness and peripheral lymphocytes subpopulations kinetics. Haematologica. 2017;102(s2):354-5.
66. Sokolov AN, Parovichnikova EN, Troitskaya VV, et al. BCR/ABL, IKZF deletions and FLT3-ITD as the targets for relapsed/refractory B-cell acute lymphoblastic leukemia treatment: Blinatumomab combined with Tyrosine kinase inhibitors and ATRA. Cellular Therapy and Transplantation. 2020;9(1):38-45. doi: 10.18620/ctt-1866-8836-2020-9-1-38-46