Материалы доступны только для специалистов сферы здравоохранения. Авторизуйтесь или зарегистрируйтесь.
Распространенность полиморфизмов генов CYP2C8, PTGS-1, 2, ассоциированных с чувствительностью к нестероидным противовоспалительным препаратам, среди этнических групп Северного Кавказа
________________________________________________
Abdullaev SP, Denisenko NP, Mirzaev KB, Shuev GN, Sozaeva ZhA, Kachanova AA, Mammaev SN, Kasaeva EA, Gafurov DM, Grishina EA, Sychev DA. CYP2C8, PTGS-1, 2 gene polymorphisms prevalence associated with sensitivity to non-steroidal anti-inflammatory drugs among North Caucasus ethnic groups. Terapevticheskii Arkhiv (Ter. Arkh.). 2021;93(11):1334–1339. DOI: 10.26442/00403660.2021.11.201220
Материалы доступны только для специалистов сферы здравоохранения. Авторизуйтесь или зарегистрируйтесь.
Материалы и методы. В исследовании приняли участие 400 добровольцев из 4 этнических групп Республики Дагестан: по 100 из аварской, даргинской, лакской и кумыкской этнических групп. Носительство полиморфных маркеров CYP2C8 и PTGS-1, 2 определялось методом полимеразной цепной реакции в реальном времени.
Результаты. Распространенность минорного аллеля CYP2C8 (rs10509681 составила: у аварцев – 5,5%, даргинцев – 10%, лакцев и кумыков – по 6,5%; CYP2C8 (rs11572080): у аварцев – 5,5%, даргинцев – 9,5%, лакцев – 6,5%, кумыков – 8,5%; PTGS-1 (rs10306135): у аварцев – 10,5%, даргинцев – 13,0%, лакцев – 9,5% и кумыков – 7,5%; PTGS-1 (rs12353214): у аварцев – 9,0%, даргинцев – 4,5%, лакцев – 7,5%, кумыков – 8,0%; PTGS-2 (rs20417): у аварцев – 1,0%, даргинцев – 2,5%, лакцев – 3,5%, кумыков – 5,0%. Достоверных различий между группами не выявлено.
Заключение. Изучение полиморфизмов генов CYP2C8 и PTGS-1 и 2 является перспективным для прогнозирования эффективности и безопасности терапии нестероидными противовоспалительными препаратами в связи с высокой распространенностью данных полиморфизмов в этнических группах Северного Кавказа.
Ключевые слова: фармакогенетика, этнические группы, CYP2C8, PTGS-1, PTGS-2, нестероидные противовоспалительные препараты
________________________________________________
Aim. Find the prevalence of CYP2C8*3 (rs10509681; rs11572080), PTGS-1 (rs10306135; rs12353214) and PTGS-2 (rs20417) alleles and genotypes in four ethnic groups among Laks, Avars, Dargins and Kumyks.
Materials and methods. The study involved 400 volunteers from four ethnic groups living in Republic of Dagestan: 100 participants from each group. Carriage of polymorphic markers was determined by reverse transcription polymerase chain reaction.
Results. Minor allele frequency of the CYP2C8 (rs10509681) was 5.5% in Avars, 10% in Dargins, Laks and Kumyks – 6.5% both; CYP2C8 (rs11572080) was 5.5% in Avars, 9.5% in Dargins, 6.5% in Laks, 8.5% in Kumyks; PTGS-1 (rs10306135) in Avars – 10.5%, in Dargins – 13.0%, in Laks – 9.5% and Kumyks – 7.5%; PTGS-1 (rs12353214) in Avars – 9.0%, in Dargins – 4.5%, in Laks – 7.5%, in Kumyks – 8.0%; PTGS-2 (rs20417) in Avars – 1.0%, in Dargins – 2.5%, in Laks – 3.5%, in Kumyks – 5.0%. There were no significant differences between groups.
Conclusion. The study of CYP2C8 and PTGS-1 and 2 gene polymorphisms is promising for predicting the effectiveness and safety of non-steroidal anti-inflammatory drug therapy, due to the high prevalence of these polymorphisms in ethnic groups in the North Caucasus.
Keywords: pharmacogenetics, ethnics, CYP2C8, PTGS-1, PTGS-2, non-steroidal anti-inflammatory drugs
2. Ghlichloo I, Gerriets V. Nonsteroidal Anti-inflammatory Drugs (NSAIDs). 2021. Available at: https://www.ncbi.nlm.nih.gov/books/NBK547742/ Accessed: 04.05.2021.
3. Wongrakpanich S, Wongrakpanich A, Melhado K, Rangaswami J. A Comprehensive Review of Non-Steroidal Anti-Inflammatory Drug Use in The Elderly. Aging Dis. 2018;9(1):143-50. DOI:10.14336/AD.2017.0306
4. Каратеев А.Е., Насонов Е.Л., Ивашкин В.Т., и др. Рациональное использование нестероидных противовоспалительных препаратов. Клинические рекомендации. Научно-практическая ревматология. 2018;56:1-29 [Karateev AE, Nasonov EL, Ivashkin VT, et al. Rational use of nonsteroidal anti-inflammatory drugs. Clinical guidelines. Rheumatology Science and Practice. 2018;56:1-29 (in Russian)]. DOI:10.14412/1995-4484-2018-1-29
5. Agúndez JA, García-Martín E, Martínez C. Genetically based impairment in CYP2C8- and CYP2C9-dependent NSAID metabolism as a risk factor for gastrointestinal bleeding: is a combination of pharmacogenomics and metabolomics required to improve personalized medicine? Expert Opin Drug Metab Toxicol. 2009;5(6):607-20. DOI:10.1517/17425250902970998
6. Zhou SF, Zhou ZW, Huang M. Polymorphisms of human cytochrome P450 2C9 and the functional relevance. Toxicology. 2010;278(2):165‑88. DOI:10.1016/j.tox.2009.08.013
7. Theken KN, Lee CR, Gong L, et al. Clinical Pharmacogenetics Implementation Consortium Guideline (CPIC) for CYP2C9 and Nonsteroidal Anti-Inflammatory Drugs. Clin Pharmacol Ther. 2020;108(2):191-200. DOI:10.1002/cpt.1830
8. Tracy TS, Marra C, Wrighton SA, et al. Involvement of multiple cytochrome P450 isoforms in naproxen O-demethylation. Eur J Clin Pharmacol. 1997;52(4):293-8. DOI:10.1007/s002280050293
9. Davies NM, Anderson KE. Clinical pharmacokinetics of naproxen. Clin Pharmacokinet. 1997;32(4):268-93.
DOI:10.2165/00003088-199732040-00002
10. Zajic SC, Jarvis JP, Zhang P, et al. Individuals with CYP2C8 and CYP2C9 reduced metabolism haplotypes self-adjusted ibuprofen dose in the Coriell Personalized Medicine Collaborative. Pharmacogenet Genomics. 2019;29(3):49-57. DOI:10.1097/FPC.0000000000000364
11. Karaźniewicz-Łada M, Luczak M, Główka F. Pharmacokinetic studies of enantiomers of ibuprofen and its chiral metabolites in humans with different variants of genes coding CYP2C8 and CYP2C9 isoenzymes. Xenobiotica. 2009;39(6):476-85. DOI:10.1080/00498250902862705
12. López-Rodríguez R, Novalbos J, Gallego-Sandín S, et al. Influence of CYP2C8 and CYP2C9 polymorphisms on pharmacokinetic and pharmacodynamic parameters of racemic and enantiomeric forms of ibuprofen in healthy volunteers. Pharmacol Res. 2008;58(1):77-84. DOI:10.1016/j.phrs.2008.07.004
13. García-Martín E, Martínez C, Tabarés B, et al. Interindividual variability in ibuprofen pharmacokinetics is related to interaction of cytochrome P450 2C8 and 2C9 amino acid polymorphisms. Clin Pharmacol Ther. 2004;76(2):119-27. DOI:10.1016/j.clpt.2004.04.006
14. Kirchheiner J, Meineke I, Freytag G, et al. Enantiospecific effects of cytochrome P450 2C9 amino acid variants on ibuprofen pharmacokinetics and on the inhibition of cyclooxygenases 1 and 2. Clin Pharmacol Ther. 2002;72(1):62-75. DOI:10.1067/mcp.2002.125726
15. Martínez C, García-Martín E, Blanco G, et al. The effect of the cytochrome P450 CYP2C8 polymorphism on the disposition of (R)-ibuprofen enantiomer in healthy subjects. Br J Clin Pharmacol. 2005;59(1):62-9. DOI:10.1111/j.1365-2125.2004.02183.x
16. Dorado P, Cavaco I, Cáceres MC, et al. A. Relationship between CYP2C8 genotypes and diclofenac 5-hydroxylation in healthy Spanish volunteers. Eur J Clin Pharmacol. 2008;64(10):967-70.
DOI:10.1007/s00228-008-0508-4
17. Lazarska KE, Dekker SJ, Vermeulen NPE, Commandeur JNM. Effect of UGT2B7*2 and CYP2C8*4 polymorphisms on diclofenac metabolism. Toxicol Lett. 2018;284:70-8. DOI:10.1016/j.toxlet.2017.11.038
18. Daly AK, Aithal GP, Leathart JB, et al. Genetic susceptibility to diclofenac-induced hepatotoxicity: contribution of UGT2B7, CYP2C8, and ABCC2 genotypes. Gastroenterology. 2007;132(1):272-81. DOI:10.1053/j.gastro.2006.11.023
19. Cao L, Zhang Z, Sun W, et al. Impacts of COX-1 gene polymorphisms on vascular outcomes in patients with ischemic stroke and treated with aspirin. Gene. 2014;546(2):172-6. DOI:10.1016/j.gene.2014.06.023
20. Sharma V, Kaul S, Al-Hazzani A, et al. Association of COX-2 rs20417 with aspirin resistance. J Thromb Thrombolysis. 2013;35(1):95-9. DOI:10.1007/s11239-012-0777-8
21. Lee YS, Kim H, Wu TX, et al. Genetically mediated interindividual variation in analgesic responses to cyclooxygenase inhibitory drugs. Clin Pharmacol Ther. 2006;79(5):407-18. DOI:10.1016/j.clpt.2006.01.013
22. Caciagli L, Bulayeva K, Bulayev O, et al. The key role of patrilineal inheritance in shaping the genetic variation of Dagestan highlanders. J Hum Genet. 2009;54(12):689-94. DOI:10.1038/jhg.2009.94
23. Yunusbayev B, Metspalu M, Järve M, et al. The Caucasus as an asymmetric semipermeable barrier to ancient human migrations. Mol Biol Evol. 2012;29(1):359-65. DOI:10.1093/molbev/msr221
24. Mirzaev KB, Fedorinov DS, Ivashchenko DV, Sychev DA. ADME pharmacogenetics: future outlook for Russia. Pharmacogenomics. 2019;20(11):847-65. DOI:10.2217/pgs-2019-0013
25. Ромодановский Д.П., Хапаев Б.А., Игнатьев И.В., и др. Частоты «медленных» аллельных вариантов генов, кодирующих изоферменты цитохрома Р450 CYP2D6, CYP2C19, CYP2C9 у карачаевцев и черкесов. Биомедицина. 2010;1(2):33-7 [Romodanovskij DP, Hapaev BA, Ignatev IV, et al. Frequencies of “slow” allelic variants of genes encoding cytochrome P450 isoenzymes CYP2D6, CYP2C19, CYP2C9 in Karachais and Circassians. Biomedicine. 2010;1(2):33-7 (in Russian)].
26. Батурин В.А., Царукян А.А., Колодийчук Е.В. Исследование полиморфизма гена CYP2C9 в этнических группах населения Ставропольского края. Медицинский вестник Северного Кавказа. 2014;9(1):45-8 [Baturin VA, Carukyan AA, Kolodijchuk EV. Study of CYP2C9 gene polymorphism in ethnic groups of Stavropol Krai. Medical Bulletin of the North Caucasus. 2014;9(1):45-8 (in Russian)]. DOI:10.14300/mnnc.2014.09013
27. Sychev DA, Abdullaev SP, Mirzaev KB, et al. Genetic determinants of dabigatran safety (CES1 gene rs2244613 polymorphism) in the Russian population: multi-ethnic analysis. Mol Biol Rep. 2019;46(3):2761-69. DOI:10.1007/s11033-019-04722-w
28. Mirzaev KB, Sychev DA, Ryzhikova KA, et al. Genetic Polymorphisms of Cytochrome P450 Enzymes and Transport Proteins in a Russian Population and Three Ethnic Groups of Dagestan. Genet Test Mol Biomarkers. 2017;21(12):747-53. DOI:10.1089/gtmb.2017.0036
29. Tang H, Quertermous T, Rodriguez B, et al. Genetic structure, self-identified race/ethnicity, and confounding in case-control association studies. Am J Hum Genet. 2005;76(2):268-75. DOI:10.1086/427888
30. The ALlele FREquency Database. Available at: https://alfred.med.yale.edu/alfred/index.asp. Accessed: 10.05.2021.
31. GnomAD Exome. Available at: https://gnomad.broadinstitute.org/ Accessed: 10.05.2021.
32. Karafet TM, Bulayeva KB, Bulayev OA, et al. Extensive genome-wide autozygosity in the population isolates of Daghestan. Eur J Hum Genet. 2015;23(10):1405-12. DOI:10.1038/ejhg.2014.299
________________________________________________
1. Onder G, Pellicciotti F, Gambassi G, Bernabei R. NSAID-related psychiatric adverse events: who is at risk? Drugs. 2004;64(23):2619‑27. DOI:10.2165/00003495-200464230-00001
2. Ghlichloo I, Gerriets V. Nonsteroidal Anti-inflammatory Drugs (NSAIDs). 2021. Available at: https://www.ncbi.nlm.nih.gov/books/NBK547742/ Accessed: 04.05.2021.
3. Wongrakpanich S, Wongrakpanich A, Melhado K, Rangaswami J. A Comprehensive Review of Non-Steroidal Anti-Inflammatory Drug Use in The Elderly. Aging Dis. 2018;9(1):143-50. DOI:10.14336/AD.2017.0306
4. Karateev AE, Nasonov EL, Ivashkin VT, et al. Rational use of nonsteroidal anti-inflammatory drugs. Clinical guidelines. Rheumatology Science and Practice. 2018;56:1-29 (in Russian). DOI:10.14412/1995-4484-2018-1-29
5. Agúndez JA, García-Martín E, Martínez C. Genetically based impairment in CYP2C8- and CYP2C9-dependent NSAID metabolism as a risk factor for gastrointestinal bleeding: is a combination of pharmacogenomics and metabolomics required to improve personalized medicine? Expert Opin Drug Metab Toxicol. 2009;5(6):607-20. DOI:10.1517/17425250902970998
6. Zhou SF, Zhou ZW, Huang M. Polymorphisms of human cytochrome P450 2C9 and the functional relevance. Toxicology. 2010;278(2):165‑88. DOI:10.1016/j.tox.2009.08.013
7. Theken KN, Lee CR, Gong L, et al. Clinical Pharmacogenetics Implementation Consortium Guideline (CPIC) for CYP2C9 and Nonsteroidal Anti-Inflammatory Drugs. Clin Pharmacol Ther. 2020;108(2):191-200. DOI:10.1002/cpt.1830
8. Tracy TS, Marra C, Wrighton SA, et al. Involvement of multiple cytochrome P450 isoforms in naproxen O-demethylation. Eur J Clin Pharmacol. 1997;52(4):293-8. DOI:10.1007/s002280050293
9. Davies NM, Anderson KE. Clinical pharmacokinetics of naproxen. Clin Pharmacokinet. 1997;32(4):268-93.
DOI:10.2165/00003088-199732040-00002
10. Zajic SC, Jarvis JP, Zhang P, et al. Individuals with CYP2C8 and CYP2C9 reduced metabolism haplotypes self-adjusted ibuprofen dose in the Coriell Personalized Medicine Collaborative. Pharmacogenet Genomics. 2019;29(3):49-57. DOI:10.1097/FPC.0000000000000364
11. Karaźniewicz-Łada M, Luczak M, Główka F. Pharmacokinetic studies of enantiomers of ibuprofen and its chiral metabolites in humans with different variants of genes coding CYP2C8 and CYP2C9 isoenzymes. Xenobiotica. 2009;39(6):476-85. DOI:10.1080/00498250902862705
12. López-Rodríguez R, Novalbos J, Gallego-Sandín S, et al. Influence of CYP2C8 and CYP2C9 polymorphisms on pharmacokinetic and pharmacodynamic parameters of racemic and enantiomeric forms of ibuprofen in healthy volunteers. Pharmacol Res. 2008;58(1):77-84. DOI:10.1016/j.phrs.2008.07.004
13. García-Martín E, Martínez C, Tabarés B, et al. Interindividual variability in ibuprofen pharmacokinetics is related to interaction of cytochrome P450 2C8 and 2C9 amino acid polymorphisms. Clin Pharmacol Ther. 2004;76(2):119-27. DOI:10.1016/j.clpt.2004.04.006
14. Kirchheiner J, Meineke I, Freytag G, et al. Enantiospecific effects of cytochrome P450 2C9 amino acid variants on ibuprofen pharmacokinetics and on the inhibition of cyclooxygenases 1 and 2. Clin Pharmacol Ther. 2002;72(1):62-75. DOI:10.1067/mcp.2002.125726
15. Martínez C, García-Martín E, Blanco G, et al. The effect of the cytochrome P450 CYP2C8 polymorphism on the disposition of (R)-ibuprofen enantiomer in healthy subjects. Br J Clin Pharmacol. 2005;59(1):62-9. DOI:10.1111/j.1365-2125.2004.02183.x
16. Dorado P, Cavaco I, Cáceres MC, et al. A. Relationship between CYP2C8 genotypes and diclofenac 5-hydroxylation in healthy Spanish volunteers. Eur J Clin Pharmacol. 2008;64(10):967-70.
DOI:10.1007/s00228-008-0508-4
17. Lazarska KE, Dekker SJ, Vermeulen NPE, Commandeur JNM. Effect of UGT2B7*2 and CYP2C8*4 polymorphisms on diclofenac metabolism. Toxicol Lett. 2018;284:70-8. DOI:10.1016/j.toxlet.2017.11.038
18. Daly AK, Aithal GP, Leathart JB, et al. Genetic susceptibility to diclofenac-induced hepatotoxicity: contribution of UGT2B7, CYP2C8, and ABCC2 genotypes. Gastroenterology. 2007;132(1):272-81. DOI:10.1053/j.gastro.2006.11.023
19. Cao L, Zhang Z, Sun W, et al. Impacts of COX-1 gene polymorphisms on vascular outcomes in patients with ischemic stroke and treated with aspirin. Gene. 2014;546(2):172-6. DOI:10.1016/j.gene.2014.06.023
20. Sharma V, Kaul S, Al-Hazzani A, et al. Association of COX-2 rs20417 with aspirin resistance. J Thromb Thrombolysis. 2013;35(1):95-9. DOI:10.1007/s11239-012-0777-8
21. Lee YS, Kim H, Wu TX, et al. Genetically mediated interindividual variation in analgesic responses to cyclooxygenase inhibitory drugs. Clin Pharmacol Ther. 2006;79(5):407-18. DOI:10.1016/j.clpt.2006.01.013
22. Caciagli L, Bulayeva K, Bulayev O, et al. The key role of patrilineal inheritance in shaping the genetic variation of Dagestan highlanders. J Hum Genet. 2009;54(12):689-94. DOI:10.1038/jhg.2009.94
23. Yunusbayev B, Metspalu M, Järve M, et al. The Caucasus as an asymmetric semipermeable barrier to ancient human migrations. Mol Biol Evol. 2012;29(1):359-65. DOI:10.1093/molbev/msr221
24. Mirzaev KB, Fedorinov DS, Ivashchenko DV, Sychev DA. ADME pharmacogenetics: future outlook for Russia. Pharmacogenomics. 2019;20(11):847-65. DOI:10.2217/pgs-2019-0013
25. Romodanovskij DP, Hapaev BA, Ignatev IV, et al. Frequencies of “slow” allelic variants of genes encoding cytochrome P450 isoenzymes CYP2D6, CYP2C19, CYP2C9 in Karachais and Circassians. Biomedicine. 2010;1(2):33-7 (in Russian).
26. Baturin VA, Carukyan AA, Kolodijchuk EV. Study of CYP2C9 gene polymorphism in ethnic groups of Stavropol Krai. Medical Bulletin of the North Caucasus. 2014;9(1):45-8 (in Russian). DOI:10.14300/mnnc.2014.09013
27. Sychev DA, Abdullaev SP, Mirzaev KB, et al. Genetic determinants of dabigatran safety (CES1 gene rs2244613 polymorphism) in the Russian population: multi-ethnic analysis. Mol Biol Rep. 2019;46(3):2761-69. DOI:10.1007/s11033-019-04722-w
28. Mirzaev KB, Sychev DA, Ryzhikova KA, et al. Genetic Polymorphisms of Cytochrome P450 Enzymes and Transport Proteins in a Russian Population and Three Ethnic Groups of Dagestan. Genet Test Mol Biomarkers. 2017;21(12):747-53. DOI:10.1089/gtmb.2017.0036
29. Tang H, Quertermous T, Rodriguez B, et al. Genetic structure, self-identified race/ethnicity, and confounding in case-control association studies. Am J Hum Genet. 2005;76(2):268-75. DOI:10.1086/427888
30. The ALlele FREquency Database. Available at: https://alfred.med.yale.edu/alfred/index.asp. Accessed: 10.05.2021.
31. GnomAD Exome. Available at: https://gnomad.broadinstitute.org/ Accessed: 10.05.2021.
32. Karafet TM, Bulayeva KB, Bulayev OA, et al. Extensive genome-wide autozygosity in the population isolates of Daghestan. Eur J Hum Genet. 2015;23(10):1405-12. DOI:10.1038/ejhg.2014.299
1 ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России, Москва, Россия;
2 ФГБОУ ВО «Дагестанский государственный медицинский университет» Минздрава России, Махачкала, Россия;
3 ГБУ Республики Дагестан «Республиканский кардиологический диспансер», Махачкала, Россия
*abdullaevsp@gmail.com
________________________________________________
Sherzod P. Abdullaev*1, Natalia P. Denisenko1, Karin B. Mirzaev1, Gregorii N. Shuev1, Zhannet A. Sozaeva1, Anastasia A. Kachanova1, Suleiman N. Mammaev2, Elvira A. Kasaeva2, Danial M. Gafurov3, Elena A. Grishina1, Dmitry A. Sychev1
1 Russian Medical Academy of Continuous Professional Education, Moscow, Russia;
2 Dagestan State Medical University, Makhachkala, Russia;
3 Republican Cardiological Dispensary, Makhachkala, Russia
*abdullaevsp@gmail.com