Цель. Изучить связь гемостатических нарушений с воспалением и вклад коагулопатий в течение и исходы COVID-19. Материалы и методы. Обследованы 215 пациентов со среднетяжелой и тяжелой формами болезни на фоне антикоагулянтной и иммуносупрессивной терапии. Гемостаз оценивали по тестам тромбодинамики, тромбоэластографии, уровням фибриногена и D-димера, протромбиновому времени и растворимым комплексам фибрин-мономера. Показатели гемостаза сопоставляли с гемограммой и биохимией крови, включая маркеры воспаления (С-реактивный белок, интерлейкины 6 и 8), а также с клинической картиной. Результаты. Признаки коагулопатии выявлены у подавляющего большинства обследованных. Несмотря на применение низкомолекулярных гепаринов в профилактических и лечебных дозах, коагулопатия при COVID-19 протекает преимущественно по типу гиперкоагуляции, выраженность которой прямо коррелирует с системной воспалительной реакцией и метаболическими сдвигами вследствие дисфункции печени и почек. Обнаружена прямая связь между степенью гемостатических расстройств и тяжестью течения COVID-19, включая наличие сопутствующих заболеваний и вероятность неблагоприятного исхода. Примерно в 1/4 случаев обнаружена хронометрическая гипокоагуляция в сочетании с высоким уровнем С-реактивного белка в крови, который может тормозить свертывание in vitro и тем самым маскировать истинную тромбофилию при активном воспалении. Персистирующие высокие уровни фибриногена и D-димера при отсутствии признаков коагулопатии потребления свидетельствуют о преобладании локального и/или регионального микротромбоза над диффузным внутрисосудистым свертыванием крови. Заключение. Полученные результаты обосновывают необходимость лабораторного контроля системы гемостаза и активной профилактики тромботических осложнений, включая ограничение системной воспалительной реакции, при COVID-19.
Aim. To study the relationship of hemostatic disorders with inflammation and estimate their role in the course and outcomes of COVID-19. Materials and methods. We examined 215 consecutive patients with moderate and severe forms of acute COVID-19. The patients were on anticoagulants and immunosuppressive drugs. Hemostasis was assessed using the thrombodynamics assay, thromboelastography, fibrinogen and D-dimer levels, prothrombin time, and soluble fibrin-monomer complexes (ethanol gelation test). The hemostatic parameters were correlated with hematological and biochemical tests, including markers of inflammation (C-reactive protein, interleukins 6 and 8), as well as with the disease severity and outcomes. Results. Laboratory signs of coagulopathy were revealed in the vast majority of the cases. Despite the use of low-molecular-weight heparins in the prophylactic and therapeutic doses, coagulopathy in COVID-19 manifested predominantly as hypercoagulability that correlated directly with the systemic inflammation and metabolic changes due to liver and kidney dysfunction. A direct relationship was found between the grade of coagulopathy and the severity of COVID-19, including comorbidities and the mortality. The chronometric hypocoagulability observed in about 1/4 cases was associated with a high level of C-reactive protein, which may decelerate coagulation in vitro and thereby mask the true inflammatory thrombophilia. Persistent hyperfibrinogenemia and high D-dimer in the absence of consumption coagulopathy suggest the predominance of local and/or regional microthrombosis over disseminated intravascular coagulation. Conclusion. The results obtained substantiate the need for laboratory monitoring of hemostasis and active prophylaxis and treatment of thrombotic complications in COVID-19.
1. Tal S, Spectre G, Kornowski R, Perl L. Venous Thromboembolism Complicated with COVID-19: What Do We Know so Far? Acta Haematol. 2020;143(5):417-24. DOI:10.1159/000508233
2. Лобастов К.В., Счастливцев И.В., Порембская О.Я., и др. COVID-19-ассоциированная коагулопатия: обзор современных рекомендаций по диагностике, лечению и профилактике. Амбулаторная хирургия. 2020;(3–4):36-51 [Lobastov KV, Schastlivtsev IV, Porembskaya OYa, et al. COVID-19-associated coagulopathy: review of current recommendations for diagnosis, treatment and prevention. Ambulatory surgery. 2020;(3–4):36-51 (in Russian)]. DOI:10.21518/1995-1477-2020-3-4-36-51
3. Арутюнов Г.П., Козиолова Н.А., Тарловская Е.И., и др. Согласованная позиция экспертов Евразийской ассоциации терапевтов по некоторым новым механизмам патогенеза COVID-19: фокус на гемостаз, вопросы гемотрансфузии и систему транспорта газов крови. Кардиология. 2020;60(5):9-19 [Arutyunov GP, Koziolova NA, Tarlovskaya EI, et al. The Agreed Experts’ Position of the Eurasian Association of Therapists on Some new Mechanisms of COVID-19 Pathways: Focus on Hemostasis, Hemotransfusion Issues and Blood gas Exchange. Kardiologiia. 2020;60(5):9-19 (in Russian)]. DOI:10.18087/cardio.2020.5.n1132
4. Явелов И.С., Драпкина О.М. COVID-19: состояние системы гемостаза и особенности антитромботической терапии. Кардиоваскулярная терапия и профилактика. 2020;19(3):2571 [Yavelov IS, Drapkina OM. COVID-19: hemostatic parameters and specifics of antithrombotic treatment. Cardiovascular therapy and prevention. 2020;19(3):2571 (in Russian)]. DOI:10.15829/1728-8800-2020-2571
5. Paranjpe I, Fuster V, Lala A, et al. Association of Treatment Dose Anticoagulation With In-Hospital Survival Among Hospitalized Patients With COVID-19. J Am Coll Cardiol. 2020;76(1):122-4. DOI:10.1016/j.jacc.2020.05.001
6. Thachil J, Tang N, Gando S, et al. ISTH interim guidance on recognition and management of coagulopathy in COVID-19. J Thromb Haemost. 2020;18(5):1023-6. DOI:10.1111/jth.14810
7. Сафиуллина С.И., Литвинов Р.И. Рекомендации по профилактике и коррекции тромботических осложнений при COVID-19. Казанский медицинский журнал. 2020;101(4):485-8 [Safiullina SI, Litvinov RI. Recommendations for the prevention and correction of thrombotic complications in COVID-19. Kazanskiy meditsinskiy zhurnal. 2020;101(4):485-8 (in Russian)]. DOI:10.17816/KMJ2020-485
8. Временные методические рекомендации. Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19). Министерство здравоохранения РФ. Версия 9 (26.10.2020). Режим доступа: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/052/548/original/%D0%9C%D0%A0_COVID.... Ссылка активна на 18.11.2020 [Temporary guidelines. Prevention, diagnosis and treatment of the new coronavirus infection (COVID-19). Ministry of Health of the Russian Federation. Version 9 (26.10.2020). Available at: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/052/548/original/%D0%9C%D0%A0_COVID.... Accessed: 18.11.2020 (in Russian)].
9. Sinauridze EI, Vuimo TA, Tarandovskiy ID, et al. Thrombodynamics, a new global coagulation test: Measurement of heparin efficiency. Talanta. 2018;180:282-91. DOI:10.1016/j.talanta.2017.12.055
10. Breen FA Jr, Tullis JL. Ethanol gelation test improved. Ann Intern Med. 1969;71(2):433-4. DOI:10.7326/0003-4819-71-2-433_2
11. Bowles L, Platton S, Yartey N, et al. Lupus Anticoagulant and Abnormal Coagulation Tests in Patients with Covid-19. N Engl J Med. 2020;383(3):288-90. DOI:10.1056/nejmc2013656
12. Van Rossum AP, Vlasveld LT, van den Hoven LJM, et al. False prolongation of the activated partial thromboplastin time (aPTT) in inflammatory patients: Interference of C-reactive protein. Br J Haematol. 2012;157(3):394-5. DOI:10.1111/j.1365-2141.2011.08990.x
13. Thaker A, Chandler W. Prolongation of PTT by CRP Is Magnified in the Setting of Heparin and Warfarin Therapy. Am J Clin Pathol. 2016;147(Suppl. 2):S153. DOI:10.1093/ajcp/aqw191.004
14. Devreese KMJ, Verfaillie CJ, De Bisschop F, Delanghe JR. Interference of C-reactive protein with clotting times. Clin Chem Lab Med. 2015;53(5):e141-5. DOI:10.1515/cclm-2014-0906
15. Zlatko D. The Cytokines of the Immune System: The Role of Cytokines in Disease Related to Immune Response. Academic Press; 1st edition (June 16, 2015); 2015.
16. Ulfman LH, Joosten DPH, van der Linden JAM, et al. IL-8 Induces a Transient Arrest of Rolling Eosinophils on Human Endothelial Cells. J Immunol. 2001;166(1):588-95. DOI:10.4049/jimmunol.166.1.588
17. Erger RA, Casale TB. Interleukin-8 is a potent mediator of eosinophil chemotaxis through endothelium and epithelium. Am J Physiol. 1995;268(1 Pt. 1):L117-22. DOI:10.1152/ajplung.1995.268.1.L117
18. Tuktamyshov R, Zhdanov R. The method of in vivo evaluation of hemostasis: Spatial thrombodynamics. Hematology. 2015;20(10):584‑6. DOI:10.1179/1607845415Y.0000000022
19. Balandina AN, Koltsova EM, Teterina TA, et al. An enhanced clot growth rate before in vitro fertilization decreases the probability of pregnancy. PLoS One. 2019;14(5):1-19.
DOI:10.1371/journal.pone.0216724
20. Balandina AN, Serebriyskiy II, Poletaev AV, et al. Thrombodynamics – A new global hemostasis assay for heparin monitoring in patients under the anticoagulant treatment. PLoS One. 2018;13(6):1-18. DOI:10.1371/journal.pone.0199900
21. Bates S. D-dimer assays in diagnosis and management of thrombotic and bleeding disorders. Semin Thromb Hemost. 2012;38(7):673-82. DOI:10.1055/s-0032-1326782
22. Borghi MO, Beltagy A, Garrafa E, et al. Anti-Phospholipid Antibodies in COVID-19 Are Different From Those Detectable in the Anti-Phospholipid Syndrome. Front Immunol. 2020;11:584241. DOI:10.3389/fimmu.2020.584241
23. Zhang Y, Xiao M, Zhang S, et al. Coagulopathy and Antiphospholipid Antibodies in Patients with Covid-19. N Engl J Med. 2020;382(17):e38. DOI:10.1056/NEJMc2007575
24. Dalal KS, Bridgeman MB. Cardiovascular drugs. Nursing (Lond). 2017;47(11):63. DOI:10.1097/01.nurse.0000524762.35753.23
25. Близнюков О.П., Козмин Л.Д., Мартынов А.И., и др. С-реактивный белок удлиняет время свертывания крови. Научно-практическая ревматология. 2003;16-20 [Bliznyukov OP, Kozmin LD, Martynov AI, et al. C-reactive protein lengthens blood clotting time. Nauchno-prakticheskaya revmatologiya. 2003;16-20 (in Russian)]
26. Wu W, Xie X, Yin W, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;15;395(10223):497‑506.
DOI:10.1016/S0140-6736(20)30183-5
27. Ranucci M, Ballotta A, Di Dedda U, et al. The procoagulant pattern of patients with COVID-19 acute respiratory distress syndrome. J Thromb Haemost. 2020;18(7):1747-51. DOI:10.1111/jth.14854
28. Nasonov EL, Beketova TV, Reshetnyak TM, et al. Coronavirus disease 2019 (covid-19) and immune-mediated inflammatory rheumatic diseases: At the crossroads of thromboinflammation and autoimmunity. Nauchno-prakticheskaya revmatologiya. 2020;58(4):353-67. DOI:10.47360/1995-4484-2020-353-367
29. Mehta P, McAuley DF, Brown M, et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033-4.
DOI:10.1016/S0140-6736(20)30628-0
30. Gu SX, Tyagi T, Jain K, et al. Thrombocytopathy and endotheliopathy: crucial contributors to COVID-19 thromboinflammation. Nat Rev Cardiol. 2020;2.
DOI:10.1038/S41569-020-00469-1
31. Sriram K, Insel PA. Inflammation and thrombosis in COVID-19 pathophysiology: Proteinase-activated and purinergic receptors as drivers and candidate therapeutic targets. Physiol Rev. 2021;101(2):545‑67. DOI:10.1152/physrev.00035.2020
________________________________________________
1. Tal S, Spectre G, Kornowski R, Perl L. Venous Thromboembolism Complicated with COVID-19: What Do We Know so Far? Acta Haematol. 2020;143(5):417-24. DOI:10.1159/000508233
2. Lobastov KV, Schastlivtsev IV, Porembskaya OYa, et al. COVID-19-associated coagulopathy: review of current recommendations for diagnosis, treatment and prevention. Ambulatory surgery. 2020;(3–4):36-51 (in Russian). DOI:10.21518/1995-1477-2020-3-4-36-51
3. Arutyunov GP, Koziolova NA, Tarlovskaya EI, et al. The Agreed Experts’ Position of the Eurasian Association of Therapists on Some new Mechanisms of COVID-19 Pathways: Focus on Hemostasis, Hemotransfusion Issues and Blood gas Exchange. Kardiologiia. 2020;60(5):9-19 (in Russian). DOI:10.18087/cardio.2020.5.n1132
4. Yavelov IS, Drapkina OM. COVID-19: hemostatic parameters and specifics of antithrombotic treatment. Cardiovascular therapy and prevention. 2020;19(3):2571 (in Russian). DOI:10.15829/1728-8800-2020-2571
5. Paranjpe I, Fuster V, Lala A, et al. Association of Treatment Dose Anticoagulation With In-Hospital Survival Among Hospitalized Patients With COVID-19. J Am Coll Cardiol. 2020;76(1):122-4. DOI:10.1016/j.jacc.2020.05.001
6. Thachil J, Tang N, Gando S, et al. ISTH interim guidance on recognition and management of coagulopathy in COVID-19. J Thromb Haemost. 2020;18(5):1023-6. DOI:10.1111/jth.14810
7. Safiullina SI, Litvinov RI. Recommendations for the prevention and correction of thrombotic complications in COVID-19. Kazanskiy meditsinskiy zhurnal. 2020;101(4):485-8 (in Russian). DOI:10.17816/KMJ2020-485
8. Temporary guidelines. Prevention, diagnosis and treatment of the new coronavirus infection (COVID-19). Ministry of Health of the Russian Federation. Version 9 (26.10.2020). Available at: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/052/548/original/%D0%9C%D0%A0_COVID.... Accessed: 18.11.2020 (in Russian).
9. Sinauridze EI, Vuimo TA, Tarandovskiy ID, et al. Thrombodynamics, a new global coagulation test: Measurement of heparin efficiency. Talanta. 2018;180:282-91. DOI:10.1016/j.talanta.2017.12.055
10. Breen FA Jr, Tullis JL. Ethanol gelation test improved. Ann Intern Med. 1969;71(2):433-4. DOI:10.7326/0003-4819-71-2-433_2
11. Bowles L, Platton S, Yartey N, et al. Lupus Anticoagulant and Abnormal Coagulation Tests in Patients with Covid-19. N Engl J Med. 2020;383(3):288-90. DOI:10.1056/nejmc2013656
12. Van Rossum AP, Vlasveld LT, van den Hoven LJM, et al. False prolongation of the activated partial thromboplastin time (aPTT) in inflammatory patients: Interference of C-reactive protein. Br J Haematol. 2012;157(3):394-5. DOI:10.1111/j.1365-2141.2011.08990.x
13. Thaker A, Chandler W. Prolongation of PTT by CRP Is Magnified in the Setting of Heparin and Warfarin Therapy. Am J Clin Pathol. 2016;147(Suppl. 2):S153. DOI:10.1093/ajcp/aqw191.004
14. Devreese KMJ, Verfaillie CJ, De Bisschop F, Delanghe JR. Interference of C-reactive protein with clotting times. Clin Chem Lab Med. 2015;53(5):e141-5. DOI:10.1515/cclm-2014-0906
15. Zlatko D. The Cytokines of the Immune System: The Role of Cytokines in Disease Related to Immune Response. Academic Press; 1st edition (June 16, 2015); 2015.
16. Ulfman LH, Joosten DPH, van der Linden JAM, et al. IL-8 Induces a Transient Arrest of Rolling Eosinophils on Human Endothelial Cells. J Immunol. 2001;166(1):588-95. DOI:10.4049/jimmunol.166.1.588
17. Erger RA, Casale TB. Interleukin-8 is a potent mediator of eosinophil chemotaxis through endothelium and epithelium. Am J Physiol. 1995;268(1 Pt. 1):L117-22. DOI:10.1152/ajplung.1995.268.1.L117
18. Tuktamyshov R, Zhdanov R. The method of in vivo evaluation of hemostasis: Spatial thrombodynamics. Hematology. 2015;20(10):584‑6. DOI:10.1179/1607845415Y.0000000022
19. Balandina AN, Koltsova EM, Teterina TA, et al. An enhanced clot growth rate before in vitro fertilization decreases the probability of pregnancy. PLoS One. 2019;14(5):1-19.
DOI:10.1371/journal.pone.0216724
20. Balandina AN, Serebriyskiy II, Poletaev AV, et al. Thrombodynamics – A new global hemostasis assay for heparin monitoring in patients under the anticoagulant treatment. PLoS One. 2018;13(6):1-18. DOI:10.1371/journal.pone.0199900
21. Bates S. D-dimer assays in diagnosis and management of thrombotic and bleeding disorders. Semin Thromb Hemost. 2012;38(7):673-82. DOI:10.1055/s-0032-1326782
22. Borghi MO, Beltagy A, Garrafa E, et al. Anti-Phospholipid Antibodies in COVID-19 Are Different From Those Detectable in the Anti-Phospholipid Syndrome. Front Immunol. 2020;11:584241. DOI:10.3389/fimmu.2020.584241
23. Zhang Y, Xiao M, Zhang S, et al. Coagulopathy and Antiphospholipid Antibodies in Patients with Covid-19. N Engl J Med. 2020;382(17):e38. DOI:10.1056/NEJMc2007575
24. Dalal KS, Bridgeman MB. Cardiovascular drugs. Nursing (Lond). 2017;47(11):63. DOI:10.1097/01.nurse.0000524762.35753.23
25. Bliznyukov OP, Kozmin LD, Martynov AI, et al. C-reactive protein lengthens blood clotting time. Nauchno-prakticheskaya revmatologiya. 2003;16-20 (in Russian)
26. Wu W, Xie X, Yin W, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;15;395(10223):497‑506.
DOI:10.1016/S0140-6736(20)30183-5
27. Ranucci M, Ballotta A, Di Dedda U, et al. The procoagulant pattern of patients with COVID-19 acute respiratory distress syndrome. J Thromb Haemost. 2020;18(7):1747-51. DOI:10.1111/jth.14854
28. Nasonov EL, Beketova TV, Reshetnyak TM, et al. Coronavirus disease 2019 (covid-19) and immune-mediated inflammatory rheumatic diseases: At the crossroads of thromboinflammation and autoimmunity. Nauchno-prakticheskaya revmatologiya. 2020;58(4):353-67. DOI:10.47360/1995-4484-2020-353-367
29. Mehta P, McAuley DF, Brown M, et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033-4.
DOI:10.1016/S0140-6736(20)30628-0
30. Gu SX, Tyagi T, Jain K, et al. Thrombocytopathy and endotheliopathy: crucial contributors to COVID-19 thromboinflammation. Nat Rev Cardiol. 2020;2.
DOI:10.1038/S41569-020-00469-1
31. Sriram K, Insel PA. Inflammation and thrombosis in COVID-19 pathophysiology: Proteinase-activated and purinergic receptors as drivers and candidate therapeutic targets. Physiol Rev. 2021;101(2):545‑67. DOI:10.1152/physrev.00035.2020
1 ФГАОУ ВО «Казанский (Приволжский) федеральный университет», Казань, Россия;
2 ГАУЗ «Городская клиническая больница №16», Казань, Россия;
3 Медицинский центр «Айболит», Казань, Россия;
4 ФГБУ «Национальный медицинский исследовательский центр детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева» Минздрава России, Москва, Россия;
5 ФГБУН «Центр теоретических проблем физико-химической фармакологии» Российской академии наук, Москва, Россия
*natalja.evtugyna@gmail.com
________________________________________________
Natalia G. Evtugina*1, Svetlana S. Sannikova2, Alina D. Peshkova1, Svetlana I. Safiullina1,3, Izabella A. Andrianova1, Gulzada R. Tarasova1, Alina I. Khabirova1, Aleksandr G. Rumyantsev4, Fazoil I. Ataullakhanov4,5, Rustem I. Litvinov1
1 Kazan Federal University, Kazan, Russia;
2 City Hospital №16, Kazan, Russia;
3 Medical Center “Aibolit”, Kazan, Russia;
4 Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia;
5 Center for Theoretical Problems of Physico-Chemical Pharmacology, Moscow, Russia
*natalja.evtugyna@gmail.com