Москва 125252, ул. Алабяна 13, корпус 1
+7 (495) 098-03-59
Заказать звонок
  • О портале
  • Контакты
  • ...
    Omnidoctor
    Библиотека
    • Издания для врачей
      • Consilium Medicum
      • Педиатрия.Consilium Medicum
      • Современная Онкология
      • Гинекология
      • Терапевтический архив
      • Газета «Участковый терапевт»
      • Газета «Женская консультация»
      • Газета «Участковый педиатр»
      • Справочник поликлинического врача
      • Cardioсоматика
      • Системные гипертензии
    • Издания для провизоров и фармацевтов
      • Газета «Первостольник»
      • Справочник провизора
    • Online-издания
      • Женская консультация
      • Участковый педиатр
      • Участковый терапевт
    Медиатека
    Мероприятия
    Спецпроекты
    • ИммуноГалактика (NEW!)
    • Гормональный оркестр
    • CardioSPACE
    • NeuroFusion (NEW!)
    • Современная Онкология
    • Урологика
    Пресс-центр
    Практикум
      Библиотека
      Медиатека
      Мероприятия
      Спецпроекты
      ИммуноГалактика (NEW!)
      Гормональный оркестр
      CardioSPACE
      NeuroFusion (NEW!)
      Современная Онкология
      Урологика
      Пресс-центр
      Практикум
      Omnidoctor
      Библиотека
      • Издания для врачей
        • Consilium Medicum
        • Педиатрия.Consilium Medicum
        • Современная Онкология
        • Гинекология
        • Терапевтический архив
        • Газета «Участковый терапевт»
        • Газета «Женская консультация»
        • Газета «Участковый педиатр»
        • Справочник поликлинического врача
        • Cardioсоматика
        • Системные гипертензии
      • Издания для провизоров и фармацевтов
        • Газета «Первостольник»
        • Справочник провизора
      • Online-издания
        • Женская консультация
        • Участковый педиатр
        • Участковый терапевт
      Медиатека
      Мероприятия
      Спецпроекты
      • ИммуноГалактика (NEW!)
      • Гормональный оркестр
      • CardioSPACE
      • NeuroFusion (NEW!)
      • Современная Онкология
      • Урологика
      Пресс-центр
      Практикум
        Omnidoctor
        • Библиотека
          • Назад
          • Библиотека
          • Издания для врачей
            • Назад
            • Издания для врачей
            • Consilium Medicum
            • Педиатрия.Consilium Medicum
            • Современная Онкология
            • Гинекология
            • Терапевтический архив
            • Газета «Участковый терапевт»
            • Газета «Женская консультация»
            • Газета «Участковый педиатр»
            • Справочник поликлинического врача
            • Cardioсоматика
            • Системные гипертензии
          • Издания для провизоров и фармацевтов
            • Назад
            • Издания для провизоров и фармацевтов
            • Газета «Первостольник»
            • Справочник провизора
          • Online-издания
            • Назад
            • Online-издания
            • Женская консультация
            • Участковый педиатр
            • Участковый терапевт
        • Медиатека
        • Мероприятия
        • Спецпроекты
          • Назад
          • Спецпроекты
          • ИммуноГалактика (NEW!)
          • Гормональный оркестр
          • CardioSPACE
          • NeuroFusion (NEW!)
          • Современная Онкология
          • Урологика
        • Пресс-центр
        • Практикум
        • Мой кабинет
        • +7 (495) 098-03-59
        Москва 125252, ул. Алабяна 13, корпус 1
        info@omnidoctor.ru
        • Вконтакте
        • Telegram
        • YouTube
        • Главная
        • Библиотека
        • Издания для врачей
        • Терапевтический архив
        • Журнал Терапевтический архив 2021 Терапевтический архив
        • Журнал Терапевтический архив №10 Вопросы эндокринологии 2021
        • Минеральный обмен и COVID-19: есть ли связь? - Журнал Терапевтический архив №10 Вопросы эндокринологии 2021

        Минеральный обмен и COVID-19: есть ли связь? - Журнал Терапевтический архив №10 Вопросы эндокринологии 2021

        Maганева И.C., Горбачева А.М., Бибик Е.Е., Абойшева Е.A., Еремкина А.К., Мокрышева Н.Г. Минеральный обмен и COVID-19: есть ли связь? Терапевтический архив. 2021; 93 (10): 1227–1233. DOI: 10.26442/00403660.2021.10.201114


        ________________________________________________

        Maganeva IS, Gorbacheva AM, Bibik EE, Aboisheva EA, Eremkina AK, Mokrysheva NG. Mineral metabolism and COVID-19: is there a connection? Terapevticheskii Arkhiv (Ter. Arkh.). 2021; 93 (10): 1227–1233. DOI: 10.26442/00403660.2021.10.201114

        Минеральный обмен и COVID-19: есть ли связь?

        Maганева И.C., Горбачева А.М., Бибик Е.Е., Абойшева Е.A., Еремкина А.К., Мокрышева Н.Г. Минеральный обмен и COVID-19: есть ли связь? Терапевтический архив. 2021; 93 (10): 1227–1233. DOI: 10.26442/00403660.2021.10.201114


        ________________________________________________

        Maganeva IS, Gorbacheva AM, Bibik EE, Aboisheva EA, Eremkina AK, Mokrysheva NG. Mineral metabolism and COVID-19: is there a connection? Terapevticheskii Arkhiv (Ter. Arkh.). 2021; 93 (10): 1227–1233. DOI: 10.26442/00403660.2021.10.201114

        • Читать PDF
          Минеральный обмен и COVID-19: есть ли связь?

        Материалы доступны только для специалистов сферы здравоохранения.
        Чтобы посмотреть материал полностью Авторизуйтесь или зарегистрируйтесь.

        • Аннотация
        • Полный текст
        • Список литературы
        • Авторы
        Аннотация
        В свете глобального распространения СOVID-19 становится необходимым поиск новых факторов, оказывающих влияние на клиническое течение данной инфекции. В представленном обзоре проведен анализ актуальных публикаций о связи иммунной системы с основными регуляторами минерального обмена, освещены различные аспекты изменений фосфорно-кальциевого обмена, ассоциированных с острыми респираторными заболеваниями. На основе данных о роли компонентов минерального обмена в патогенезе клинических проявлений COVID-19 уже в ближайшем будущем могут быть предложены возможные меры профилактики и подходы к комплексной терапии коронавирусной инфекции.

        Ключевые слова: гипокальциемия, дефицит витамина D, паратгормон, иммунная система

        ________________________________________________

        Due to global spread of COVID-19, the search for new factors that could influence its clinical course becomes highly important. This review summarize the relevant publications on the association between immune system and the main regulators of mineral homeostasis including. In addition, we have highlighted the various aspects of phosphorus-calcium metabolism related to the acute respiratory diseases and in particular to COVID-19. The data about the calcium-phosphorus metabolism in SARS-CoV-2 infection is required to understand the possible clinical implications and to develop new therapeutic and preventive interventions.

        Keywords: hypocalcemia, vitamin D deficiency, parathyroid hormone, immune system

        Полный текст

        Материалы доступны только для специалистов сферы здравоохранения.
        Чтобы посмотреть материал полностью Авторизуйтесь или зарегистрируйтесь.

        Список литературы
        1. Geara AS, Castellanos MR, Bassil C, et al. Effects of parathyroid hormone on immune function. Clin Dev Immunol. 2010;2010:418695. DOI:10.1155/2010/418695
        2. Yu M, D’Amelio P, Tyagi AM, et al. Regulatory T cells are expanded by Teriparatide treatment in humans and mediate intermittent PTH-induced bone anabolism in mice. EMBO Rep. 2018;19(1):156-71. DOI:10.15252/embr.201744421
        3. Martens P-J, Gysemans C, Verstuyf A, Mathieu AC. Vitamin D’s Effect on Immune Function. Nutrients. 2020;12(5):1248. DOI:10.3390/nu12051248
        4. Hsu Y-H, Chen HI. Acute respiratory distress syndrome associated with hypercalcemia without parathyroid disorders. Chin J Physiol. 2008;51(6):414-8. 
        5. Grant WB, Lahore H, McDonnell SL, et al. Evidence that Vitamin D Supplementation Could Reduce Risk of Influenza and COVID-19 Infections and Deaths. Nutrients. 2020;12(4):988.  DOI:10.3390/nu12040988
        6. Chen P, Trummel C, Horton J, et al. Production of osteoclast-activating factor by normal human peripheral blood rosetting and nonrosetting lymphocytes. Eur J Immunol. 1976;6(10):732-6.  DOI:10.1002/eji.1830061014
        7. Milhaud G, Labat ML. Thymus and osteopetrosis. Clin Orthop Relat Res. 1978;135:260-71. 
        8. Yoneda T, Mundy GR. Monocytes regulate osteoclast-activating factor production by releasing prostaglandins. J Exp Med. 1979;150(2):338-50.  DOI:10.1084/jem.150.2.338
        9. Terauchi M, Li J-Y, Bedi B, et al. T lymphocytes amplify the anabolic activity of parathyroid hormone through Wnt10b signaling. Cell Metab. 2009;10(3):229-40. DOI:10.1016/j.cmet.2009.07.010
        10. Ohkura N, Kitagawa Y, Sakaguchi S. Development and maintenance of regulatory T cells. Immunity. 2013;38(3):414-23. DOI:10.1016/j.immuni.2013.03.002
        11. McCarthy TL, Centrella M, Canalis E. Parathyroid hormone enhances the transcript and polypeptide levels of insulin-like growth factor I in osteoblast-enriched cultures from fetal rat bone. Endocrinology. 1989;124(3):1247-53. DOI:10.1210/endo-124-3-1247
        12. Alexiewicz JM, Klinger M, Pitts TO, et al. Parathyroid hormone inhibits B cell proliferation: implications in chronic renal failure. J Am Soc Nephrol. 1990;1(3):236-44. DOI: 10.1681/ASN.V13236
        13. Jiang Y, Yoshida A, Ishioka C, et al. Parathyroid hormone inhibits immunoglobulin production without affecting cell growth in human B cells. Clin Immunol Immunopathol. 1992;65(3):286-93. DOI:10.1016/0090-1229(92)90159-l
        14. Emam AA, Mousa SG, Ahmed KY, Al-Azab AA. Inflammatory biomarkers in patients with asymptomatic primary hyperparathyroidism. Med Princ Pract. 2012;21(3):249-53. DOI:10.1159/000334588
        15. Chertok-Shacham E, Ishay A, Lavi I, Luboshitzky R. Biomarkers of hypercoagulability and inflammation in primary hyperparathyroidism. Med Sci Monit Int Med J Exp Clin Res. 2008;14(12):CR628-32.
        16. Veldman CM, Cantorna MT, DeLuca HF. Expression of 1,25-dihydroxyvitamin D(3) receptor in the immune system. Arch Biochem Biophys. 2000;374(2):334-8. 
        DOI:10.1006/abbi.1999.1605
        17. Booth DR, Ding N, Parnell GP, et al. Cistromic and genetic evidence that the vitamin D receptor mediates susceptibility to latitude-dependent autoimmune diseases. Genes Immun. 2016;17(4):213-9.  DOI:10.1038/gene.2016.12
        18. Bilezikian JP, Bikle D, Hewison M, et al. MECHANISMS IN ENDOCRINOLOGY: Vitamin D and COVID-19. Eur J Endocrinol. 2020;183(5):R133-47. DOI:10.1530/eje-20-0665
        19. Wei R, Christakos S. Mechanisms Underlying the Regulation of Innate and Adaptive Immunity by Vitamin D. Nutrients. 2015;7(10):8251-60. DOI:10.3390%2Fnu7105392
        20. Christakos S, Hewison M, Gardner DG, et al. Vitamin D: beyond bone. Ann N Y Acad Sci. 2013;1287(1):45-58. DOI:10.1111%2Fnyas.12129
        21. Liu PT, Stenger S, Tang DH, Modlin RL. Cutting edge: vitamin D-mediated human antimicrobial activity against Mycobacterium tuberculosis is dependent on the induction of cathelicidin. J Immunol. 2007;179(4):2060-3. DOI:10.4049/jimmunol.179.4.2060
        22. White JH. Vitamin D as an inducer of cathelicidin antimicrobial peptide expression: past, present and future. J Steroid Biochem Mol Biol. 2010;121(1-2):234-8. DOI:10.1016/j.jsbmb.2010.03.034
        23. Cantorna MT, Snyder L, Lin Y-D, Yang L. Vitamin D and 1,25(OH)2D regulation of T cells. Nutrients. 2015;7(4):3011-21.  DOI:10.3390/nu7043011
        24. Amano Y, Komiyama K, Makishima M. Vitamin D and periodontal disease. J Oral Sci. 2009;51(1):11-20. DOI:10.2334/josnusd.51.11
        25. Chen S, Sims GP, Chen XX, et al. Modulatory effects of 1,25-dihydroxyvitamin D3 on human B cell differentiation. J Immunol. 2007;179(3):1634-47. DOI:10.4049/jimmunol.179.3.1634
        26. Rossaint J, Oehmichen J, Van Aken H, et al. FGF23 signaling impairs neutrophil recruitment and host defense during CKD. J Clin Invest. 2016;126(3):962-74. DOI:10.1172/jci83470
        27. Masuda Y, Ohta H, Morita Y, et al. Expression of Fgf23 in activated dendritic cells and macrophages in response to immunological stimuli in mice. Biol Pharm Bull. 2015;38(5):687-93. DOI:10.1248/bpb.b14-00276
        28. D’Elia JA, Weinrauch LA. Calcium Ion Channels: Roles in Infection and Sepsis Mechanisms of Calcium Channel Blocker Benefits in Immunocompromised Patients at Risk for Infection. Int J Mol Sci. 2018;19(9):2465. DOI:10.3390/ijms19092465
        29. Zheng L, Hunter K, Gaughan J, Poddar S. Preadmission Use of 
        Calcium Channel Blockers and Outcomes After Hospitalization With Pneumonia: A Retrospective Propensity-Matched Cohort Study. Am J Ther. 2017;24(1):e30-8. DOI:10.1097/mjt.0000000000000312
        30. Lee C, Xu D-Z, Feketeova E, et al. Calcium entry inhibition during resuscitation from shock attenuates inflammatory lung injury. Shock. 2008;30(1):29-35. DOI:10.1097/shk.0b013e318145a589
        31. Nieto-Torres JL, Verdiá-Báguena C, Jimenez-Guardeño JM, et al. Severe acute respiratory syndrome coronavirus E protein transports calcium ions and activates the NLRP3 inflammasome. Virology. 2015;485:330-9. DOI:10.1016/j.virol.2015.08.010
        32. Millet JK, Whittaker GR. Physiological and molecular triggers for SARS-CoV membrane fusion and entry into host cells. Virology. 2018;517:3-8. DOI:10.1016/j.virol.2017.12.015
        33. Straus MR, et al. Ca2+ ions promote fusion of Middle East respiratory syndrome coronavirus with host cells and increase infectivity. J Virol. 2020;94:e00426-20. DOI:10.1128/JVI.00426-20
        34. Hoffmann HH, Schneider WM, Blomen VA, et al. Diverse Viruses Require the Calcium Transporter SPCA1 for Maturation and Spread. Cell Host Microbe. 2017;22(4):460-70.e5. DOI:10.1016/j.chom.2017.09.002
        35. Pizzorno A, Terrier O, Nicolas de Lamballerie C, et al. Repurposing of Drugs as Novel Influenza Inhibitors From Clinical Gene Expression Infection Signatures. Front Immunol. 2019;10:60. DOI:10.3389/fimmu.2019.00060
        36. Fujioka Y, Nishide S, Ose T, et al. A Sialylated Voltage-Dependent Ca(2+) Channel Binds Hemagglutinin and Mediates Influenza A Virus Entry into Mammalian Cells. Cell Host Microbe. 2018;23(6):809-18.e5. DOI:10.1016/j.chom.2018.04.015
        37. Di Filippo L, Formenti AM, Rovere-Querini P, et al. Hypocalcemia is highly prevalent and predicts hospitalization in patients with COVID-19. Endocrine. 2020;68(3):475-8. DOI:10.1007/s12020-020-02383-5
        38. Liu J, Han P, Wu J, et al. Prevalence and predictive value of hypocalcemia in severe COVID-19 patients, J Infect and Public Health. 2020;13(9):1224-8. DOI:10.1016/j.jiph.2020.05.029
        39. Lippi G, South AM, Henry BM. Electrolyte imbalances in patients with severe coronavirus disease 2019 (COVID-19). Ann Clin Biochem. 2020;57(3):262-5. DOI:10.1177/0004563220922255
        40. Torres B, Alcubilla P, González-Cordón A, et al. Impact of low serum calcium at hospital admission on SARS-CoV-2 infection outcome. Int J Infect Dis. 2020;104:164-8. DOI:10.1016/j.ijid.2020.11.207
        41. Wu Y, Hou B, Liu J, et al. Risk Factors Associated With Long-Term Hospitalization in Patients With COVID-19: A Single-Centered, Retrospective Study. Front Med (Lausanne). 2020;7:315.  DOI:10.3389/fmed.2020.00315
        42. Sun JK, Zhang WH, Zou L, et al. Serum calcium as a biomarker of clinical severity and prognosis in patients with coronavirus disease 2019. Aging (Albany NY). 2020;12(12):11287-95.  DOI:10.18632/aging.103526
        43. Маганева И.С., Еремкина А.К., Бибик Е.Е., и др. Статус минерального обмена у пациентов с COVID-19 при поступлении в стационар. Профилактическая медицина. 2020;23(8):64-73 [Maganeva IS, Eremkina AK, Bibik EE, et al. Status of mineral metabolism in patients with COVID-19 on admission to the hospital. Profilakticheskaia meditsina. 2020;23(8):64-73 (in Russian)].  DOI:10.17116/profmed20202308164
        44. Nijjer S, Ghosh AK, Dubrey SW. Hypocalcaemia, long QT interval and atrial arrhythmias. BMJ Case Rep. 2010;2010:bcr0820092216. DOI:10.1136/bcr.08.2009.2216
        45. Zivin JR, Gooley T, Zager RA, Ryan MJ. Hypocalcemia: a pervasive metabolic abnormality in the critically ill. Am J kidney Dis. 2001;37(4):689-98. DOI:10.1016/s0272-6386(01)80116-5
        46. Di Filippo L, Formenti AM, Doga M, et al. Hypocalcemia is a distinctive biochemical feature of hospitalized COVID-19 patients. Endocrine. 2021;71:9-13. DOI:10.1007/s12020-020-02541-9
        47. Cappellini F, Brivio R, Casati M, et al. Low levels of total and ionized calcium in blood of COVID-19 patients. Clinical Chemistry and Laboratory Medicine (CCLM). 2020;58(9):171-3.  DOI:10.1515/cclm-2020-0611
        48. Tao RJ, Luo X-L, Xu W, et al. Viral infection in community acquired pneumonia patients with fever: a prospective observational study.  J Thorac Dis. 2018;10(7):4387-95. DOI:10.21037/jtd.2018.06.33
        49. Zhang J, Zhao Y, Chen Y. Laboratory findings in patients with avian-origin influenza A (H7N9) virus infections. J Med Virol. 2014;86(5):895-8.  DOI:10.1002/jmv.23780
        50. Song S-Z, Liu H-Y, Shen H, et al. Comparison of serum biochemical features between SARS and other viral pneumonias. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue. 2004;16(11):664-6. 
        51. Singh VP, Khatua B, El-Kurdi B. Hypocalcemia and hypoalbuminemia during COVID-19 infection: Opportunities for therapeutic intervention. J Infect Public Health. 2020;13(12):1887.  DOI:10.1016/j.jiph.2020.09.019
        52. Singh VP, Khatua B, El-Kurdi B, et al. Mechanistic basis and therapeutic relevance of hypocalcemia during severe COVID-19 infection. Endocrine. 2020;70:461-2. DOI:10.1007/s12020-020-02530-y
        53. di Filippo L, Formenti AM, Giustina A. Hypocalcemia: the quest for the cause of a major biochemical feature of COVID-19. Endocrine. 2020;70(3):463-4. DOI:10.1007/s12020-020-02525-9
        54. El-Kurdi B, Khatua B, Rood C, et al. Mortality From Coronavirus Disease 2019 Increases With Unsaturated Fat and May Be Reduced by Early Calcium and Albumin Supplementation. Gastroenterology. 2020;159(3):1015-8.e4. DOI:10.1053/j.gastro.2020.05.057
        55. Thomas T, Stefanoni D, Reisz JA, et al. COVID-19 infection alters kynurenine and fatty acid metabolism, correlating with IL-6 levels and renal status. JCI Insight. 2020;5(14):e140327.  DOI:10.1172/jci.insight.140327
        56. Khatua B, Yaron JR, El-Kurdi B, et al. Ringer's Lactate Prevents Early Organ Failure by Providing Extracellular Calcium. J Clin Med. 2020;9(1):263. DOI:10.3390/jcm9010263
        57. Navina S, Acharya C, DeLany JP, et al. Lipotoxicity causes multisystem organ failure and exacerbates acute pancreatitis in obesity. Sci Transl Med. 2011;3(107):107ra110. DOI:10.1126/scitranslmed.3002573
        58. Мокрышева Н.Г. Околощитовидные железы. Первичный гиперпаратиреоз. М.: Медицинское информационное агентство, 2019 [Mokrysheva NG. Okoloshchitovidnye zhelezy. Pervichnyi giperparatireoz. Moscow: Meditsinskoe informatsionnoe agentstvo, 2019 (in Russian)].
        59. Hope-Simpson RE. The role of season in the epidemiology of influenza. J Hyg (Lond). 1981;86(1):35-47. DOI:10.1017/s0022172400068728
        60. Cannell JJ, Zasloff M, Garland CF, et al. On the epidemiology of influenza. Virol J. 2008;5:29. DOI:10.1186/1743-422X-5-29
        61. Cannell JJ, Vieth R, Umhau JC, et al. Epidemic influenza and vitamin D. Epidemiol Infect; 2006;134(6):1129-40.  DOI:10.1017/s0950268806007175
        62. Grant WB, Giovannucci E. The possible roles of solar ultraviolet-B radiation and vitamin D in reducing case-fatality rates from the 1918–1919 influenza pandemic in the United States. Dermatoendocrinol. 2009;1(4):215-9. DOI:10.4161/derm.1.4.9063
        63. Berry DJ, Hesketh K, Power C, Hyppönen E. Vitamin D status has a linear association with seasonal infections and lung function in British adults. Br J Nutr. 2011;106(9):1433-40.  DOI:10.1017/s0007114511001991
        64. Dancer RC, Parekh D, Lax S, et al. Vitamin D deficiency contributes directly to the acute respiratory distress syndrome (ARDS). Thorax. 2015;70(7):617-24. 
        DOI:10.1136/thoraxjnl-2014-206680
        65. Esposito S, Lelii M. Vitamin D and respiratory tract infections in childhood. BMC Infect Dis. 2015;15:487. DOI:10.1186/s12879-015-1196-1
        66. Loeb M, Dang AD, Thiem VD, et al. Effect of Vitamin D supplementation to reduce respiratory infections in children and adolescents in Vietnam: A randomized controlled trial. Influenza Other Respi Viruses. 2019;13(2):176-83. DOI:10.1111/irv.12615
        67. Kühn J, Trotz P, Stangl GI. Prevalence of vitamin D insufficiency and evidence for disease prevention in the older population. Z Gerontol Geriatr. 2018;51(5):567-72. DOI:10.1007/s00391-018-1390-z
        68. Gois PHF, Ferreira D, Olenski S, Seguro AC. Vitamin D and Infectious Diseases: Simple Bystander or Contributing Factor? Nutrients. 2017;9(7):651. DOI:10.3390/nu9070651
        69. Zdrenghea MT, Makrinioti H, Bagacean C, et al. Vitamin D modulation of innate immune responses to respiratory viral infections. Rev Med Virol. 2017;27(1). DOI:10.1002/rmv.1909
        70. Urashima M, Mezawa H, Noya M, Camargo CA. Effects of vitamin D supplements on influenza A illness during the 2009 H1N1 pandemic: A randomized controlled trial. Food Funct. 2014;5(9):2365-70. DOI:10.1039/c4fo00371c
        71. Urashima M, Segawa T, Okazaki M, et al. Randomized trial of vitamin D supplementation to prevent seasonal influenza A in schoolchildren. Am J Clin Nutr. 2010;91(5):1255-60. DOI:10.3945/ajcn.2009.29094
        72. Zhou J, Du J, Huang L, et al. Preventive effects of Vitamin D on seasonal influenza a in infants: A multicenter, randomized, open, controlled clinical trial. Pediatr Infect Dis J. 2018;37(8):749-54.  DOI:10.1097/inf.0000000000001890
        73. Arihiro S, Nakashima A, Matsuoka M, et al. Randomized Trial of Vitamin D Supplementation to Prevent Seasonal Influenza and Upper Respiratory Infection in Patients With Inflammatory Bowel Disease. Inflamm Bowel Dis. 2019;4;25(6):1088-95. DOI:10.1093/ibd/izy346
        74. Martineau AR, Jolliffe DA, Hooper RL, et al. Vitamin D supplementation to prevent acute respiratory tract infections: Systematic review and meta-analysis of individual participant data. BMJ. 2017;356;i6583. DOI:10.1136/bmj.i6583
        75. Pereira M, Dantas Damascena A, Galvão Azevedo LM, et al. Vitamin D deficiency aggravates COVID-19: systematic review and meta-analysis. Crit Rev Food Sci Nutr. 2020:1-9.  DOI:10.1080/10408398.2020.1841090
        76. Hastie CE, Mackay DF, Ho F, et al. Vitamin D concentrations and COVID-19 infection in UK Biobank. Diabetes Metab Syndr. 2020;14(4):561-5. DOI:10.1016/j.dsx.2020.04.050
        77. Jakovac H. COVID-19 and vitamin D-Is there a link and an opportunity for intervention? Am J Physiol Endocrinol Metab. 2020;318(5):E589. DOI:10.1152/ajpendo.00138.2020
        78. McCartney DM, Byrne DG. Optimisation of Vitamin D Status for Enhanced Immuno-protection Against COVID-19. Ir Med J. 2020;113(4):58. 
        79. Panarese A, Shahini E. Letter: COVID-19, and vitamin D. Aliment Pharmacol Ther. 2020;51(10):993-5. DOI:10.1111/apt.15752
        80. Rhodes JM, Subramanian S, Laird E, Kenny RA. Letter: low population mortality from COVID-19 in countries south of latitude 35° North supports vitamin D as a factor determining severity. Authors' reply. Aliment Pharmacol Ther. 2020;52(2):412-3. DOI:10.1111/apt.15823
        81. Marik PE, Kory P, Varon J. Does vitamin D status impact mortality from SARS-CoV-2 infection?. Med Drug Discov. 2020;6:100041. DOI:10.1016/j.medidd.2020.100041
        82. Garg M, Al-Ani A, Mitchell H, Hendy P, Christensen B. Editorial: low population mortality from COVID-19 in countries south of latitude 35 degrees North-supports vitamin D as a factor determining severity. Authors' reply. Aliment Pharmacol Ther. 2020;51(12):1438-9. DOI:10.1111/apt.15796


        ________________________________________________

        1. Geara AS, Castellanos MR, Bassil C, et al. Effects of parathyroid hormone on immune function. Clin Dev Immunol. 2010;2010:418695. DOI:10.1155/2010/418695
        2. Yu M, D’Amelio P, Tyagi AM, et al. Regulatory T cells are expanded by Teriparatide treatment in humans and mediate intermittent PTH-induced bone anabolism in mice. EMBO Rep. 2018;19(1):156-71. DOI:10.15252/embr.201744421
        3. Martens P-J, Gysemans C, Verstuyf A, Mathieu AC. Vitamin D’s Effect on Immune Function. Nutrients. 2020;12(5):1248. DOI:10.3390/nu12051248
        4. Hsu Y-H, Chen HI. Acute respiratory distress syndrome associated with hypercalcemia without parathyroid disorders. Chin J Physiol. 2008;51(6):414-8. 
        5. Grant WB, Lahore H, McDonnell SL, et al. Evidence that Vitamin D Supplementation Could Reduce Risk of Influenza and COVID-19 Infections and Deaths. Nutrients. 2020;12(4):988.  DOI:10.3390/nu12040988
        6. Chen P, Trummel C, Horton J, et al. Production of osteoclast-activating factor by normal human peripheral blood rosetting and nonrosetting lymphocytes. Eur J Immunol. 1976;6(10):732-6.  DOI:10.1002/eji.1830061014
        7. Milhaud G, Labat ML. Thymus and osteopetrosis. Clin Orthop Relat Res. 1978;135:260-71. 
        8. Yoneda T, Mundy GR. Monocytes regulate osteoclast-activating factor production by releasing prostaglandins. J Exp Med. 1979;150(2):338-50.  DOI:10.1084/jem.150.2.338
        9. Terauchi M, Li J-Y, Bedi B, et al. T lymphocytes amplify the anabolic activity of parathyroid hormone through Wnt10b signaling. Cell Metab. 2009;10(3):229-40. DOI:10.1016/j.cmet.2009.07.010
        10. Ohkura N, Kitagawa Y, Sakaguchi S. Development and maintenance of regulatory T cells. Immunity. 2013;38(3):414-23. DOI:10.1016/j.immuni.2013.03.002
        11. McCarthy TL, Centrella M, Canalis E. Parathyroid hormone enhances the transcript and polypeptide levels of insulin-like growth factor I in osteoblast-enriched cultures from fetal rat bone. Endocrinology. 1989;124(3):1247-53. DOI:10.1210/endo-124-3-1247
        12. Alexiewicz JM, Klinger M, Pitts TO, et al. Parathyroid hormone inhibits B cell proliferation: implications in chronic renal failure. J Am Soc Nephrol. 1990;1(3):236-44. DOI: 10.1681/ASN.V13236
        13. Jiang Y, Yoshida A, Ishioka C, et al. Parathyroid hormone inhibits immunoglobulin production without affecting cell growth in human B cells. Clin Immunol Immunopathol. 1992;65(3):286-93. DOI:10.1016/0090-1229(92)90159-l
        14. Emam AA, Mousa SG, Ahmed KY, Al-Azab AA. Inflammatory biomarkers in patients with asymptomatic primary hyperparathyroidism. Med Princ Pract. 2012;21(3):249-53. DOI:10.1159/000334588
        15. Chertok-Shacham E, Ishay A, Lavi I, Luboshitzky R. Biomarkers of hypercoagulability and inflammation in primary hyperparathyroidism. Med Sci Monit Int Med J Exp Clin Res. 2008;14(12):CR628-32.
        16. Veldman CM, Cantorna MT, DeLuca HF. Expression of 1,25-dihydroxyvitamin D(3) receptor in the immune system. Arch Biochem Biophys. 2000;374(2):334-8. 
        DOI:10.1006/abbi.1999.1605
        17. Booth DR, Ding N, Parnell GP, et al. Cistromic and genetic evidence that the vitamin D receptor mediates susceptibility to latitude-dependent autoimmune diseases. Genes Immun. 2016;17(4):213-9.  DOI:10.1038/gene.2016.12
        18. Bilezikian JP, Bikle D, Hewison M, et al. MECHANISMS IN ENDOCRINOLOGY: Vitamin D and COVID-19. Eur J Endocrinol. 2020;183(5):R133-47. DOI:10.1530/eje-20-0665
        19. Wei R, Christakos S. Mechanisms Underlying the Regulation of Innate and Adaptive Immunity by Vitamin D. Nutrients. 2015;7(10):8251-60. DOI:10.3390%2Fnu7105392
        20. Christakos S, Hewison M, Gardner DG, et al. Vitamin D: beyond bone. Ann N Y Acad Sci. 2013;1287(1):45-58. DOI:10.1111%2Fnyas.12129
        21. Liu PT, Stenger S, Tang DH, Modlin RL. Cutting edge: vitamin D-mediated human antimicrobial activity against Mycobacterium tuberculosis is dependent on the induction of cathelicidin. J Immunol. 2007;179(4):2060-3. DOI:10.4049/jimmunol.179.4.2060
        22. White JH. Vitamin D as an inducer of cathelicidin antimicrobial peptide expression: past, present and future. J Steroid Biochem Mol Biol. 2010;121(1-2):234-8. DOI:10.1016/j.jsbmb.2010.03.034
        23. Cantorna MT, Snyder L, Lin Y-D, Yang L. Vitamin D and 1,25(OH)2D regulation of T cells. Nutrients. 2015;7(4):3011-21.  DOI:10.3390/nu7043011
        24. Amano Y, Komiyama K, Makishima M. Vitamin D and periodontal disease. J Oral Sci. 2009;51(1):11-20. DOI:10.2334/josnusd.51.11
        25. Chen S, Sims GP, Chen XX, et al. Modulatory effects of 1,25-dihydroxyvitamin D3 on human B cell differentiation. J Immunol. 2007;179(3):1634-47. DOI:10.4049/jimmunol.179.3.1634
        26. Rossaint J, Oehmichen J, Van Aken H, et al. FGF23 signaling impairs neutrophil recruitment and host defense during CKD. J Clin Invest. 2016;126(3):962-74. DOI:10.1172/jci83470
        27. Masuda Y, Ohta H, Morita Y, et al. Expression of Fgf23 in activated dendritic cells and macrophages in response to immunological stimuli in mice. Biol Pharm Bull. 2015;38(5):687-93. DOI:10.1248/bpb.b14-00276
        28. D’Elia JA, Weinrauch LA. Calcium Ion Channels: Roles in Infection and Sepsis Mechanisms of Calcium Channel Blocker Benefits in Immunocompromised Patients at Risk for Infection. Int J Mol Sci. 2018;19(9):2465. DOI:10.3390/ijms19092465
        29. Zheng L, Hunter K, Gaughan J, Poddar S. Preadmission Use of 
        Calcium Channel Blockers and Outcomes After Hospitalization With Pneumonia: A Retrospective Propensity-Matched Cohort Study. Am J Ther. 2017;24(1):e30-8. DOI:10.1097/mjt.0000000000000312
        30. Lee C, Xu D-Z, Feketeova E, et al. Calcium entry inhibition during resuscitation from shock attenuates inflammatory lung injury. Shock. 2008;30(1):29-35. DOI:10.1097/shk.0b013e318145a589
        31. Nieto-Torres JL, Verdiá-Báguena C, Jimenez-Guardeño JM, et al. Severe acute respiratory syndrome coronavirus E protein transports calcium ions and activates the NLRP3 inflammasome. Virology. 2015;485:330-9. DOI:10.1016/j.virol.2015.08.010
        32. Millet JK, Whittaker GR. Physiological and molecular triggers for SARS-CoV membrane fusion and entry into host cells. Virology. 2018;517:3-8. DOI:10.1016/j.virol.2017.12.015
        33. Straus MR, et al. Ca2+ ions promote fusion of Middle East respiratory syndrome coronavirus with host cells and increase infectivity. J Virol. 2020;94:e00426-20. DOI:10.1128/JVI.00426-20
        34. Hoffmann HH, Schneider WM, Blomen VA, et al. Diverse Viruses Require the Calcium Transporter SPCA1 for Maturation and Spread. Cell Host Microbe. 2017;22(4):460-70.e5. DOI:10.1016/j.chom.2017.09.002
        35. Pizzorno A, Terrier O, Nicolas de Lamballerie C, et al. Repurposing of Drugs as Novel Influenza Inhibitors From Clinical Gene Expression Infection Signatures. Front Immunol. 2019;10:60. DOI:10.3389/fimmu.2019.00060
        36. Fujioka Y, Nishide S, Ose T, et al. A Sialylated Voltage-Dependent Ca(2+) Channel Binds Hemagglutinin and Mediates Influenza A Virus Entry into Mammalian Cells. Cell Host Microbe. 2018;23(6):809-18.e5. DOI:10.1016/j.chom.2018.04.015
        37. Di Filippo L, Formenti AM, Rovere-Querini P, et al. Hypocalcemia is highly prevalent and predicts hospitalization in patients with COVID-19. Endocrine. 2020;68(3):475-8. DOI:10.1007/s12020-020-02383-5
        38. Liu J, Han P, Wu J, et al. Prevalence and predictive value of hypocalcemia in severe COVID-19 patients, J Infect and Public Health. 2020;13(9):1224-8. DOI:10.1016/j.jiph.2020.05.029
        39. Lippi G, South AM, Henry BM. Electrolyte imbalances in patients with severe coronavirus disease 2019 (COVID-19). Ann Clin Biochem. 2020;57(3):262-5. DOI:10.1177/0004563220922255
        40. Torres B, Alcubilla P, González-Cordón A, et al. Impact of low serum calcium at hospital admission on SARS-CoV-2 infection outcome. Int J Infect Dis. 2020;104:164-8. DOI:10.1016/j.ijid.2020.11.207
        41. Wu Y, Hou B, Liu J, et al. Risk Factors Associated With Long-Term Hospitalization in Patients With COVID-19: A Single-Centered, Retrospective Study. Front Med (Lausanne). 2020;7:315.  DOI:10.3389/fmed.2020.00315
        42. Sun JK, Zhang WH, Zou L, et al. Serum calcium as a biomarker of clinical severity and prognosis in patients with coronavirus disease 2019. Aging (Albany NY). 2020;12(12):11287-95.  DOI:10.18632/aging.103526
        43. Maganeva IS, Eremkina AK, Bibik EE, et al. Status of mineral metabolism in patients with COVID-19 on admission to the hospital. Profilakticheskaia meditsina. 2020;23(8):64-73 (in Russian).  DOI:10.17116/profmed20202308164
        44. Nijjer S, Ghosh AK, Dubrey SW. Hypocalcaemia, long QT interval and atrial arrhythmias. BMJ Case Rep. 2010;2010:bcr0820092216. DOI:10.1136/bcr.08.2009.2216
        45. Zivin JR, Gooley T, Zager RA, Ryan MJ. Hypocalcemia: a pervasive metabolic abnormality in the critically ill. Am J kidney Dis. 2001;37(4):689-98. DOI:10.1016/s0272-6386(01)80116-5
        46. Di Filippo L, Formenti AM, Doga M, et al. Hypocalcemia is a distinctive biochemical feature of hospitalized COVID-19 patients. Endocrine. 2021;71:9-13. DOI:10.1007/s12020-020-02541-9
        47. Cappellini F, Brivio R, Casati M, et al. Low levels of total and ionized calcium in blood of COVID-19 patients. Clinical Chemistry and Laboratory Medicine (CCLM). 2020;58(9):171-3.  DOI:10.1515/cclm-2020-0611
        48. Tao RJ, Luo X-L, Xu W, et al. Viral infection in community acquired pneumonia patients with fever: a prospective observational study.  J Thorac Dis. 2018;10(7):4387-95. DOI:10.21037/jtd.2018.06.33
        49. Zhang J, Zhao Y, Chen Y. Laboratory findings in patients with avian-origin influenza A (H7N9) virus infections. J Med Virol. 2014;86(5):895-8.  DOI:10.1002/jmv.23780
        50. Song S-Z, Liu H-Y, Shen H, et al. Comparison of serum biochemical features between SARS and other viral pneumonias. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue. 2004;16(11):664-6. 
        51. Singh VP, Khatua B, El-Kurdi B. Hypocalcemia and hypoalbuminemia during COVID-19 infection: Opportunities for therapeutic intervention. J Infect Public Health. 2020;13(12):1887.  DOI:10.1016/j.jiph.2020.09.019
        52. Singh VP, Khatua B, El-Kurdi B, et al. Mechanistic basis and therapeutic relevance of hypocalcemia during severe COVID-19 infection. Endocrine. 2020;70:461-2. DOI:10.1007/s12020-020-02530-y
        53. di Filippo L, Formenti AM, Giustina A. Hypocalcemia: the quest for the cause of a major biochemical feature of COVID-19. Endocrine. 2020;70(3):463-4. DOI:10.1007/s12020-020-02525-9
        54. El-Kurdi B, Khatua B, Rood C, et al. Mortality From Coronavirus Disease 2019 Increases With Unsaturated Fat and May Be Reduced by Early Calcium and Albumin Supplementation. Gastroenterology. 2020;159(3):1015-8.e4. DOI:10.1053/j.gastro.2020.05.057
        55. Thomas T, Stefanoni D, Reisz JA, et al. COVID-19 infection alters kynurenine and fatty acid metabolism, correlating with IL-6 levels and renal status. JCI Insight. 2020;5(14):e140327.  DOI:10.1172/jci.insight.140327
        56. Khatua B, Yaron JR, El-Kurdi B, et al. Ringer's Lactate Prevents Early Organ Failure by Providing Extracellular Calcium. J Clin Med. 2020;9(1):263. DOI:10.3390/jcm9010263
        57. Navina S, Acharya C, DeLany JP, et al. Lipotoxicity causes multisystem organ failure and exacerbates acute pancreatitis in obesity. Sci Transl Med. 2011;3(107):107ra110. DOI:10.1126/scitranslmed.3002573
        58. Mokrysheva NG. Okoloshchitovidnye zhelezy. Pervichnyi giperparatireoz. Moscow: Meditsinskoe informatsionnoe agentstvo, 2019 (in Russian).
        59. Hope-Simpson RE. The role of season in the epidemiology of influenza. J Hyg (Lond). 1981;86(1):35-47. DOI:10.1017/s0022172400068728
        60. Cannell JJ, Zasloff M, Garland CF, et al. On the epidemiology of influenza. Virol J. 2008;5:29. DOI:10.1186/1743-422X-5-29
        61. Cannell JJ, Vieth R, Umhau JC, et al. Epidemic influenza and vitamin D. Epidemiol Infect; 2006;134(6):1129-40.  DOI:10.1017/s0950268806007175
        62. Grant WB, Giovannucci E. The possible roles of solar ultraviolet-B radiation and vitamin D in reducing case-fatality rates from the 1918–1919 influenza pandemic in the United States. Dermatoendocrinol. 2009;1(4):215-9. DOI:10.4161/derm.1.4.9063
        63. Berry DJ, Hesketh K, Power C, Hyppönen E. Vitamin D status has a linear association with seasonal infections and lung function in British adults. Br J Nutr. 2011;106(9):1433-40.  DOI:10.1017/s0007114511001991
        64. Dancer RC, Parekh D, Lax S, et al. Vitamin D deficiency contributes directly to the acute respiratory distress syndrome (ARDS). Thorax. 2015;70(7):617-24. 
        DOI:10.1136/thoraxjnl-2014-206680
        65. Esposito S, Lelii M. Vitamin D and respiratory tract infections in childhood. BMC Infect Dis. 2015;15:487. DOI:10.1186/s12879-015-1196-1
        66. Loeb M, Dang AD, Thiem VD, et al. Effect of Vitamin D supplementation to reduce respiratory infections in children and adolescents in Vietnam: A randomized controlled trial. Influenza Other Respi Viruses. 2019;13(2):176-83. DOI:10.1111/irv.12615
        67. Kühn J, Trotz P, Stangl GI. Prevalence of vitamin D insufficiency and evidence for disease prevention in the older population. Z Gerontol Geriatr. 2018;51(5):567-72. DOI:10.1007/s00391-018-1390-z
        68. Gois PHF, Ferreira D, Olenski S, Seguro AC. Vitamin D and Infectious Diseases: Simple Bystander or Contributing Factor? Nutrients. 2017;9(7):651. DOI:10.3390/nu9070651
        69. Zdrenghea MT, Makrinioti H, Bagacean C, et al. Vitamin D modulation of innate immune responses to respiratory viral infections. Rev Med Virol. 2017;27(1). DOI:10.1002/rmv.1909
        70. Urashima M, Mezawa H, Noya M, Camargo CA. Effects of vitamin D supplements on influenza A illness during the 2009 H1N1 pandemic: A randomized controlled trial. Food Funct. 2014;5(9):2365-70. DOI:10.1039/c4fo00371c
        71. Urashima M, Segawa T, Okazaki M, et al. Randomized trial of vitamin D supplementation to prevent seasonal influenza A in schoolchildren. Am J Clin Nutr. 2010;91(5):1255-60. DOI:10.3945/ajcn.2009.29094
        72. Zhou J, Du J, Huang L, et al. Preventive effects of Vitamin D on seasonal influenza a in infants: A multicenter, randomized, open, controlled clinical trial. Pediatr Infect Dis J. 2018;37(8):749-54.  DOI:10.1097/inf.0000000000001890
        73. Arihiro S, Nakashima A, Matsuoka M, et al. Randomized Trial of Vitamin D Supplementation to Prevent Seasonal Influenza and Upper Respiratory Infection in Patients With Inflammatory Bowel Disease. Inflamm Bowel Dis. 2019;4;25(6):1088-95. DOI:10.1093/ibd/izy346
        74. Martineau AR, Jolliffe DA, Hooper RL, et al. Vitamin D supplementation to prevent acute respiratory tract infections: Systematic review and meta-analysis of individual participant data. BMJ. 2017;356;i6583. DOI:10.1136/bmj.i6583
        75. Pereira M, Dantas Damascena A, Galvão Azevedo LM, et al. Vitamin D deficiency aggravates COVID-19: systematic review and meta-analysis. Crit Rev Food Sci Nutr. 2020:1-9.  DOI:10.1080/10408398.2020.1841090
        76. Hastie CE, Mackay DF, Ho F, et al. Vitamin D concentrations and COVID-19 infection in UK Biobank. Diabetes Metab Syndr. 2020;14(4):561-5. DOI:10.1016/j.dsx.2020.04.050
        77. Jakovac H. COVID-19 and vitamin D-Is there a link and an opportunity for intervention? Am J Physiol Endocrinol Metab. 2020;318(5):E589. DOI:10.1152/ajpendo.00138.2020
        78. McCartney DM, Byrne DG. Optimisation of Vitamin D Status for Enhanced Immuno-protection Against COVID-19. Ir Med J. 2020;113(4):58. 
        79. Panarese A, Shahini E. Letter: COVID-19, and vitamin D. Aliment Pharmacol Ther. 2020;51(10):993-5. DOI:10.1111/apt.15752
        80. Rhodes JM, Subramanian S, Laird E, Kenny RA. Letter: low population mortality from COVID-19 in countries south of latitude 35° North supports vitamin D as a factor determining severity. Authors' reply. Aliment Pharmacol Ther. 2020;52(2):412-3. DOI:10.1111/apt.15823
        81. Marik PE, Kory P, Varon J. Does vitamin D status impact mortality from SARS-CoV-2 infection?. Med Drug Discov. 2020;6:100041. DOI:10.1016/j.medidd.2020.100041
        82. Garg M, Al-Ani A, Mitchell H, Hendy P, Christensen B. Editorial: low population mortality from COVID-19 in countries south of latitude 35 degrees North-supports vitamin D as a factor determining severity. Authors' reply. Aliment Pharmacol Ther. 2020;51(12):1438-9. DOI:10.1111/apt.15796

        Авторы
        И.C. Maганева, А.М. Горбачева, Е.Е. Бибик, Е.A. Абойшева*, А.К. Еремкина, Н.Г. Мокрышева

        ФГБУ «Национальный медицинский исследовательский центр эндокринологии» Минздрава России, Москва, Россия
        *aboisheva@gmail.com

        ________________________________________________

        Irina S. Maganeva, Anna M. Gorbacheva, Ekaterina E. Bibik, Elizaveta A. Aboisheva*, Anna K. Eremkina, Natalia G. Mokrysheva

        Endocrinology Research Centre, Moscow, Russia
        *aboisheva@gmail.com


        Поделиться
        Назад к списку
        Цель портала OmniDoctor – предоставление профессиональной информации врачам, провизорам и фармацевтам.

        Ключевые слова

        артериальная гипертензия дети артериальная гипертония лечение сахарный диабет COVID-19 ишемическая болезнь сердца диагностика беременность ожирение сердечно-сосудистые заболевания хроническая сердечная недостаточность рак молочной железы факторы риска метаболический синдром хроническая болезнь почек хроническая обструктивная болезнь легких качество жизни профилактика сахарный диабет 2-го типа фибрилляция предсердий инфаркт миокарда бесплодие антигипертензивная терапия прогноз сердечная недостаточность химиотерапия атеросклероз бронхиальная астма неалкогольная жировая болезнь печени таргетная терапия эффективность амлодипин нестероидные противовоспалительные препараты витамин D бактериальный вагиноз ревматоидный артрит гастроэзофагеальная рефлюксная болезнь реабилитация вирус папилломы человека безопасность коморбидность болезнь Крона атопический дерматит эндометриоз пробиотики эндотелиальная дисфункция язвенный колит инсулинорезистентность комбинированные оральные контрацептивы
        Узнавайте первым
        Подпишитесь, чтобы получать информацию о самых интересных событиях, последних новостях.
        Рассылка
        Новости
        Мероприятия
        Актуальные вебинары, конференции, семинары и т.д.
        Медиатека
        Записи вебинаров, подкасты, статьи и интервью.
        Библиотека
        Материалы для врачей-клиницистов:
        — Электронная...
        Наши контакты
        +7 (495) 098-03-59
        Заказать звонок
        Москва 125252, ул. Алабяна 13, корпус 1
        info@omnidoctor.ru
        Портал
        О портале
        История
        Лицензии
        Партнеры
        Реквизиты
        Об издательстве "Консилиум Медикум"
        Политика обработки ПД
        Пресс-центр
        Медиатека
        Библиотека
        Издания для врачей
        Издания для провизоров и фармацевтов
        Online-издания
        Мероприятия
        © 2025 Все права защищены.
        Подождите секунду, мы ищем Расширенный поиск
        Мы используем инструмент веб-аналитики Яндекс Метрика, который посредством обработки файлов «cookie» позволяет анализировать данные о посещаемости сайта, что помогает нам улучшить работу сайта, повысить его удобство и производительность. Соответственно, продолжая пользоваться сайтом, вы соглашаетесь на использование файлов «cookie» и их дальнейшую обработку сервисом Яндекс Метрика. Вы можете блокировать и (или) удалять файлы «cookie» в настройках своего веб-браузера.
        Я согласен(-на)