Фармакотерапия острых респираторных инфекций, вызванных вирусами гриппа
________________________________________________
Zyryanov S.K., Butranova O.I., Gaidai D.S., Kryshen K.L. Pharmacotherapy for acute respiratory infections caused by influenza viruses: current possibilities. Terapevticheskii Arkhiv (Ter. Arkh.). 2021; 93 (1): 114–124. DOI: 10.26442/00403660.2021.01.200551
Материалы доступны только для специалистов сферы здравоохранения. Авторизуйтесь или зарегистрируйтесь.
Ключевые слова: вирус гриппа, COVID-19, ингибиторы нейраминидазы, балоксавир, фавипиравир, умифеновир, ингавирин, энисамия йодид
________________________________________________
Routinely the influenza virus significantly contributes to the formation of the annual incidence of acute respiratory infections, with a peak in winter season. The high level of mutagenic potential of influenza viruses is a standard factor determining the complexity of the rational choice of pharmacotherapy. The upcoming epidemiological season 2020–2021 brings additional challenges for health care practitioners mediated by the widespread prevalence in the human population of a new infection caused by the SARS-CoV-2 virus affecting the respiratory system among many organs and systems. An adequate choice of pharmacotherapy tools should be based on high efficiency and safety of drugs, with a possible reduction in such negative factors as polypharmacy. This review includes comparative pharmacological characteristics of drugs with activity against RNA viruses, along with parameters of their clinical efficacy.
Keywords: influenza virus, COVID-19, neuraminidase inhibitors, baloxavir, favipiravir, umifenovir, ingavirin, enisamium iodide
2. Dawood FS, Chung JR, Kim SS, et al. Interim Estimates of 2019–20 Seasonal Influenza Vaccine Effectiveness – United States, February 2020. MMWR Morb Mortal Wkly Rep 2020;69:177-82. doi: 10.15585/mmwr.mm6907a1
3. Duwe S. Influenza viruses – antiviral therapy and resistance. GMS Infect Dis. 2017;5:Doc04. doi: 10.3205/id000030
4. Esposito S, Molteni CG, Colombo C, et al. Oseltamivir-induced resistant pandemic A/H1N1 influenza virus in a child with cystic fibrosis and Pseudomonas aeruginosa infection. J Clin Virol. 2010;48(1):62-5. doi: 10.1016/j.jcv.2010.02.019
5. Hurt AC, Ernest J, Deng YM, et al. Emergence and spread of oseltamivir-resistant A(H1N1) influenza viruses in Oceania, South East Asia and South Africa. Antiviral Res. 2009;83(1):90-3. doi: 10.1016/j.antiviral.2009.03.003
6. Guo XJ, Thomas PG. New fronts emerge in the influenza cytokine storm. Semin Immunopathol. 2017;39(5):541-50. doi: 10.1007/s00281-017-0636-y
7. Killip MJ, Fodor E, Randall RE. Influenza virus activation of the interferon system. Virus Res. 2015;209:11-22. doi: 10.1016/j.virusres.2015.02.003
8. La Gruta NL, Kedzierska K, Stambas J, Doherty PC. A question of self-preservation: immunopathology in influenza virus infection. Immunol Cell Biol. 2007;85(2):85-92. doi: 10.1038/sj.icb.7100026
9. Oshansky CM, Gartland AJ, Wong SS, et al. Mucosal immune responses predict clinical outcomes during influenza infection independently of age and viral load. Am J Respir Crit Care Med. 2014;189(4):449-62. doi: 10.1164/rccm.201309-1616OC
10. Dienz O, Rud J, Eaton S, et al. Essential role of IL-6 in protection against H1N1 influenza virus by promoting neutrophil survival in the lung. Mucosal Immunol. 2012;5:258-66. doi: 10.1038/mi.2012.2
11. Merad M, Martin JC. Pathological inflammation in patients with
COVID-19: a key role for monocytes and macrophages. Nat Rev Immunol. 2020;20:355-62. doi: 10.1038/s41577-020-0331-4
12. Xu X, Han M, Li T, et al. Effective treatment of severe COVID-19 patients with tocilizumab. Proc Natl Acad Sci USA. 2020;117(20):10970-5. doi: 10.1073/pnas.2005615117
13. Gritti G, Raimondi F, Ripamonti D, et al. Use of siltuximab in patients with COVID-19 pneumonia requiring ventilatory support. Preprint at medRxiv. 2020. doi: 10.1101/2020.04.01.20048561
14. Toots M, Plemper RK. Next-generation direct-acting influenza therapeutics. Transl Res. 2020;220:33-42. doi: 10.1016/j.trsl.2020.01.005
15. Davidson S. Treating Influenza Infection, From Now and Into the Future. Front Immunol. 2018;9:1946. doi: 10.3389/fimmu.2018.01946
16. Wang X, Cao R, Zhang H, et al. The anti-influenza virus drug, arbidol is an efficient inhibitor of SARS-CoV-2 in vitro. Cell Discov. 2020;6:28. doi: 10.1038/s41421-020-0169-8
17. Gibiansky L, Ravva P, Parrott NJ, et al. Mechanistic Population Pharmacokinetic Model of Oseltamivir and Oseltamivir Carboxylate Accounting for Physiological Changes to Predict Exposures in Neonates and Infants. Clin Pharmacol Ther. 2020;108(1):126-35. doi: 10.1002/cpt.1791
18. Malosh R, Martin E, Heikkinen T, et al. Efficacy and Safety of Oseltamivir in Children: Systematic Review and Individual Patient Data Meta-analysis of Randomized Controlled Trials. Clin Infect Dis. 2018;66(10):1492-500. doi: 10.1093/cid/cix1040
19. Chambers CD, Johnson D, Xu R, et al.; OTIS Collaborative Research Group. Oseltamivir use in pregnancy: Risk of birth defects, preterm delivery, and small for gestational age infants. Birth Defects Res. 2019;111(19):1487-93. doi: 10.1002/bdr2.1566
20. Jefferson T, Jones M, Doshi P, et al. Oseltamivir for influenza in adults and children: systematic review of clinical study reports and summary of regulatory comments. BMJ. 2014;348:g2545. doi: 10.1136/bmj.g2545
21. Ison MG. Clinical use of approved influenza antivirals: therapy and prophylaxis. Influenza Other Respir Viruses. 2012;7:7-13. doi: 10.1111/irv.12046
22. Hama R, Bennett CL. The mechanisms of sudden-onset type adverse reactions to oseltamivir. Acta Neurol Scand. 2017;135(2):148-60. doi: 10.1111/ane.12629
23. Nakamura K, Schwartz BS, Lindegårdh N, et al. Possible neuropsychiatric reaction to high-dose oseltamivir during acute 2009 H1N1 influenza A infection. Clin Infect Dis. 2010;50(7):e47-9. doi: 10.1086/651166
24. Muraki K, Hatano N, Suzuki H, et al. Oseltamivir blocks human neuronal nicotinic acetylcholine receptor-mediated currents. Basic Clin Pharmacol Toxicol. 2015;116(2):87-95. doi: 10.1111/bcpt.12290
25. Suzuki M, Masuda Y. Effect of a neuraminidase inhibitor (oseltamivir) on mouse jump-down behavior via stimulation of dopamine receptors. Biomed Res. 2008;29(5):233-8. doi: 10.2220/biomedres.29.233
26. Han N, Oh JM, Kim IW. Assessment of adverse events related to anti-influenza neuraminidase inhibitors using the FDA adverse event reporting system and online patient reviews. Sci Rep. 2020;10(1):3116. doi: 10.1038/s41598-020-60068-5
27. Hurt AC. The epidemiology and spread of drug resistant human influenza viruses. Curr Opin Virol. 2014;8:22-9. doi: 10.1016/j.coviro.2014.04.009
28. Kim HM, Lee N, Kim MS, et al. Characterization of neuraminidase inhibitor-resistant influenza virus isolates from immunocompromised patients in the Republic of Korea. Virol J. 2020;17(1):94. doi: 10.1186/s12985-020-01375-1
29. Li TC, Chan MC, Lee N. Clinical Implications of Antiviral Resistance in Influenza. Viruses. 2015;7(9):4929-44. doi: 10.3390/v7092850
30. Gillman A, Muradrasoli S, Söderström H, et al. Resistance mutation R292K is induced in influenza A(H6N2) virus by exposure of infected mallards to low levels of oseltamivir. PLoS One. 2013;8(8):e71230. doi: 10.1371/journal.pone.0071230
31. Guan WJ, Ni ZY, Hu Y, et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med. 2020;382(18):1708-20. doi: 10.1056/NEJMoa2002032
32. Cass LM, Brown J, Pickford M, et al. Pharmacoscintigraphic evaluation of lung deposition of inhaled zanamivir in healthy volunteers. Clin Pharmacokinet. 1999;36(Suppl. 1):21-31. doi: 10.2165/00003088-199936001-00003
33. Shelton MJ, Lovern M, Ng-Cashin J, et al. Zanamivir pharmacokinetics and pulmonary penetration into epithelial lining fluid following intravenous or oral inhaled administration to healthy adult subjects. Antimicrob Agents Chemother. 2011;55(11):5178-84. doi: 10.1128/AAC.00703-11
34. Torti C, Mazzitelli M, Longhini F, et al. Clinical outcomes of patients treated with intravenous zanamivir for severe influenza A(H1N1)pdm09 infection: a case report series. BMC Infect Dis. 2019;19(1):858. doi: 10.1186/s12879-019-4530-1
35. Heneghan CJ, Onakpoya I, Thompson M, et al. Zanamivir for influenza in adults and children: systematic review of clinical study reports and summary of regulatory comments. BMJ. 2014;348:g2547. doi: 10.1136/bmj.g2547
36. Abed Y, Boivin G. A Review of Clinical Influenza A and B Infections With Reduced Susceptibility to Both Oseltamivir and Zanamivir. Open Forum Infect Dis. 2017;4(3):ofx105. doi: 10.1093/ofid/ofx105
37. Alame MM, Massaad E, Zaraket H. Peramivir: A Novel Intravenous Neuraminidase Inhibitor for Treatment of Acute Influenza Infections. Front Microbiol. 2016;7:450. doi: 10.3389/fmicb.2016.00450
38. Bantia S, Arnold CS, Parker CD, et al. Anti-influenza virus activity of peramivir in mice with single intramuscular injection. Antiviral Res. 2006;69:39-45. doi: 10.1016/j.antiviral.2005.10.002
39. Ikematsu H, Kawai N, Iwaki N, Kashiwagi S. In vitro neuraminidase inhibitory activity of four neuraminidase inhibitors against clinical isolates of influenza virus in the Japanese 2012–2013 season. J Infect Chemother. 2015;21(1):39-42. doi: 10.1016/j.jiac.2014.08.030
40. Saisho Y, Ishibashi T, Fukuyama H, et al. Pharmacokinetics and safety of intravenous peramivir, neuraminidase inhibitor of influenza virus, in healthy Japanese subjects. Antivir Ther. 2017;22(4):313-23. doi: 10.3851/IMP3104
41. Lee J, Park JH, Jwa H, Kim YH. Comparison of Efficacy of Intravenous Peramivir and Oral Oseltamivir for the Treatment of Influenza: Systematic Review and Meta-Analysis. Yonsei Med J. 2017;58(4):778-85. doi: 10.3349/ymj.2017.58.4.778
42. Chen JY, Wei SK, Lai CC, et al. A Meta-Analysis Comparing the Efficacy and Safety of Peramivir with Other Neuraminidase Inhibitors for Influenza Treatment. Medicina (Kaunas). 2020;56(2):63. doi: 10.3390/medicina56020063
43. Yamashita M. Laninamivir and its prodrug, CS-8958: long-acting neuraminidase inhibitors for the treatment of influenza. Antivir Chem Chemother. 2010;21(2):71-84. doi: 10.3851/IMP1688
44. Ikematsu H, Kawai N, Iwaki N, Kashiwagi S. The duration of fever and other symptoms after the initiation of laninamivir octanoate hydrate in the Japanese 2011–2012 influenza season. J Infect Chemother. 2014;20(2):81-5. doi: 10.1016/j.jiac.2013.07.013
45. Yoshihara K, Ishizuka H, Kubo Y. Population pharmacokinetics of laninamivir and its prodrug laninamivir octanoate in healthy subjects and in adult and pediatric patients with influenza virus infection. Drug Metab Pharmacokinet. 2013;28(5):416-26. doi: 10.2133/dmpk.dmpk-12-rg-115
46. Ishizuka H, Toyama K, Yoshiba S, et al. Intrapulmonary distribution and pharmacokinetics of laninamivir, a neuraminidase inhibitor, after a single inhaled administration of its prodrug, laninamivir octanoate, in healthy volunteers. Antimicrob Agents Chemother. 2012;56(7):3873-8. doi: 10.1128/AAC.06456-11
47. Minakami H, Kubo T, Nakai A, et al. Pregnancy outcomes of women exposed to laninamivir during pregnancy. Pharmacoepidemiol Drug Saf. 2014;23(10):1084-7. doi: 10.1002/pds.3684
48. Tochino Y, Yoshii N, Fujioka M, et al. Effect of four neuraminidase inhibitors on influenza in Osaka, Japan: An eight-year survey. J Gen Fam Med. 2019;21(1):18-23. doi: 10.1002/jgf2.286
49. Koseki N, Kaiho M, Kikuta H, et al. Comparison of the clinical effectiveness of zanamivir and laninamivir octanoate for children with influenza A(H3N2) and B in the 2011–2012 season. Influenza Other Respir Viruses. 2014;8(2):151-8. doi: 10.1111/irv.12147
50. Higashiguchi M, Matsumoto T, Fujii T. A meta-analysis of laninamivir octanoate for treatment and prophylaxis of influenza. Antivir Ther. 2018;23(2):157-65. doi: 10.3851/IMP3189
51. McKimm-Breschkin JL, Barrett S. Neuraminidase mutations conferring resistance to laninamivir lead to faster drug binding and dissociation. Antiviral Res. 2015;114:62-6. doi: 10.1016/j.antiviral.2014.12.004
52. Ng KE. Xofluza (Baloxavir Marboxil) for the Treatment Of Acute Uncomplicated Influenza. P T. 2019;44(1):9-11. PMID: 30675086
53. Taieb V, Ikeoka H, Ma FF, et al. A network meta-analysis of the efficacy and safety of baloxavir marboxil versus neuraminidase inhibitors for the treatment of influenza in otherwise healthy patients. Curr Med Res Opin. 2019;35(8):1355-64. doi: 10.1080/03007995.2019.1584505
54. Yoshii N, Tochino Y, Fujioka M, et al. The Comparison of the Efficacy of Baloxavir and Neuraminidase Inhibitors for Patients with Influenza A in Clinical Practice. Intern Med. 2020;59(12):1509-13. doi: 10.2169/internalmedicine.4117-19
55. Baker J, Block SL, Matharu B, et al. Baloxavir Marboxil Single-dose Treatment in Influenza-infected Children: A Randomized, Double-blind, Active Controlled Phase 3 Safety and Efficacy Trial (miniSTONE-2). Pediatr Infect Dis J. 2020;39(8):700-5. doi: 10.1097/INF.0000000000002747
56. Takashita E, Daniels RS, Fujisaki S, et al. Global update on the susceptibilities of human influenza viruses to neuraminidase inhibitors and the cap-dependent endonuclease inhibitor baloxavir, 2017–2018. Antiviral Res. 2020;175:104718. doi: 10.1016/j.antiviral.2020.104718
57. Shiraki K, Daikoku T. Favipiravir, an anti-influenza drug against life-threatening RNA virus infections. Pharmacol Ther. 2020;209:107512. doi: 10.1016/j.pharmthera.2020.107512
58. Du YX, Chen XP. Favipiravir: Pharmacokinetics and Concerns About Clinical Trials for 2019-nCoV Infection. Clin Pharmacol Ther. 2020;108(2):242-7. doi: 10.1002/cpt.1844
59. Furuta Y, Komeno T, Nakamura T. Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase. Proc Jpn Acad Ser B Phys Biol Sci. 2017;93(7):449-63. doi: 10.2183/pjab.93.027
60. Wang Y, Fan G, Salam A, et al. Comparative Effectiveness of Combined Favipiravir and Oseltamivir Therapy Versus Oseltamivir Monotherapy in Critically Ill Patients With Influenza Virus Infection. J Infect Dis. 2020;221(10):1688-98. doi: 10.1093/infdis/jiz656
61. Pilkington V, Pepperrell T, Hill A. A review of the safety of favipiravir – a potential treatment in the COVID-19 pandemic? J Virus Erad. 2020;6(2):45-51. doi: 10.1016/S2055-6640(20)30016-9
62. Takashita E, Ejima M, Ogawa R, et al. Antiviral susceptibility of influenza viruses isolated from patients pre- and post-administration of favipiravir. Antiviral Res. 2016;132:170-7. doi: 10.1016/j.antiviral.2016.06.007
63. Li H, Yang L, Liu FF, et al. Overview of therapeutic drug research for COVID-19 in China. Acta Pharmacol Sin. 2020:1-8. doi: 10.1038/s41401-020-0438-y
64. Nittari G, Pallotta G, Amenta F, Tayebati SK. Current pharmacological treatments for SARS-COV-2: A narrative review. Eur J Pharmacol. 2020;882:173328. doi: 10.1016/j.ejphar.2020.173328
65. Available from: https://static-0.minzdrav.gov.ru/system/attachments/
attaches/000/052/550/original/%D0%9C%D0%A0_COVID-19_%28v9%29.pdf?1603788097
66. Kotey E, Lukosaityte D, Quaye O, et al. Current and Novel Approaches in Influenza Management. Vaccines (Basel). 2019;7(2):53. doi: 10.3390/vaccines7020053
67. Blaising J, Polyak SJ, Pécheur EI. Arbidol as a broad-spectrum antiviral: an update. Antiviral Res. 2014;107:84-94. doi: 10.1016/j.antiviral.2014.04.006
68. Одноворов А.И., Гребенникова Т.В., Плетенева Т.В. Специфическая терапия гриппа: современное состояние и перспективы (обзор). Разработка и регистрация лекарственных средств. 2020;9(1):83-91 [Odnovorov AI, Grebennikova TV, Pleteneva TV. Specific Influenza Therapy: Current State and Prospects (Review). Drug Development & Registration. 2020;9(1):83-91 (In Russ.)]. doi: 10.33380/2305-2066-2020-9-1-83-91
69. Silin DS, Lyubomska OV, Ershov FI, et al. Synthetic and natural immunomodulators acting as interferon inducers. Curr Pharm Des. 2009;15(11):1238-47. doi: 10.2174/138161209787846847
70. Proskurnina EV, Izmailov DY, Sozarukova MM, et al. Antioxidant Potential of Antiviral Drug Umifenovir. Molecules. 2020;25(7):1577. doi: 10.3390/molecules25071577
71. Deng P, Zhong D, Yu K, et al. Pharmacokinetics, metabolism, and excretion of the antiviral drug arbidol in humans. Antimicrob Agents Chemother. 2013;57(4):1743-55. doi: 10.1128/AAC.02282-12
72. Шамшева О.В., Молочкова О.В. Спектр применения отечественного противовирусного препарата в педиатрии. Детские инфекции. 2015;14(4):26-30 [Shamsheva OV, Molochkova OV. The Range of Application of Domestic Antiviral Drug in Рediatrics. Children Infections. 2015;14(4):26-30 (In Russ.)]. doi: 10.22627/2072-8107-2015-14-4-26-30
73. Пшеничная Н.Ю., Булгакова В.А., Львов Н.И. и др. Клиническая эффективность умифеновира при гриппе и ОРВИ (исследование АРБИТР). Терапевтический архив. 2019;91(3):56-63 [Pshenichnaya NY, Bulgakova VA, Lvov NI, et al. Clinical efficacy of umifenovir in influenza and ARVI (study ARBITR). Terapevticheskii Arkhiv (Ter. Arkh.). 2019;91(3):56-63 (In Russ.)]. doi: 10.26442/00403660.2019.03.000127
74. Huang D, Yu H, Wang T, et al. Efficacy and safety of umifenovir
for coronavirus disease 2019 (COVID-19): A systematic review and meta-analysis. J Med Virol. 2020;10.1002/jmv.26256. doi: 10.1002/jmv.26256
75. Zarubaev VV, Garshinina AV, Kalinina NA, et al. Activity of Ingavirin (6-[2-(1H-Imidazol-4-yl)ethylamino]-5-oxo-hexanoic Acid) Against Human Respiratory Viruses in in Vivo Experiments. Pharmaceuticals (Basel). 2011;4(12):1518-34. doi: 10.3390/ph4121518
76. Ашахер Т., Крохин А., Кузнецова И. и др. Влияние препарата
Ингавирин® (имидазолилэтанамида пентандиовой кислоты) на интерфероновый статус клеток в условиях вирусной инфекции. Эпидемиология и инфекционные болезни. 2016;21(4):196-205
[Aschacher Т, Krokhin А, Kuznetsova I, et al. Effect of the antiviral drug Ingavirin® (imidazolyl ethanamide pentandioic acid) on the interferon status of cells under conditions of viral infection. Epidemiology and Infectious Diseases. 2016;21(4):196-205 (In Russ.)]. doi: 10.18821/1560-9529-2016-21-4-196-205
77. Соколова Т.М., Полосков В.В., Шувалов А.Н. и др. Сигнальные TLR/RLR-механизмы иммуномодулирующего действия препаратов ингавирин и тимоген. Российский биотерапевтический журнал. 2019;18(1):60-6 [Sokolova TM, Poloskov VV, Shuvalov AN, et al. Signaling TLR/RLR-mechanisms of immunomodulating action of ingavirin and thymogen preparations. Rus J Biother. 2019;18(1):60-6 (In Russ.)]. doi: 10.17650/1726-9784-2019-18-1-60-66
78. Nicholson EG, Munoz FM. A Review of Therapeutics in Clinical Development for Respiratory Syncytial Virus and Influenza in Children. Clin Ther. 2018;40(8):1268-81. doi: 10.1016/j.clinthera.2018.06.014
79. Дзюблик А.Я., Симонов С.С., Ячник В.А. Клиническая эффективность и безопасность противовирусного препарата Ингавирин в комплексном лечении больных с обострением бронхиальной астмы, ассоциированным с ОРВИ. Пульмонология. 2013;(6):43-50 [Dzyublik AY, Simonov SS, Yachnik VA. Clinical efficacy and safety of antiviral drug Ingavirin in patients with asthma exacerbations caused by an acute respiratory viral infection (ARVI). Pulmonologiya. 2013;(6):43-50 (In Russ.)]. doi: 10.18093/0869-0189-2013-0-6-765-775
80. Шульдяков А.А., Ляпина Е.П., Кузнецов В.И. и др. Клинико-эпидемиологическая эффективность противовирусного препарата Ингавирин®. Пульмонология. 2012;(4):62-9 [Shuldyakov AA, Lyapina EP, Kuznetsov VI, et al. Clinical and epidemiological efficacy of antiviral drug Ingavirin. Pulmonologiya. 2012;(4):62-9 (In Russ.)]. doi: 10.18093/0869-0189-2012-0-4-62-69
81. Haltner-Ukomadu E, Gureyeva S, Burmaka O, et al. In Vitro Bioavailability Study of an Antiviral Compound Enisamium Iodide. Sci Pharm. 2018;86(1):3. doi: 10.3390/scipharm86010003
82. Walker AP, Fan H, Keown JR, et al. Enisamium is a small molecule inhibitor of the influenza A virus and SARS-CoV-2 RNA polymerases. Preprint. bioRxiv. 2020;2020.04.21.053017. doi: 10.1101/2020.04.21.053017
83. Cocking D, Cinatl J, Boltz DA, et al. Antiviral effect of a derivative of isonicotinic acid enisamium iodide (FAV00A) against influenza virus. Acta Virol. 2018;62(2):191-5. doi: 10.4149/av_2018_211
84. Boltz D, Peng X, Muzzio M, et al. Activity of enisamium, an isonicotinic acid derivative, against influenza viruses in differentiated normal human bronchial epithelial cells. Antivir Chem Chemother. 2018;26:2040206618811416. doi: 10.1177/2040206618811416
85. Пшеничная Н.Ю., Булгакова В.А., Волчкова Е.В. Обзор текущих и перспективных направлений противовирусной терапии гриппа и острых респираторных вирусных инфекций в России. Терапевтический архив. 2019;91(11):105-9 [Pshenichnaya NY, Bulgakova VA, Volchkova EV, et al. Review of current and future directions of antiviral therapy of influenza and acute respiratory viral infections in Russia. Terapevticheskii Arkhiv (Ter. Arkh.). 2019;91(11):105-9 (In Russ.)]. doi: 10.26442/00403660.2019.11.000454
86. Zupanets I, Zhulai T, Shebeko S, et al. Histomorphological Study of a New Nasal Spray with Anti-inflammatory Properties Efficacy in Rabbits with Rhinosinusitis. Med Arch. 2020;74(1):8-13. doi: 10.5455/medarh.2020.74.8-13
87. Zhulai TS. The preclinical study of a new nasal spray with the anti-inflammatory properties: the effect on the leukotriene-induced inflammation. Clin Pharm. 2018;22(4):27-33. doi: 10.24959/cphj.18.1473
88. Лиознов Д.А., Карнаухова Е.Ю., Зубкова Т.Г., Шахланская Е.В. Оценка эффективности схемы лечения ОРВИ, включающей этиотропную (энисамия йодид) и симптоматическую терапию. Терапевтический архив. 2020;92(3):50-5 [Lioznov DA, Karnaukhova EJ, Zubkova TG, Shakhlanskaya EV. Evaluation of the effectiveness of ARVI treatment regimen including etiotropic (enisamium iodide) and symptomatic treatment. Terapevticheskii Arkhiv (Ter. Arkh.). 2020;92(3):50-5 (In Russ.)]. doi: 10.26442/00403660.2020.03.000572
89. Available from: https://www.cdc.gov/flu/professionals/antivirals/
summary-clinicians.htm
90. Available from: https://static-0.rosminzdrav.ru/system/attachments/
attaches/000/050/033/original/RESP_REC_V2.pdf
91. Available from: https://clinline.ru/reestr-klinicheskih-issledovanij/
600-27.10.2020.html
________________________________________________
1. Lampejo T. Influenza and antiviral resistance: an overview. Eur J Clin Microbiol Infect Dis. 2020;39(7):1201-08. doi: 10.1007/s10096-020-03840-9
2. Dawood FS, Chung JR, Kim SS, et al. Interim Estimates of 2019–20 Seasonal Influenza Vaccine Effectiveness – United States, February 2020. MMWR Morb Mortal Wkly Rep 2020;69:177-82. doi: 10.15585/mmwr.mm6907a1
3. Duwe S. Influenza viruses – antiviral therapy and resistance. GMS Infect Dis. 2017;5:Doc04. doi: 10.3205/id000030
4. Esposito S, Molteni CG, Colombo C, et al. Oseltamivir-induced resistant pandemic A/H1N1 influenza virus in a child with cystic fibrosis and Pseudomonas aeruginosa infection. J Clin Virol. 2010;48(1):62-5. doi: 10.1016/j.jcv.2010.02.019
5. Hurt AC, Ernest J, Deng YM, et al. Emergence and spread of oseltamivir-resistant A(H1N1) influenza viruses in Oceania, South East Asia and South Africa. Antiviral Res. 2009;83(1):90-3. doi: 10.1016/j.antiviral.2009.03.003
6. Guo XJ, Thomas PG. New fronts emerge in the influenza cytokine storm. Semin Immunopathol. 2017;39(5):541-50. doi: 10.1007/s00281-017-0636-y
7. Killip MJ, Fodor E, Randall RE. Influenza virus activation of the interferon system. Virus Res. 2015;209:11-22. doi: 10.1016/j.virusres.2015.02.003
8. La Gruta NL, Kedzierska K, Stambas J, Doherty PC. A question of self-preservation: immunopathology in influenza virus infection. Immunol Cell Biol. 2007;85(2):85-92. doi: 10.1038/sj.icb.7100026
9. Oshansky CM, Gartland AJ, Wong SS, et al. Mucosal immune responses predict clinical outcomes during influenza infection independently of age and viral load. Am J Respir Crit Care Med. 2014;189(4):449-62. doi: 10.1164/rccm.201309-1616OC
10. Dienz O, Rud J, Eaton S, et al. Essential role of IL-6 in protection against H1N1 influenza virus by promoting neutrophil survival in the lung. Mucosal Immunol. 2012;5:258-66. doi: 10.1038/mi.2012.2
11. Merad M, Martin JC. Pathological inflammation in patients with
COVID-19: a key role for monocytes and macrophages. Nat Rev Immunol. 2020;20:355-62. doi: 10.1038/s41577-020-0331-4
12. Xu X, Han M, Li T, et al. Effective treatment of severe COVID-19 patients with tocilizumab. Proc Natl Acad Sci USA. 2020;117(20):10970-5. doi: 10.1073/pnas.2005615117
13. Gritti G, Raimondi F, Ripamonti D, et al. Use of siltuximab in patients with COVID-19 pneumonia requiring ventilatory support. Preprint at medRxiv. 2020. doi: 10.1101/2020.04.01.20048561
14. Toots M, Plemper RK. Next-generation direct-acting influenza therapeutics. Transl Res. 2020;220:33-42. doi: 10.1016/j.trsl.2020.01.005
15. Davidson S. Treating Influenza Infection, From Now and Into the Future. Front Immunol. 2018;9:1946. doi: 10.3389/fimmu.2018.01946
16. Wang X, Cao R, Zhang H, et al. The anti-influenza virus drug, arbidol is an efficient inhibitor of SARS-CoV-2 in vitro. Cell Discov. 2020;6:28. doi: 10.1038/s41421-020-0169-8
17. Gibiansky L, Ravva P, Parrott NJ, et al. Mechanistic Population Pharmacokinetic Model of Oseltamivir and Oseltamivir Carboxylate Accounting for Physiological Changes to Predict Exposures in Neonates and Infants. Clin Pharmacol Ther. 2020;108(1):126-35. doi: 10.1002/cpt.1791
18. Malosh R, Martin E, Heikkinen T, et al. Efficacy and Safety of Oseltamivir in Children: Systematic Review and Individual Patient Data Meta-analysis of Randomized Controlled Trials. Clin Infect Dis. 2018;66(10):1492-500. doi: 10.1093/cid/cix1040
19. Chambers CD, Johnson D, Xu R, et al.; OTIS Collaborative Research Group. Oseltamivir use in pregnancy: Risk of birth defects, preterm delivery, and small for gestational age infants. Birth Defects Res. 2019;111(19):1487-93. doi: 10.1002/bdr2.1566
20. Jefferson T, Jones M, Doshi P, et al. Oseltamivir for influenza in adults and children: systematic review of clinical study reports and summary of regulatory comments. BMJ. 2014;348:g2545. doi: 10.1136/bmj.g2545
21. Ison MG. Clinical use of approved influenza antivirals: therapy and prophylaxis. Influenza Other Respir Viruses. 2012;7:7-13. doi: 10.1111/irv.12046
22. Hama R, Bennett CL. The mechanisms of sudden-onset type adverse reactions to oseltamivir. Acta Neurol Scand. 2017;135(2):148-60. doi: 10.1111/ane.12629
23. Nakamura K, Schwartz BS, Lindegårdh N, et al. Possible neuropsychiatric reaction to high-dose oseltamivir during acute 2009 H1N1 influenza A infection. Clin Infect Dis. 2010;50(7):e47-9. doi: 10.1086/651166
24. Muraki K, Hatano N, Suzuki H, et al. Oseltamivir blocks human neuronal nicotinic acetylcholine receptor-mediated currents. Basic Clin Pharmacol Toxicol. 2015;116(2):87-95. doi: 10.1111/bcpt.12290
25. Suzuki M, Masuda Y. Effect of a neuraminidase inhibitor (oseltamivir) on mouse jump-down behavior via stimulation of dopamine receptors. Biomed Res. 2008;29(5):233-8. doi: 10.2220/biomedres.29.233
26. Han N, Oh JM, Kim IW. Assessment of adverse events related to anti-influenza neuraminidase inhibitors using the FDA adverse event reporting system and online patient reviews. Sci Rep. 2020;10(1):3116. doi: 10.1038/s41598-020-60068-5
27. Hurt AC. The epidemiology and spread of drug resistant human influenza viruses. Curr Opin Virol. 2014;8:22-9. doi: 10.1016/j.coviro.2014.04.009
28. Kim HM, Lee N, Kim MS, et al. Characterization of neuraminidase inhibitor-resistant influenza virus isolates from immunocompromised patients in the Republic of Korea. Virol J. 2020;17(1):94. doi: 10.1186/s12985-020-01375-1
29. Li TC, Chan MC, Lee N. Clinical Implications of Antiviral Resistance in Influenza. Viruses. 2015;7(9):4929-44. doi: 10.3390/v7092850
30. Gillman A, Muradrasoli S, Söderström H, et al. Resistance mutation R292K is induced in influenza A(H6N2) virus by exposure of infected mallards to low levels of oseltamivir. PLoS One. 2013;8(8):e71230. doi: 10.1371/journal.pone.0071230
31. Guan WJ, Ni ZY, Hu Y, et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med. 2020;382(18):1708-20. doi: 10.1056/NEJMoa2002032
32. Cass LM, Brown J, Pickford M, et al. Pharmacoscintigraphic evaluation of lung deposition of inhaled zanamivir in healthy volunteers. Clin Pharmacokinet. 1999;36(Suppl. 1):21-31. doi: 10.2165/00003088-199936001-00003
33. Shelton MJ, Lovern M, Ng-Cashin J, et al. Zanamivir pharmacokinetics and pulmonary penetration into epithelial lining fluid following intravenous or oral inhaled administration to healthy adult subjects. Antimicrob Agents Chemother. 2011;55(11):5178-84. doi: 10.1128/AAC.00703-11
34. Torti C, Mazzitelli M, Longhini F, et al. Clinical outcomes of patients treated with intravenous zanamivir for severe influenza A(H1N1)pdm09 infection: a case report series. BMC Infect Dis. 2019;19(1):858. doi: 10.1186/s12879-019-4530-1
35. Heneghan CJ, Onakpoya I, Thompson M, et al. Zanamivir for influenza in adults and children: systematic review of clinical study reports and summary of regulatory comments. BMJ. 2014;348:g2547. doi: 10.1136/bmj.g2547
36. Abed Y, Boivin G. A Review of Clinical Influenza A and B Infections With Reduced Susceptibility to Both Oseltamivir and Zanamivir. Open Forum Infect Dis. 2017;4(3):ofx105. doi: 10.1093/ofid/ofx105
37. Alame MM, Massaad E, Zaraket H. Peramivir: A Novel Intravenous Neuraminidase Inhibitor for Treatment of Acute Influenza Infections. Front Microbiol. 2016;7:450. doi: 10.3389/fmicb.2016.00450
38. Bantia S, Arnold CS, Parker CD, et al. Anti-influenza virus activity of peramivir in mice with single intramuscular injection. Antiviral Res. 2006;69:39-45. doi: 10.1016/j.antiviral.2005.10.002
39. Ikematsu H, Kawai N, Iwaki N, Kashiwagi S. In vitro neuraminidase inhibitory activity of four neuraminidase inhibitors against clinical isolates of influenza virus in the Japanese 2012–2013 season. J Infect Chemother. 2015;21(1):39-42. doi: 10.1016/j.jiac.2014.08.030
40. Saisho Y, Ishibashi T, Fukuyama H, et al. Pharmacokinetics and safety of intravenous peramivir, neuraminidase inhibitor of influenza virus, in healthy Japanese subjects. Antivir Ther. 2017;22(4):313-23. doi: 10.3851/IMP3104
41. Lee J, Park JH, Jwa H, Kim YH. Comparison of Efficacy of Intravenous Peramivir and Oral Oseltamivir for the Treatment of Influenza: Systematic Review and Meta-Analysis. Yonsei Med J. 2017;58(4):778-85. doi: 10.3349/ymj.2017.58.4.778
42. Chen JY, Wei SK, Lai CC, et al. A Meta-Analysis Comparing the Efficacy and Safety of Peramivir with Other Neuraminidase Inhibitors for Influenza Treatment. Medicina (Kaunas). 2020;56(2):63. doi: 10.3390/medicina56020063
43. Yamashita M. Laninamivir and its prodrug, CS-8958: long-acting neuraminidase inhibitors for the treatment of influenza. Antivir Chem Chemother. 2010;21(2):71-84. doi: 10.3851/IMP1688
44. Ikematsu H, Kawai N, Iwaki N, Kashiwagi S. The duration of fever and other symptoms after the initiation of laninamivir octanoate hydrate in the Japanese 2011–2012 influenza season. J Infect Chemother. 2014;20(2):81-5. doi: 10.1016/j.jiac.2013.07.013
45. Yoshihara K, Ishizuka H, Kubo Y. Population pharmacokinetics of laninamivir and its prodrug laninamivir octanoate in healthy subjects and in adult and pediatric patients with influenza virus infection. Drug Metab Pharmacokinet. 2013;28(5):416-26. doi: 10.2133/dmpk.dmpk-12-rg-115
46. Ishizuka H, Toyama K, Yoshiba S, et al. Intrapulmonary distribution and pharmacokinetics of laninamivir, a neuraminidase inhibitor, after a single inhaled administration of its prodrug, laninamivir octanoate, in healthy volunteers. Antimicrob Agents Chemother. 2012;56(7):3873-8. doi: 10.1128/AAC.06456-11
47. Minakami H, Kubo T, Nakai A, et al. Pregnancy outcomes of women exposed to laninamivir during pregnancy. Pharmacoepidemiol Drug Saf. 2014;23(10):1084-7. doi: 10.1002/pds.3684
48. Tochino Y, Yoshii N, Fujioka M, et al. Effect of four neuraminidase inhibitors on influenza in Osaka, Japan: An eight-year survey. J Gen Fam Med. 2019;21(1):18-23. doi: 10.1002/jgf2.286
49. Koseki N, Kaiho M, Kikuta H, et al. Comparison of the clinical effectiveness of zanamivir and laninamivir octanoate for children with influenza A(H3N2) and B in the 2011–2012 season. Influenza Other Respir Viruses. 2014;8(2):151-8. doi: 10.1111/irv.12147
50. Higashiguchi M, Matsumoto T, Fujii T. A meta-analysis of laninamivir octanoate for treatment and prophylaxis of influenza. Antivir Ther. 2018;23(2):157-65. doi: 10.3851/IMP3189
51. McKimm-Breschkin JL, Barrett S. Neuraminidase mutations conferring resistance to laninamivir lead to faster drug binding and dissociation. Antiviral Res. 2015;114:62-6. doi: 10.1016/j.antiviral.2014.12.004
52. Ng KE. Xofluza (Baloxavir Marboxil) for the Treatment Of Acute Uncomplicated Influenza. P T. 2019;44(1):9-11. PMID: 30675086
53. Taieb V, Ikeoka H, Ma FF, et al. A network meta-analysis of the efficacy and safety of baloxavir marboxil versus neuraminidase inhibitors for the treatment of influenza in otherwise healthy patients. Curr Med Res Opin. 2019;35(8):1355-64. doi: 10.1080/03007995.2019.1584505
54. Yoshii N, Tochino Y, Fujioka M, et al. The Comparison of the Efficacy of Baloxavir and Neuraminidase Inhibitors for Patients with Influenza A in Clinical Practice. Intern Med. 2020;59(12):1509-13. doi: 10.2169/internalmedicine.4117-19
55. Baker J, Block SL, Matharu B, et al. Baloxavir Marboxil Single-dose Treatment in Influenza-infected Children: A Randomized, Double-blind, Active Controlled Phase 3 Safety and Efficacy Trial (miniSTONE-2). Pediatr Infect Dis J. 2020;39(8):700-5. doi: 10.1097/INF.0000000000002747
56. Takashita E, Daniels RS, Fujisaki S, et al. Global update on the susceptibilities of human influenza viruses to neuraminidase inhibitors and the cap-dependent endonuclease inhibitor baloxavir, 2017–2018. Antiviral Res. 2020;175:104718. doi: 10.1016/j.antiviral.2020.104718
57. Shiraki K, Daikoku T. Favipiravir, an anti-influenza drug against life-threatening RNA virus infections. Pharmacol Ther. 2020;209:107512. doi: 10.1016/j.pharmthera.2020.107512
58. Du YX, Chen XP. Favipiravir: Pharmacokinetics and Concerns About Clinical Trials for 2019-nCoV Infection. Clin Pharmacol Ther. 2020;108(2):242-7. doi: 10.1002/cpt.1844
59. Furuta Y, Komeno T, Nakamura T. Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase. Proc Jpn Acad Ser B Phys Biol Sci. 2017;93(7):449-63. doi: 10.2183/pjab.93.027
60. Wang Y, Fan G, Salam A, et al. Comparative Effectiveness of Combined Favipiravir and Oseltamivir Therapy Versus Oseltamivir Monotherapy in Critically Ill Patients With Influenza Virus Infection. J Infect Dis. 2020;221(10):1688-98. doi: 10.1093/infdis/jiz656
61. Pilkington V, Pepperrell T, Hill A. A review of the safety of favipiravir – a potential treatment in the COVID-19 pandemic? J Virus Erad. 2020;6(2):45-51. doi: 10.1016/S2055-6640(20)30016-9
62. Takashita E, Ejima M, Ogawa R, et al. Antiviral susceptibility of influenza viruses isolated from patients pre- and post-administration of favipiravir. Antiviral Res. 2016;132:170-7. doi: 10.1016/j.antiviral.2016.06.007
63. Li H, Yang L, Liu FF, et al. Overview of therapeutic drug research for COVID-19 in China. Acta Pharmacol Sin. 2020:1-8. doi: 10.1038/s41401-020-0438-y
64. Nittari G, Pallotta G, Amenta F, Tayebati SK. Current pharmacological treatments for SARS-COV-2: A narrative review. Eur J Pharmacol. 2020;882:173328. doi: 10.1016/j.ejphar.2020.173328
65. Available from: https://static-0.minzdrav.gov.ru/system/attachments/
attaches/000/052/550/original/%D0%9C%D0%A0_COVID-19_%28v9%29.pdf?1603788097
66. Kotey E, Lukosaityte D, Quaye O, et al. Current and Novel Approaches in Influenza Management. Vaccines (Basel). 2019;7(2):53. doi: 10.3390/vaccines7020053
67. Blaising J, Polyak SJ, Pécheur EI. Arbidol as a broad-spectrum antiviral: an update. Antiviral Res. 2014;107:84-94. doi: 10.1016/j.antiviral.2014.04.006
68. Одноворов А.И., Гребенникова Т.В., Плетенева Т.В. Специфическая терапия гриппа: современное состояние и перспективы (обзор). Разработка и регистрация лекарственных средств. 2020;9(1):83-91 [Odnovorov AI, Grebennikova TV, Pleteneva TV. Specific Influenza Therapy: Current State and Prospects (Review). Drug Development & Registration. 2020;9(1):83-91 (In Russ.)]. doi: 10.33380/2305-2066-2020-9-1-83-91
69. Silin DS, Lyubomska OV, Ershov FI, et al. Synthetic and natural immunomodulators acting as interferon inducers. Curr Pharm Des. 2009;15(11):1238-47. doi: 10.2174/138161209787846847
70. Proskurnina EV, Izmailov DY, Sozarukova MM, et al. Antioxidant Potential of Antiviral Drug Umifenovir. Molecules. 2020;25(7):1577. doi: 10.3390/molecules25071577
71. Deng P, Zhong D, Yu K, et al. Pharmacokinetics, metabolism, and excretion of the antiviral drug arbidol in humans. Antimicrob Agents Chemother. 2013;57(4):1743-55. doi: 10.1128/AAC.02282-12
72. Shamsheva OV, Molochkova OV. The Range of Application of Domestic Antiviral Drug in Рediatrics. Children Infections. 2015;14(4):26-30 (In Russ.) doi: 10.22627/2072-8107-2015-14-4-26-30
73. Pshenichnaya NY, Bulgakova VA, Lvov NI, et al. Clinical efficacy of umifenovir in influenza and ARVI (study ARBITR). Terapevticheskii Arkhiv (Ter. Arkh.). 2019;91(3):56-63 (In Russ.) doi: 10.26442/00403660.2019.03.000127
74. Huang D, Yu H, Wang T, et al. Efficacy and safety of umifenovir
for coronavirus disease 2019 (COVID-19): A systematic review and meta-analysis. J Med Virol. 2020;10.1002/jmv.26256. doi: 10.1002/jmv.26256
75. Zarubaev VV, Garshinina AV, Kalinina NA, et al. Activity of Ingavirin (6-[2-(1H-Imidazol-4-yl)ethylamino]-5-oxo-hexanoic Acid) Against Human Respiratory Viruses in in Vivo Experiments. Pharmaceuticals (Basel). 2011;4(12):1518-34. doi: 10.3390/ph4121518
76. Aschacher Т, Krokhin А, Kuznetsova I, et al. Effect of the antiviral drug Ingavirin® (imidazolyl ethanamide pentandioic acid) on the interferon status of cells under conditions of viral infection. Epidemiology and Infectious Diseases. 2016;21(4):196-205 (In Russ.)
doi: 10.18821/1560-9529-2016-21-4-196-205
77. Sokolova TM, Poloskov VV, Shuvalov AN, et al. Signaling TLR/RLR-mechanisms of immunomodulating action of ingavirin and thymogen preparations. Rus J Biother. 2019;18(1):60-6 (In Russ.) doi: 10.17650/1726-9784-2019-18-1-60-66
78. Nicholson EG, Munoz FM. A Review of Therapeutics in Clinical Development for Respiratory Syncytial Virus and Influenza in Children. Clin Ther. 2018;40(8):1268-81. doi: 10.1016/j.clinthera.2018.06.014
79. Dzyublik AY, Simonov SS, Yachnik VA. Clinical efficacy and safety of antiviral drug Ingavirin in patients with asthma exacerbations caused by an acute respiratory viral infection (ARVI). Pulmonologiya. 2013;(6):43-50 (In Russ.) doi: 10.18093/0869-0189-2013-0-6-765-775
80. Shuldyakov AA, Lyapina EP, Kuznetsov VI, et al. Clinical and epidemiological efficacy of antiviral drug Ingavirin. Pulmonologiya. 2012;(4):62-9 (In Russ.) doi: 10.18093/0869-0189-2012-0-4-62-69
81. Haltner-Ukomadu E, Gureyeva S, Burmaka O, et al. In Vitro Bioavailability Study of an Antiviral Compound Enisamium Iodide. Sci Pharm. 2018;86(1):3. doi: 10.3390/scipharm86010003
82. Walker AP, Fan H, Keown JR, et al. Enisamium is a small molecule inhibitor of the influenza A virus and SARS-CoV-2 RNA polymerases. Preprint. bioRxiv. 2020;2020.04.21.053017. doi: 10.1101/2020.04.21.053017
83. Cocking D, Cinatl J, Boltz DA, et al. Antiviral effect of a derivative of isonicotinic acid enisamium iodide (FAV00A) against influenza virus. Acta Virol. 2018;62(2):191-5. doi: 10.4149/av_2018_211
84. Boltz D, Peng X, Muzzio M, et al. Activity of enisamium, an isonicotinic acid derivative, against influenza viruses in differentiated normal human bronchial epithelial cells. Antivir Chem Chemother. 2018;26:2040206618811416. doi: 10.1177/2040206618811416
85. Pshenichnaya NY, Bulgakova VA, Volchkova EV, et al. Review of current and future directions of antiviral therapy of influenza and acute respiratory viral infections in Russia. Terapevticheskii Arkhiv (Ter. Arkh.). 2019;91(11):105-9 (In Russ.)
doi: 10.26442/00403660.2019.11.000454
86. Zupanets I, Zhulai T, Shebeko S, et al. Histomorphological Study of a New Nasal Spray with Anti-inflammatory Properties Efficacy in Rabbits with Rhinosinusitis. Med Arch. 2020;74(1):8-13. doi: 10.5455/medarh.2020.74.8-13
87. Zhulai TS. The preclinical study of a new nasal spray with the anti-inflammatory properties: the effect on the leukotriene-induced inflammation. Clin Pharm. 2018;22(4):27-33. doi: 10.24959/cphj.18.1473
88. Lioznov DA, Karnaukhova EJ, Zubkova TG, Shakhlanskaya EV. Evaluation of the effectiveness of ARVI treatment regimen including etiotropic (enisamium iodide) and symptomatic treatment. Terapevticheskii Arkhiv (Ter. Arkh.). 2020;92(3):50-5 (In Russ.)
doi: 10.26442/00403660.2020.03.000572
89. Available from: https://www.cdc.gov/flu/professionals/antivirals/summary-clinicians.htm
90. Available from: https://static-0.rosminzdrav.ru/system/attachments/
attaches/000/050/033/original/RESP_REC_V2.pdf
91. Available from: https://clinline.ru/reestr-klinicheskih-issledovanij/
600-27.10.2020.html
1 ФГАОУ ВО «Российский университет дружбы народов», Москва, Россия;
2 ГБУ «Городская клиническая больница №24» Департамента здравоохранения г. Москвы, Москва, Россия;
3 ЗАО «Санкт-Петербургский институт фармации», г.п. Кузьмоловский, Ленинградская область, Россия
________________________________________________
S.K. Zyryanov1,2, O.I. Butranova1, D.S. Gaidai3, K.L. Kryshen3
1 People’s Friendship University of Russia, Moscow, Russia;
2 City Clinical Hospital №24, Moscow, Russia;
3 Saint Petersburg Institute of Pharmacy, Kuzmolovsky, Leningrad Region, Russia