Пандемия коронавирусной болезни 2019 (coronavirus disease, COVID-19) явилась серьезным вызовом человечеству и уникальной возможностью составить представление о реальных достижениях современной биологии и медицины. В процессе развития пандемии вскрылось большое число новых фундаментальных и медицинских проблем, касающихся взаимоотношений вирусной инфекции и многих распространенных хронических неинфекционных заболеваний, среди которых важную позицию занимают иммуновоспалительные ревматические заболевания (ИВРЗ). В настоящее время установлено, что инфекция SARS-CoV-2 сопровождается развитием широкого спектра экстрапульмональных клинических и лабораторных нарушений, некоторые из которых характерны для ИВРЗ и других аутоиммунных и аутовоспалительных заболеваний человека. Наиболее тяжелым последствием дисрегуляции иммунитета при COVID-19 и ИВРЗ является развитие так называемого синдрома цитокинового шторма, который при COVID-19 определяется как COVID-19-ассоциированный гипервоспалительный синдром, а при ИВРЗ – синдром активации макрофагов. Развитие COVID-19-ассоциированного гипервоспалительного синдрома послужило основанием для репозиционирования (drug repurposing) и применения по незарегистрированным показаниям широкого спектра противовоспалительных препаратов, которые в течение последних 20 лет специально разрабатывались для лечения ИВРЗ. Существование общих иммунопатологических механизмов и подходов к фармакотерапии при COVID-19 и ИВРЗ определяет уникальное место ревматологии среди медицинских специальностей, вносящих вклад в борьбу с пандемией COVID-19. Представлены основные положения рекомендаций международных и Национальной ассоциаций ревматологов и Ассоциации ревматологов России (АРР), касающиеся ведения пациентов с ИВРЗ в период пандемии COVID-19.
The 2019 coronavirus disease (COVID-19) pandemic become a major challenge for humanity and a unique opportunity to get an idea of the real achievements of modern biology and medicine. In the course of the pandemic, a large number of new fundamental and medical issues have been revealed regarding the relationship between viral infection and many common chronic non-infectious diseases, among which immune-mediated rheumatic diseases (IMRD) occupy an important position. It is now well known that SARS-CoV-2 infection is accompanied by a wide range of extrapulmonary clinical and laboratory disorders, some of which are characteristic of IMRD and other autoimmune and autoinflammatory diseases in humans. The most severe consequence of alterations in regulation of the immunity in COVID-19 and IMRD is the so-called cytokine storm syndrome, which is defined as COVID-19-associated hyperinflammatory syndrome in COVID-19, and as macrophage activation syndrome in IMRD. The COVID-19-associated hyperinflammatory syndrome was used as a reason for drug repurposing and off-label use of a wide range of anti-inflammatory drugs, which have been specially developed for the treatment of IMRD over the past 20 years. Common immunopathological mechanisms and approaches to pharmacotherapy in COVID-19 and IMRD determined the unique place of rheumatology among medical specialties contributing to combat the COVID-19 pandemic. The article provides the basic provisions of the International and National Association of Rheumatologists and the Association of Rheumatologists of Russia (ARR) recommendations for management of patients with IMRD during the COVID-19 pandemic.
1. World Health Organization (WHO) Coronavirus disease (COVID-19) pandemic. Available at: https://www.who.int/emergencies/diseases/novel-coronavirus-2019. Accessed: 02.11.2020.
2. Dai L, Gao GF. Viral targets for vaccines against COVID-19. Nat Rev Immunol. 2021;21(2):73-82. DOI:10.1038/s41577-020-00480-0
3. Насонов Е.Л. Коронавирусная болезнь 2019 (COVID-19): размышления ревматолога. Научно-практическая ревматология. 2020;58(2):123-32 [Nasonov EL. Coronavirus disease 2019 (COVID-19): a rheumatologist’s thoughts. Rheumatology Science and Practice. 2020;58(2):123-32 (in Russian)].
DOI:10.14412/1995-4484-2020-123-132
4. Van der Heijde D, Daikh DI, Betteridge N, et al. Common language description of the term rheumatic and musculoskeletal diseases (RMDs) for use in communication with the lay public, healthcare providers and other stakeholders endorsed by the European League Against Rheumatism (EULAR) and the American College of Rheumatology (ACR). Ann Rheum Dis. 2018;77(6):829-32. DOI:10.1136/annrheumdis-2017-212565
5. McGonagle D, McDermott MF. A Proposed Classification of the Immunological Diseases. PLoS Med. 2006;3:e297. DOI:10.1371/journal.pmed.0030297
6. Brodin P. Immune determinants of COVID-19 disease presentation and severity. Nat Med. 2021;27:28-33. DOI:10.1038/s41591-020-01202-8
7. Zhou T, Su TT, Mudianto T, Wang J. Immune asynchrony in COVID-19 pathogenesis and potential immunotherapies. J Exp Med. 2020;217(10):e20200674. DOI:10.1084/jem.20200674
8. Насонов Е.Л. Коронавирусная болезнь 2019 (COVID-19) и аутоиммунитет. Научно-практическая ревматология. 2021;59(1):5-30 [Nasonov EL. Coronavirus disease 2019 (COVID-19) and autoimmunity. Rheumatology Science and Practice. 2021;59(1):5-30 (in Russian)]. DOI:10.47360/1995-4484-2021-5-30
9. Mehta P, McAuley DF, Brown M, et al.; HLH Across Speciality Collaboration, UK. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033-4. DOI:10.1016/S0140-6736(20)30628-0
10. McGonagle D, Ramanan AV, Bridgewood C. Immune cartography of macrophage activation syndrome in the COVID-19 era. Nat Rev Rheumatol. 2021;17:145-57.
DOI:10.1038/s41584-020-00571-1
11. Fajgenbaum DC, June CH. Cytokine Storm. N Engl J Med. 2020;383:2255-73. DOI:10.1056/NEJMra2026131
12. Weatherhead JE, Clark E, Vogel TP, et al. Inflammatory syndromes associated with SARS-CoV-2 infection: dysregulation of the immune response across the age spectrum. J Clin Invest. 2020;130(12):6194-7. DOI:10.1172/JCI145301
13. Carter SJ, Tattersall RS, Ramanan AV. Macrophage activation syndrome in adults: recent advances in pathophysiology, diagnosis and treatment. Rheumatology (Oxford). 2019;58(1):5-17. DOI:10.1093/rheumatology/key006
14. Kingsmore KM, Grammer AC, Lipsky PE. Drug repurposing to improve treatment of rheumatic autoimmune inflammatory diseases. Nat Rev Rheumatol. 2020;16(1):32-52. DOI:10.1038/s41584-019-0337-0
15. Jamilloux Y, Henry T, Belot A, et al. Should we stimulate or suppress immune responses in COVID-19? Cytokine and anti-cytokine interventions. Autoimmun Rev. 2020;19(7):102567.DOI:10.1016/j.autrev.2020.102567
16. Baker KF, Isaacs JD. Novel therapies for immune-mediated inflammatory diseases: What can we learn from their use in rheumatoid arthritis, spondyloarthritis, systemic lupus erythematosus, psoriasis, Crohn’s disease and ulcerative colitis? Ann Rheum Dis. 2018;77(2):175-87. DOI:10.1136/annrheumdis-2017-211555
17. Насонов Е.Л. Фармакотерапия ревматоидного артрита: новая стратегия, новые мишени. Научно-практическая ревматология. 2017;55(4):409-19 [Nasonov EL. Pharmacotherapy for rheumatoid arthritis: new strategy, new targets. Rheumatology Science and Practice. 2017;55(4):409-19 (in Russian)]. DOI:10.14412/1995-4484-2017-409-419
18. Насонов Е.Л., Лила А.М. Ингибиторы янус-киназ при иммуновоспалительных ревматических заболеваниях: новые возможности и перспективы. Научно-практическая ревматология. 2019;57(1):8-16
[Nasonov EL, Lila AM. Janus kinase inhibitors in immuno-inflammatory rheumatic diseases: new opportunities and prospects. Rheumatology Science and Practice. 2019;57(1):8-16 (in Russian)]. DOI:10.14412/1995-4484-2019-8-16
19. Zhong J, Tang J, Ye C, Dong L. The immunology of COVID-19: is immune modulation an option for treatment? Lancet Rheumatol. 2020;2(7):e428-36. DOI:10.1016/S2665-9913(20)30120-X
20. Perricone C, Triggianese P, Bartoloni E, et al. The anti-viral facet of anti-rheumatic drugs: Lessons from COVID-19. J Autoimmun. 2020;111:102468. DOI:10.1016/j.jaut.2020.102468
21. Hyrich KL, Machado PM. Rheumatic disease and COVID-19: epidemiology and outcomes. Nat Rev Rheumatol. 2021;17(2):71-2. DOI:10.1038/s41584-020-00562-2
22. Gianfrancesco M, Hyrich KL, Al-Adely S, et al.; COVID-19 Global Rheumatology Alliance. Characteristics associated with hospitalisation for COVID-19 in people with rheumatic disease: data from the COVID-19 Global Rheumatology Alliance physician-reported registry. Ann Rheum Dis. 2020;79(7):859-66. DOI:10.1136/annrheumdis-2020-217871
23. Liu M, Gao Y, Zhang Y, et al. The association between severe or dead COVID-19 and autoimmune diseases: A systematic review and meta-analysis. J Infect. 2020;81(3):e93-5. DOI:10.1016/j.jinf.2020.05.065
24. Jethwa H, Sullivan A, Abraham S. COVID-19 and Immunomodulatory Therapy – Can We Use Data from Previous Viral Pandemics? J Rheumatol. 2020;47(12):1734-7. DOI:10.3899/jrheum.200527
25. Peach E, Rutter M, Lanyon P, et al. Risk of death among people with rare autoimmune diseases compared to the general population in England during the 2020 COVID-19 pandemic. Rheumatology. 2021;60(4):1902-9.DOI:10.1093/rheumatology/keaa855
26. Strangfeld A, Schäfer M, Gianfrancesco MA, et al.; COVID-19 Global Rheumatology Alliance; COVID-19 Global Rheumatology Alliance Consortium. Factors associated with COVID-19-related death in people with rheumatic diseases: results from the COVID-19 Global Rheumatology Alliance physician-reported registry. Ann Rheum Dis. 2021. DOI:10.1136/annrheumdis-2020-219498
27. Akiyama S, Hamdeh S, Micic D, Sakuraba A. Prevalence and clinical outcomes of COVID-19 in patients with autoimmune diseases: a systematic review and meta-analysis. Ann Rheum Dis. 2021;80:384-91. DOI:10.1136/annrheumdis-2020-218946
28. Grainger R, Machado PM, Robinson PC. Novel coronavirus disease-2019 (COVID-19) in people with rheumatic disease: Epidemiology and outcomes. Best Pract Res Clin Rheumatol. 2021;35(1):101657. DOI:10.1016/j.berh.2020.101657
29. Isaacs JD, Burmester GR. Smart battles: immunosuppression versus immunomodulation in the inflammatory RMDs. Ann Rheum Dis. 2020;79(8):991-3. DOI:10.1136/annrheumdis-2020-218019
30. Liu Y, Sawalha AH, Lu Q. COVID-19 and autoimmune diseases. Curr Opin Rheumatol. 2021;33(2):155-62. DOI:10.1097/BOR.0000000000000776
31. Novelli L, Motta F, De Santis M, et al. The JANUS of chronic inflammatory and autoimmune diseases onset during COVID-19 –
A systematic review of the literature. J Autoimmunity. 2021;117:102592.
32. Ciaffi J, Meliconi R, Ruscitti P, et al. Rheumatic manifestations of COVID-19: a systematic review and meta-analysis. BMC Rheumatol. 2020;4:65. DOI:10.1186/s41927-020-00165-0
33. Ramani SL, Samet J, Franz CK, et al. Musculoskeletal involvement of COVID-19: review of imaging. Skeletal Radiol. 2021.DOI:10.1007/s00256-021-03734-7
34. Marks M, Marks JL. Viral arthritis. Clin Med. 2016;16:129-34. DOI:10.7861/clinmedicine.16-2-129
35. Li S, Wang R, Zhang Y, et al. Symptom combinations associated with outcome and therapeutic effects in a cohort of cases with SARS. Am J Chin Med. 2006;34(6):937-47.
DOI:10.1142/S0192415X06004417
36. Memish ZA, Perlman S, Van Kerkhove MD, Zumla A. Middle East respiratory syndrome. Lancet. 2020;395(10229):1063-77. DOI:10.1016/S0140-6736(19)33221-0
37. Smatti MK, Cyprian FS, Nasrallah GK, et al. Viruses and Autoimmunity: A Review on the Potential Interaction and Molecular Mechanisms. Viruses. 2019;11(8):762. DOI:10.3390/v11080762
38. Halpert G, Shoenfeld Y. SARS-CoV-2, the autoimmune virus. Autoimmun Rev. 2020;19(12):102695. DOI:10.1016/j.autrev.2020.102695
39. Karaderi T, Bareke H, Kunter I, et al. Host Genetics at the Intersection of Autoimmunity and COVID-19: A Potential Key for Heterogeneous COVID-19 Severity. Front Immunol. 2020;11:586111.DOI:10.3389/fimmu.2020.586111
40. Schett G, Manger B, Simon D, Caporali R. COVID-19 revisiting inflammatory pathways of arthritis. Nat Rev Rheumatol. 2020;16(8):465-70. DOI:10.1038/s41584-020-0451-z
41. Насонов Е.Л., Решетняк Т.М., Алекберова З.С. Тромботическая микроангиопатия в ревматологии: связь тромбовоспаления и аутоиммунитета. Терапевтический архив. 2020;92(5):4-14 [Nasonov EL, Reshetnyak TM, Alekberova ZS. Thrombotic microangiopathy in rheumatology: the relationship of thrombosis and autoimmunity. Terapevticheskiy Arkhiv (Ter. Arkh.). 2020;92(5):4-14 (in Russian)].
DOI:10.26442/00403660.2020.05.000697
42. Насонов Е.Л., Бекетова Т.В., Решетняк Т.М, и др. Коронавирусная болезнь 2019 (COVID-19) и иммуновоспалительные ревматические заболевания: на перекрестке проблем тромбовоспаления и аутоиммунитета. Научно-практическая ревматология. 2020;58(4):353-67
[Nasonov EL, Beketova TV, Reshetnyak TM, et al. Coronavirus disease 2019 (COVID-19) and immune-mediated inflammatory rheumatic diseases: at the crossroads of thromboinflammation and autoimmunity. Rheumatology Science and Practice. 2020;58(4):353-67 (in Russian)]. DOI:10.47360/1995-4484-2020-353-367
43. Merrill JT, Erkan D, Winakur J, et al. Emerging evidence of a COVID-19 thrombotic syndrome has treatment implications. Nat Rev Rheumatol. 2020;16(10):581-9. DOI:10.1038/s41584-020-0474-5
44. Colling ME, Kanthi Y. COVID-19-associated coagulopathy: An exploration of mechanisms. Vasc Med. 2020;25(5):471-8. DOI:10.1177/1358863X20932640
45. Насонов Е.Л. (ред.). Антифосфолипидный синдром. М.: Литтерра, 2004 [Nasonov EL (ed.). Antifosfolipidnyi sindrom. Moscow: Litterra, 2004 (in Russian)].
46. El Hasbani G, Taher AT, Jawad A, Uthman I. COVID-19, Antiphospholipid Antibodies, and Catastrophic Antiphospholipid Syndrome: A Possible Association? Clin Med Insights Arthritis Musculoskelet Disord. 2020. DOI:10.1177/1179544120978667
47. Zuo Y, Estes SK, Ali RA, et al. Prothrombotic autoantibodies in serum from patients hospitalized with COVID-19. Sci Transl Med. 2020;12(570):eabd3876. DOI:10.1126/scitranslmed.abd3876
48. Moritz CP, Paul S, Stoevesandt O, et al. Autoantigenomics: Holistic characterization of autoantigen repertoires for a better understanding of autoimmune diseases. Autoimmun Rev. 2020;19(2):102450. DOI:10.1016/j.autrev.2019.102450
49. Zhang Q, Bastard P, Liu Z, et al. Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science. 2020;370(6515):eabd4570. DOI:10.1126/science.abd4570
50. Bastard P, Rosen LB, Zhang Q, et al. Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science. 2020;370(6515):eabd4585. DOI:10.1126/science.abd4585
51. Combes AJ, Courau T, Kuhn NF, et al. Global absence and targeting of protective immune states in severe COVID-19. Nature. 2021. DOI:10.1038/s41586-021-03234-7
52. Jenks SA, Cashman KS, Woodruff MC, et al. Extrafollicular responses in humans and SLE. Immunol Rev. 2019;288(1):136-48. DOI:10.1111/imr.12741
53. Woodruff MC, Ramonell RP, Nguyen DC, et al. Extrafollicular
B cell responses correlate with neutralizing antibodies and morbidity in COVID-19. Nat Immunol. 2020;21(12):1506-16. DOI:10.1038/s41590-020-00814-z
54. Tenforde MW, Kim SS, Lindsell CJ, et al. Network Investigators; CDC COVID-19 Response Team; IVY Network Investigators. Symptom Duration and Risk Factors for Delayed Return to Usual Health Among Outpatients with COVID-19 in a Multistate Health Care Systems Network – United States, March–June 2020. Morb Mortal Wkly Rep. 2020;69(30):993-8. DOI:10.15585/mmwr.mm6930e1
55. Lopez-Leon S, Wegman-Ostrosky T, Perelman C, et al. More than 50 Long-term effects of COVID-19: a systematic review and meta-analysis. MedRxiv. 2021. DOI:10.1101/2021.01.27.21250617
56. NICE. Covid-19 rapid guideline: managing the long-term effects of covid-19. Available at: https://www.nice.org.uk/guidance/ng188/chapter/4-Planning-care. Assessed:
57. Bhadelia N, Belkina AC, Olson A, et al. Distinct Autoimmune Antibody Signatures Between Hospitalized Acute COVID-19 Patients, SARS-CoV-2 Convalescent Individuals, and Unexposed Pre-Pandemic Controls. MedRxiv. 2021.
DOI:10.1101/2021.01.21.21249176
58. Aringer M, Costenbader K, Daikh D, et al. 2019 European League Against Rheumatism/American College of Rheumatology classification criteria for systemic lupus erythematosus. Ann Rheum Dis. 2019;78(9):1151-9. DOI:10.1136/annrheumdis-2018-214819
59. Schrezenmeier E, Dörner T. Mechanisms of action of hydroxychloroquine and chloroquine: implications for rheumatology. Nat Rev Rheumatol. 2020;16(3):155-66. DOI:10.1038/s41584-020-0372-x
60. Ladapo JA, McKinnon JE, McCullough PA, Risch H. Randomized controlled trials of early ambulatory hydroxychloroquine in the prevention of COVID-19 infection, hospitalization, and death: meta-analysis. MedRxiv. 2020. DOI:10.1101/2020.09.30.20204693
61. World Health Organization. Available at: https://www.who.int/publications/i/item/clinical-management-of-covid-19. Accessed: 14.10.2020.
62. Russell CD, Millar JE, Baillie JK. Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury. Lancet. 2020;395(10223):473-5. DOI:10.1016/S0140-6736(20)30317-2
63. RECOVERY Collaborative Group; Horby P, Lim WS, Emberson JR, et al. Dexamethasone in Hospitalized Patients with COVID-19. N Engl J Med. 2021;384(8):693-704. DOI:10.1056/NEJMoa2021436
64. Buttgereit F. Views on glucocorticoid therapy in rheumatology: the age of convergence. Nat Rev Rheumatol. 2020;16(4):239-46. DOI:10.1038/s41584-020-0370-z
65. Cain DW, Cidlowski JA. Immune regulation by glucocorticoids. Nat Rev Immunol. 2017;17(4):233-47. DOI:10.1038/nri.2017.1
66. WHO updates guidance on corticosteroids in Covid-19 patients. 3 September 2020 (Last Updated September 3rd, 2020)
67. Matthay MA, Wick KD. Corticosteroids, COVID-19 pneumonia, and acute respiratory distress syndrome. J Clin Invest. 2020;130(12):6218-21. DOI:10.1172/JCI143331
68. Robinson PC, Morand E. Divergent effects of acute versus chronic glucocorticoids in COVID-19. Lancet Rheumatol. 2021;3(3):e168-70. DOI:10.1016/S2665-9913(21)00005-9
69. Yao T-C, Huang Y-W, Chang S-M, et al. Association between oral corticosteroid bursts and severe adverse events: a nationwide population-based cohort study. Ann Intern Med. 2020;173(5):325-30.DOI:10.7326/M20-0432
70. Villar J, Confalonieri M, Pastores SM, Meduri GU. Rationale for Prolonged Corticosteroid Treatment in the Acute Respiratory Distress Syndrome Caused by Coronavirus Disease 2019. Crit Care Explor. 2020;2(4):e0111. DOI:10.1097/CCE.0000000000000111
71. Lamontagne SJ, Pizzagalli DA, Olmstead MC. Does inflammation link stress to poor COVID-19 outcome? Stress Health. 2020. DOI:10.1002/smi.3017
72. Isidori AM, Arnaldi G, Boscaro M, et al. COVID-19 infection and glucocorticoids: update from the Italian Society of Endocrinology Expert Opinion on steroid replacement in adrenal insufficiency. J Endocrinol Invest. 2020;43(8):1141-7. DOI:10.1007/s40618-020-01266-w
73. Nasonov E, Samsonov M. The role of Interleukin 6 inhibitors in therapy of severe COVID-19. Biomed Pharmacother. 2020;131:110698. DOI:10.1016/j.biopha.2020.110698
74. McGonagle D, Sharif K, O’Regan A, Bridgewood C. The Role of Cytokines including Interleukin-6 in COVID-19 induced Pneumonia and Macrophage Activation Syndrome-Like Disease. Autoimmun Rev. 2020;19(6):102537. DOI:10.1016/j.autrev.2020.102537
75. Khan F, Stewart I, Fabbri L, et al. A systematic review of Anakinra, Sarilumab, Siltuximab with meta-analysis of Tocilizumab for COVID-19. MedRxiv. 2020. DOI:10.1101/2020.04.23.20076612
76. The REMAP-CAP Investigators; Gordon CA, Mouncey PR, Al-Beidh F, et al. Interleukin-6 Receptor Antagonists in Critically Ill Patients with Covid-19 – Preliminary report. MedRxiv. 2021. DOI:10.1101/2021.01.07.21249390
77. RECOVERY Collaborative Group; Horby PW, Pessoa-Amorim G, Peto L, et al. Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): preliminary results of a randomised, controlled, open-label, platform trial. MedRxiv. 2021. DOI:10.1101/2021.02.11.21249258
78. Karki R, Sharma BR, Tuladhar S, et al. Synergism of TNF-α and IFN-γ Triggers Inflammatory Cell Death, Tissue Damage, and Mortality in SARS-CoV-2 Infection and Cytokine Shock Syndromes. Cell. 2021;184(1):149-68.e17. DOI:10.1016/j.cell.2020.11.025
79. Насонов Е.Л. Роль интерлейкина 1 в развитии заболеваний человека. Научно-практическая ревматология. 2018;56(Прил. 1):19-27
[Nasonov EL. The role of interleukin 1 in the development of human diseases. Rheumatology Science and Practice. 2018;56(Suppl. 4):19-27 (in Russian)]. DOI:10.14412/1995-4484-2018-19-27
80. Dinarello CA. The IL-1 family of cytokines and receptors in rheumatic diseases. Nat Rev Rheumatol. 2019;15(10):612-32.DOI:10.1038/s41584-019-0277-8
81. CORIMUNO-19 Collaborative group. Effect of anakinra versus usual care in adults in hospital with COVID-19 and mild-to-moderate pneumonia (CORIMUNO-ANA-1): a randomised controlled trial. Lancet Respir Med. 2021. DOI:10.1016/S2213-2600(20)30556-7
82. Clinicaltrials.gov. Study of Efficacy and Safety of Canakinumab Treatment for CRS in Participants With COVID-19-induced Pneumonia (CAN-COVID). NCT04362813. Available at: https://clinicaltrials.gov/ct2/show/NCT04362813. Accessed: 11.11. 2020.
83. Karakike E, Dalekos GN, Koutsodimitropoulos I, et al. ESCAPE: An Open-Label Trial of Personalized Immunotherapy in Critically Ill COVID-19 Patients. MedRxiv. 2021.
DOI:10.1101/2021.01.20.21250182
84. Tardif J-C, Bouabdallaoui N, L’Allier PL, et al. Efficacy of Colchicine in Non-Hospitalized Patients with COVID-19. MedRxiv. 2021. DOI:10.1101/2021.01.26.21250494
85. Алекберова З.С., Насонов Е.Л. Перспективы применения колхицина в медицине: новые данные. Научно-практическая ревматология. 2020;58(2):183-90 [Alekberova ZS, Nasonov EL. Prospects for using colchicine in medicine: new evidence. Rheumatology Science and Practice. 2020;58(2):183-90 (in Russian)].
DOI:10.14412/1995-4484-2020-183-190
86. Chiu L, Chow R, Chiu N, et al. Colchicine use in patients with COVID-19: a systematic review and meta-analysis. MedRxiv. 2021. DOI:10.1101/2021.02.02.21250960
87. Насонов Е.Л., Лила А.М. Барицитиниб: новые возможности фармакотерапии ревматоидного артрита и других иммуновоспалительных ревматических заболеваний. Научно-практическая ревматология. 2020;58(3):304-16 [Nasonov EL, Lila AM. Baricitinib: new pharmacotherapy options for rheumatoid arthritis and other immune-mediated inflammatory rheumatic diseases. Rheumatology Science and Practice. 2020;58(3):304-16 (in Russian)]. DOI:10.14412/1995-4484-2020-304-316
88. Jorgensen SCJ, Tse CLY, Burry L, Dresser LD. Baricitinib: A Review of Pharmacology, Safety, and Emerging Clinical Experience in COVID-19. Pharmacotherapy. 2020;40(8):843-56. DOI:10.1002/phar.2438
89. Kalil AC, Patterson TF, Mehta AK, et al. Baricitinib plus Remdesivir for Hospitalized Adults with Covid-19. N Engl J Med. 2020. DOI:10.1056/NEJMoa2031994
90. Landewé RB, Machado PM, Kroon F, et al. EULAR provisional recommendations for the management of rheumatic and musculoskeletal diseases in the context of SARS-CoV-2. Ann Rheum Dis. 2020;79(7):851-8. DOI:10.1136/annrheumdis-2020-217877
91. Mikuls TR, Johnson SR, Fraenkel L, et al. American College of Rheumatology Guidance for the Management of Rheumatic Disease in Adult Patients During the COVID-19 Pandemic: Version 3. Arthritis Rheumatol. 2020;73(2):e1-e12. DOI:10.1002/art.41596
92. Schulze-Koops H, Krüger K, Hoyer BF, et al; Commission for Pharmacotherapy and the Board of Directors of the German Society for Rheumatology. Updated recommendations of the German Society for Rheumatology for the care of patients with inflammatory rheumatic diseases in times of SARS-CoV-2 – methodology, key messages and justifying information. Rheumatology (Oxford). 2021.
DOI:10.1093/rheumatology/keab072
93. Alunno A, Najm A, Mariette X, et al. Immunomodulatory therapies for SARS-CoV-2 infection: a systematic literature review to inform EULAR points to consider. Ann Rheum Dis. 2021. DOI:10.1136/annrheumdis-2020-219725
94. Price E, MacPhie E, Kay L, et al. Identifying rheumatic disease patients at high risk and requiring shielding during the COVID-19 pandemic. Clin Med (Lond). 2020. DOI:10.7861/clinmed.2020-0160
95. Beecker J, Papp KA, Dutz J, et al. Position statement for a pragmatic approach to immunotherapeutics in patients with inflammatory skin diseases during the coronavirus disease 2019 pandemic and beyond.
J Eur Acad Dermatol Venereol. 2021. DOI:10.1111/jdv.17075
96. Barlow-Pay F, Htut TW, Khezrian M, Myint PK. Systematic review of immunosuppressant guidelines in the COVID-19 pandemic. Ther Adv Drug Saf. 2021;12. DOI:10.1177/2042098620985687
97. Tam LS, Tanaka Y, Handa R, et al. Care for patients with rheumatic diseases during COVID-19 pandemic: A position statement from APLAR. Int J Rheum Dis. 2020;23(6):717-22. DOI:10.1111/1756-185X.13863
98. Насонов Е.Л., Лила А.М., Мазуров В.И., и др. Коронавирусная болезнь 2019 (COVID-19) и иммуновоспалительные (аутоиммунные) ревматические заболевания. Проект рекомендаций Общероссийской общественной организации «Ассоциация ревматологов России». Режим доступа: https: //rheumatology.ru. Ссылка активна на 08.07.2020 [Nasonov EL, Lila AM, Mazurov VI, et al. Koronavirusnaia bolezn' 2019 (COVID-19) i immunovospalitel'nye (autoimmunnye) revmaticheskie zabolevaniia. Proekt rekomendatsii Obshcherossiiskoi obshchestvennoi organizatsii "Assotsiatsiia revmatologov Rossii". Available at: https: //rheumatology.ru. Accessed: 08.07.2020 (in Russian)].
99. Curtis JR, Johnson SR, Anthony DA, et al. American College of Rheumatology Guidance for COVID‐19 Vaccination in Patients with Rheumatic and Musculoskeletal Diseases – Version 1. Arthritis Rheumatol. 2021. DOI:10.1002/art.41734
100. Logunov DY, Dolzhikova IV, Zubkova OV, et al. Gam-COVID-Vac Vaccine Trial Group. Safety and immunogenicity of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine in two formulations: two open, non-randomised phase 1/2 studies from Russia. Lancet. 2020;396(10255):887-97. DOI:10.1016/S0140-6736(20)31866-3
101. Logunov DY, Dolzhikova IV, Shcheblyakov DV, et al.; Gam-COVID-Vac Vaccine Trial Group. Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: an interim analysis of a randomised controlled phase 3 trial in Russia. Lancet. 2021;397(10275):671-81. DOI:10.1016/S0140-6736(21)00234-8
102. Schulze-Koops H, Specker C, Skapenko A. Vaccination of patients with inflammatory rheumatic diseases against SARS-CoV-2: considerations before widespread availability of the vaccines. RMD Open. 2021;7(1):e001553. DOI:10.1136/rmdopen-2020-001553
103. Calabrese L, Winthrop KL. Rheumatology and COVID-19 at 1 year: facing the unknowns. Ann Rheum Dis. 2021. DOI:10.1136/annrheumdis-2021-219957
104. Dotan A, Muller S, Kanduc D, et al. The SARS-CoV-2 as an instrumental trigger of autoimmunity. Autoimmun Rev. 2021. DOI:10.1016/j.auyorev.2021.102792
105. Van der Made CI, Simons A, Schuurs-Hoeijmakers J, et al. Presence of genetic variants among young men with severe COVID-19. JAMA. 2020;8. DOI:10.1001/jama.2020.13719
106. Furer V, Rondaan C, Heijstek MW, et al. 2019 update of EULAR recommendations for vaccination in adult patients with autoimmune inflammatory rheumatic diseases. Ann Rheum Dis. 2020;79:39-52. DOI:10.1136/annrheumdis-2019-215882
107. Белов Б.С. Вакцинация при ревматических заболеваниях: союзник или противник? Научно-практическая ревматология. 2018;56(4):401-4 [Belov BS. Vaccination in rheumatic diseases: an ally or an enemy? Rheumatology Science and Practice. 2018;56(4):401-4 (in Russian)]. DOI:10.14412/1995-4484-2018-401-404
________________________________________________
1. World Health Organization (WHO) Coronavirus disease (COVID-19) pandemic. Available at: https://www.who.int/emergencies/diseases/novel-coronavirus-2019. Accessed: 02.11.2020.
2. Dai L, Gao GF. Viral targets for vaccines against COVID-19. Nat Rev Immunol. 2021;21(2):73-82. DOI:10.1038/s41577-020-00480-0
3. Nasonov EL. Coronavirus disease 2019 (COVID-19): a rheumatologist’s thoughts. Rheumatology Science and Practice. 2020;58(2):123-32 (in Russian)
DOI:10.14412/1995-4484-2020-123-132
4. Van der Heijde D, Daikh DI, Betteridge N, et al. Common language description of the term rheumatic and musculoskeletal diseases (RMDs) for use in communication with the lay public, healthcare providers and other stakeholders endorsed by the European League Against Rheumatism (EULAR) and the American College of Rheumatology (ACR). Ann Rheum Dis. 2018;77(6):829-32. DOI:10.1136/annrheumdis-2017-212565
5. McGonagle D, McDermott MF. A Proposed Classification of the Immunological Diseases. PLoS Med. 2006;3:e297. DOI:10.1371/journal.pmed.0030297
6. Brodin P. Immune determinants of COVID-19 disease presentation and severity. Nat Med. 2021;27:28-33. DOI:10.1038/s41591-020-01202-8
7. Zhou T, Su TT, Mudianto T, Wang J. Immune asynchrony in COVID-19 pathogenesis and potential immunotherapies. J Exp Med. 2020;217(10):e20200674. DOI:10.1084/jem.20200674
8. Nasonov EL. Coronavirus disease 2019 (COVID-19) and autoimmunity. Rheumatology Science and Practice. 2021;59(1):5-30 (in Russian) DOI:10.47360/1995-4484-2021-5-30
9. Mehta P, McAuley DF, Brown M, et al.; HLH Across Speciality Collaboration, UK. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033-4. DOI:10.1016/S0140-6736(20)30628-0
10. McGonagle D, Ramanan AV, Bridgewood C. Immune cartography of macrophage activation syndrome in the COVID-19 era. Nat Rev Rheumatol. 2021;17:145-57.
DOI:10.1038/s41584-020-00571-1
11. Fajgenbaum DC, June CH. Cytokine Storm. N Engl J Med. 2020;383:2255-73. DOI:10.1056/NEJMra2026131
12. Weatherhead JE, Clark E, Vogel TP, et al. Inflammatory syndromes associated with SARS-CoV-2 infection: dysregulation of the immune response across the age spectrum. J Clin Invest. 2020;130(12):6194-7. DOI:10.1172/JCI145301
13. Carter SJ, Tattersall RS, Ramanan AV. Macrophage activation syndrome in adults: recent advances in pathophysiology, diagnosis and treatment. Rheumatology (Oxford). 2019;58(1):5-17. DOI:10.1093/rheumatology/key006
14. Kingsmore KM, Grammer AC, Lipsky PE. Drug repurposing to improve treatment of rheumatic autoimmune inflammatory diseases. Nat Rev Rheumatol. 2020;16(1):32-52. DOI:10.1038/s41584-019-0337-0
15. Jamilloux Y, Henry T, Belot A, et al. Should we stimulate or suppress immune responses in COVID-19? Cytokine and anti-cytokine interventions. Autoimmun Rev. 2020;19(7):102567.DOI:10.1016/j.autrev.2020.102567
16. Baker KF, Isaacs JD. Novel therapies for immune-mediated inflammatory diseases: What can we learn from their use in rheumatoid arthritis, spondyloarthritis, systemic lupus erythematosus, psoriasis, Crohn’s disease and ulcerative colitis? Ann Rheum Dis. 2018;77(2):175-87. DOI:10.1136/annrheumdis-2017-211555
17. Nasonov EL. Pharmacotherapy for rheumatoid arthritis: new strategy, new targets. Rheumatology Science and Practice. 2017;55(4):409-19 (in Russian)
DOI:10.14412/1995-4484-2017-409-419
18. Nasonov EL, Lila AM. Janus kinase inhibitors in immuno-inflammatory rheumatic diseases: new opportunities and prospects. Rheumatology Science and Practice. 2019;57(1):8-16 (in Russian) DOI:10.14412/1995-4484-2019-8-16
19. Zhong J, Tang J, Ye C, Dong L. The immunology of COVID-19: is immune modulation an option for treatment? Lancet Rheumatol. 2020;2(7):e428-36. DOI:10.1016/S2665-9913(20)30120-X
20. Perricone C, Triggianese P, Bartoloni E, et al. The anti-viral facet of anti-rheumatic drugs: Lessons from COVID-19. J Autoimmun. 2020;111:102468. DOI:10.1016/j.jaut.2020.102468
21. Hyrich KL, Machado PM. Rheumatic disease and COVID-19: epidemiology and outcomes. Nat Rev Rheumatol. 2021;17(2):71-2. DOI:10.1038/s41584-020-00562-2
22. Gianfrancesco M, Hyrich KL, Al-Adely S, et al.; COVID-19 Global Rheumatology Alliance. Characteristics associated with hospitalisation for COVID-19 in people with rheumatic disease: data from the COVID-19 Global Rheumatology Alliance physician-reported registry. Ann Rheum Dis. 2020;79(7):859-66. DOI:10.1136/annrheumdis-2020-217871
23. Liu M, Gao Y, Zhang Y, et al. The association between severe or dead COVID-19 and autoimmune diseases: A systematic review and meta-analysis. J Infect. 2020;81(3):e93-5. DOI:10.1016/j.jinf.2020.05.065
24. Jethwa H, Sullivan A, Abraham S. COVID-19 and Immunomodulatory Therapy – Can We Use Data from Previous Viral Pandemics? J Rheumatol. 2020;47(12):1734-7. DOI:10.3899/jrheum.200527
25. Peach E, Rutter M, Lanyon P, et al. Risk of death among people with rare autoimmune diseases compared to the general population in England during the 2020 COVID-19 pandemic. Rheumatology. 2021;60(4):1902-9.DOI:10.1093/rheumatology/keaa855
26. Strangfeld A, Schäfer M, Gianfrancesco MA, et al.; COVID-19 Global Rheumatology Alliance; COVID-19 Global Rheumatology Alliance Consortium. Factors associated with COVID-19-related death in people with rheumatic diseases: results from the COVID-19 Global Rheumatology Alliance physician-reported registry. Ann Rheum Dis. 2021. DOI:10.1136/annrheumdis-2020-219498
27. Akiyama S, Hamdeh S, Micic D, Sakuraba A. Prevalence and clinical outcomes of COVID-19 in patients with autoimmune diseases: a systematic review and meta-analysis. Ann Rheum Dis. 2021;80:384-91. DOI:10.1136/annrheumdis-2020-218946
28. Grainger R, Machado PM, Robinson PC. Novel coronavirus disease-2019 (COVID-19) in people with rheumatic disease: Epidemiology and outcomes. Best Pract Res Clin Rheumatol. 2021;35(1):101657. DOI:10.1016/j.berh.2020.101657
29. Isaacs JD, Burmester GR. Smart battles: immunosuppression versus immunomodulation in the inflammatory RMDs. Ann Rheum Dis. 2020;79(8):991-3. DOI:10.1136/annrheumdis-2020-218019
30. Liu Y, Sawalha AH, Lu Q. COVID-19 and autoimmune diseases. Curr Opin Rheumatol. 2021;33(2):155-62. DOI:10.1097/BOR.0000000000000776
31. Novelli L, Motta F, De Santis M, et al. The JANUS of chronic inflammatory and autoimmune diseases onset during COVID-19 –
A systematic review of the literature. J Autoimmunity. 2021;117:102592.
32. Ciaffi J, Meliconi R, Ruscitti P, et al. Rheumatic manifestations of COVID-19: a systematic review and meta-analysis. BMC Rheumatol. 2020;4:65. DOI:10.1186/s41927-020-00165-0
33. Ramani SL, Samet J, Franz CK, et al. Musculoskeletal involvement of COVID-19: review of imaging. Skeletal Radiol. 2021.DOI:10.1007/s00256-021-03734-7
34. Marks M, Marks JL. Viral arthritis. Clin Med. 2016;16:129-34. DOI:10.7861/clinmedicine.16-2-129
35. Li S, Wang R, Zhang Y, et al. Symptom combinations associated with outcome and therapeutic effects in a cohort of cases with SARS. Am J Chin Med. 2006;34(6):937-47.
DOI:10.1142/S0192415X06004417
36. Memish ZA, Perlman S, Van Kerkhove MD, Zumla A. Middle East respiratory syndrome. Lancet. 2020;395(10229):1063-77. DOI:10.1016/S0140-6736(19)33221-0
37. Smatti MK, Cyprian FS, Nasrallah GK, et al. Viruses and Autoimmunity: A Review on the Potential Interaction and Molecular Mechanisms. Viruses. 2019;11(8):762. DOI:10.3390/v11080762
38. Halpert G, Shoenfeld Y. SARS-CoV-2, the autoimmune virus. Autoimmun Rev. 2020;19(12):102695. DOI:10.1016/j.autrev.2020.102695
39. Karaderi T, Bareke H, Kunter I, et al. Host Genetics at the Intersection of Autoimmunity and COVID-19: A Potential Key for Heterogeneous COVID-19 Severity. Front Immunol. 2020;11:586111.DOI:10.3389/fimmu.2020.586111
40. Schett G, Manger B, Simon D, Caporali R. COVID-19 revisiting inflammatory pathways of arthritis. Nat Rev Rheumatol. 2020;16(8):465-70. DOI:10.1038/s41584-020-0451-z
41. Nasonov EL, Reshetnyak TM, Alekberova ZS. Thrombotic microangiopathy in rheumatology: the relationship of thrombosis and autoimmunity. Terapevticheskiy Arkhiv (Ter. Arkh.). 2020;92(5):4-14 (in Russian). DOI:10.26442/00403660.2020.05.000697
42. Nasonov EL, Beketova TV, Reshetnyak TM, et al. Coronavirus disease 2019 (COVID-19) and immune-mediated inflammatory rheumatic diseases: at the crossroads of thromboinflammation and autoimmunity. Rheumatology Science and Practice. 2020;58(4):353-67 (in Russian) DOI:10.47360/1995-4484-2020-353-367
43. Merrill JT, Erkan D, Winakur J, et al. Emerging evidence of a COVID-19 thrombotic syndrome has treatment implications. Nat Rev Rheumatol. 2020;16(10):581-9. DOI:10.1038/s41584-020-0474-5
44. Colling ME, Kanthi Y. COVID-19-associated coagulopathy: An exploration of mechanisms. Vasc Med. 2020;25(5):471-8. DOI:10.1177/1358863X20932640
45. Nasonov EL (ed.). Antifosfolipidnyi sindrom. Moscow: Litterra, 2004 (in Russian)
46. El Hasbani G, Taher AT, Jawad A, Uthman I. COVID-19, Antiphospholipid Antibodies, and Catastrophic Antiphospholipid Syndrome: A Possible Association? Clin Med Insights Arthritis Musculoskelet Disord. 2020. DOI:10.1177/1179544120978667
47. Zuo Y, Estes SK, Ali RA, et al. Prothrombotic autoantibodies in serum from patients hospitalized with COVID-19. Sci Transl Med. 2020;12(570):eabd3876. DOI:10.1126/scitranslmed.abd3876
48. Moritz CP, Paul S, Stoevesandt O, et al. Autoantigenomics: Holistic characterization of autoantigen repertoires for a better understanding of autoimmune diseases. Autoimmun Rev. 2020;19(2):102450. DOI:10.1016/j.autrev.2019.102450
49. Zhang Q, Bastard P, Liu Z, et al. Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science. 2020;370(6515):eabd4570. DOI:10.1126/science.abd4570
50. Bastard P, Rosen LB, Zhang Q, et al. Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science. 2020;370(6515):eabd4585. DOI:10.1126/science.abd4585
51. Combes AJ, Courau T, Kuhn NF, et al. Global absence and targeting of protective immune states in severe COVID-19. Nature. 2021. DOI:10.1038/s41586-021-03234-7
52. Jenks SA, Cashman KS, Woodruff MC, et al. Extrafollicular responses in humans and SLE. Immunol Rev. 2019;288(1):136-48. DOI:10.1111/imr.12741
53. Woodruff MC, Ramonell RP, Nguyen DC, et al. Extrafollicular
B cell responses correlate with neutralizing antibodies and morbidity in COVID-19. Nat Immunol. 2020;21(12):1506-16. DOI:10.1038/s41590-020-00814-z
54. Tenforde MW, Kim SS, Lindsell CJ, et al. Network Investigators; CDC COVID-19 Response Team; IVY Network Investigators. Symptom Duration and Risk Factors for Delayed Return to Usual Health Among Outpatients with COVID-19 in a Multistate Health Care Systems Network – United States, March–June 2020. Morb Mortal Wkly Rep. 2020;69(30):993-8. DOI:10.15585/mmwr.mm6930e1
55. Lopez-Leon S, Wegman-Ostrosky T, Perelman C, et al. More than 50 Long-term effects of COVID-19: a systematic review and meta-analysis. MedRxiv. 2021. DOI:10.1101/2021.01.27.21250617
56. NICE. Covid-19 rapid guideline: managing the long-term effects of covid-19. Available at: https://www.nice.org.uk/guidance/ng188/chapter/4-Planning-care. Assessed:
57. Bhadelia N, Belkina AC, Olson A, et al. Distinct Autoimmune Antibody Signatures Between Hospitalized Acute COVID-19 Patients, SARS-CoV-2 Convalescent Individuals, and Unexposed Pre-Pandemic Controls. MedRxiv. 2021.
DOI:10.1101/2021.01.21.21249176
58. Aringer M, Costenbader K, Daikh D, et al. 2019 European League Against Rheumatism/American College of Rheumatology classification criteria for systemic lupus erythematosus. Ann Rheum Dis. 2019;78(9):1151-9. DOI:10.1136/annrheumdis-2018-214819
59. Schrezenmeier E, Dörner T. Mechanisms of action of hydroxychloroquine and chloroquine: implications for rheumatology. Nat Rev Rheumatol. 2020;16(3):155-66. DOI:10.1038/s41584-020-0372-x
60. Ladapo JA, McKinnon JE, McCullough PA, Risch H. Randomized controlled trials of early ambulatory hydroxychloroquine in the prevention of COVID-19 infection, hospitalization, and death: meta-analysis. MedRxiv. 2020. DOI:10.1101/2020.09.30.20204693
61. World Health Organization. Available at: https://www.who.int/publications/i/item/clinical-management-of-covid-19. Accessed: 14.10.2020.
62. Russell CD, Millar JE, Baillie JK. Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury. Lancet. 2020;395(10223):473-5. DOI:10.1016/S0140-6736(20)30317-2
63. RECOVERY Collaborative Group; Horby P, Lim WS, Emberson JR, et al. Dexamethasone in Hospitalized Patients with COVID-19. N Engl J Med. 2021;384(8):693-704. DOI:10.1056/NEJMoa2021436
64. Buttgereit F. Views on glucocorticoid therapy in rheumatology: the age of convergence. Nat Rev Rheumatol. 2020;16(4):239-46. DOI:10.1038/s41584-020-0370-z
65. Cain DW, Cidlowski JA. Immune regulation by glucocorticoids. Nat Rev Immunol. 2017;17(4):233-47. DOI:10.1038/nri.2017.1
66. WHO updates guidance on corticosteroids in Covid-19 patients. 3 September 2020 (Last Updated September 3rd, 2020)
67. Matthay MA, Wick KD. Corticosteroids, COVID-19 pneumonia, and acute respiratory distress syndrome. J Clin Invest. 2020;130(12):6218-21. DOI:10.1172/JCI143331
68. Robinson PC, Morand E. Divergent effects of acute versus chronic glucocorticoids in COVID-19. Lancet Rheumatol. 2021;3(3):e168-70. DOI:10.1016/S2665-9913(21)00005-9
69. Yao T-C, Huang Y-W, Chang S-M, et al. Association between oral corticosteroid bursts and severe adverse events: a nationwide population-based cohort study. Ann Intern Med. 2020;173(5):325-30.DOI:10.7326/M20-0432
70. Villar J, Confalonieri M, Pastores SM, Meduri GU. Rationale for Prolonged Corticosteroid Treatment in the Acute Respiratory Distress Syndrome Caused by Coronavirus Disease 2019. Crit Care Explor. 2020;2(4):e0111. DOI:10.1097/CCE.0000000000000111
71. Lamontagne SJ, Pizzagalli DA, Olmstead MC. Does inflammation link stress to poor COVID-19 outcome? Stress Health. 2020. DOI:10.1002/smi.3017
72. Isidori AM, Arnaldi G, Boscaro M, et al. COVID-19 infection and glucocorticoids: update from the Italian Society of Endocrinology Expert Opinion on steroid replacement in adrenal insufficiency. J Endocrinol Invest. 2020;43(8):1141-7. DOI:10.1007/s40618-020-01266-w
73. Nasonov E, Samsonov M. The role of Interleukin 6 inhibitors in therapy of severe COVID-19. Biomed Pharmacother. 2020;131:110698. DOI:10.1016/j.biopha.2020.110698
74. McGonagle D, Sharif K, O’Regan A, Bridgewood C. The Role of Cytokines including Interleukin-6 in COVID-19 induced Pneumonia and Macrophage Activation Syndrome-Like Disease. Autoimmun Rev. 2020;19(6):102537. DOI:10.1016/j.autrev.2020.102537
75. Khan F, Stewart I, Fabbri L, et al. A systematic review of Anakinra, Sarilumab, Siltuximab with meta-analysis of Tocilizumab for COVID-19. MedRxiv. 2020. DOI:10.1101/2020.04.23.20076612
76. The REMAP-CAP Investigators; Gordon CA, Mouncey PR, Al-Beidh F, et al. Interleukin-6 Receptor Antagonists in Critically Ill Patients with Covid-19 – Preliminary report. MedRxiv. 2021. DOI:10.1101/2021.01.07.21249390
77. RECOVERY Collaborative Group; Horby PW, Pessoa-Amorim G, Peto L, et al. Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): preliminary results of a randomised, controlled, open-label, platform trial. MedRxiv. 2021. DOI:10.1101/2021.02.11.21249258
78. Karki R, Sharma BR, Tuladhar S, et al. Synergism of TNF-α and IFN-γ Triggers Inflammatory Cell Death, Tissue Damage, and Mortality in SARS-CoV-2 Infection and Cytokine Shock Syndromes. Cell. 2021;184(1):149-68.e17. DOI:10.1016/j.cell.2020.11.025
79. Nasonov EL. The role of interleukin 1 in the development of human diseases. Rheumatology Science and Practice. 2018;56(Suppl. 4):19-27 (in Russian)
DOI:10.14412/1995-4484-2018-19-27
80. Dinarello CA. The IL-1 family of cytokines and receptors in rheumatic diseases. Nat Rev Rheumatol. 2019;15(10):612-32.DOI:10.1038/s41584-019-0277-8
81. CORIMUNO-19 Collaborative group. Effect of anakinra versus usual care in adults in hospital with COVID-19 and mild-to-moderate pneumonia (CORIMUNO-ANA-1): a randomised controlled trial. Lancet Respir Med. 2021. DOI:10.1016/S2213-2600(20)30556-7
82. Clinicaltrials.gov. Study of Efficacy and Safety of Canakinumab Treatment for CRS in Participants With COVID-19-induced Pneumonia (CAN-COVID). NCT04362813. Available at: https://clinicaltrials.gov/ct2/show/NCT04362813. Accessed: 11.11. 2020.
83. Karakike E, Dalekos GN, Koutsodimitropoulos I, et al. ESCAPE: An Open-Label Trial of Personalized Immunotherapy in Critically Ill COVID-19 Patients. MedRxiv. 2021.
DOI:10.1101/2021.01.20.21250182
84. Tardif J-C, Bouabdallaoui N, L’Allier PL, et al. Efficacy of Colchicine in Non-Hospitalized Patients with COVID-19. MedRxiv. 2021. DOI:10.1101/2021.01.26.21250494
85. Alekberova ZS, Nasonov EL. Prospects for using colchicine in medicine: new evidence. Rheumatology Science and Practice. 2020;58(2):183-90 (in Russian)
DOI:10.14412/1995-4484-2020-183-190
86. Chiu L, Chow R, Chiu N, et al. Colchicine use in patients with COVID-19: a systematic review and meta-analysis. MedRxiv. 2021. DOI:10.1101/2021.02.02.21250960
87. Nasonov EL, Lila AM. Baricitinib: new pharmacotherapy options for rheumatoid arthritis and other immune-mediated inflammatory rheumatic diseases. Rheumatology Science and Practice. 2020;58(3):304-16 (in Russian) DOI:10.14412/1995-4484-2020-304-316
88. Jorgensen SCJ, Tse CLY, Burry L, Dresser LD. Baricitinib: A Review of Pharmacology, Safety, and Emerging Clinical Experience in COVID-19. Pharmacotherapy. 2020;40(8):843-56. DOI:10.1002/phar.2438
89. Kalil AC, Patterson TF, Mehta AK, et al. Baricitinib plus Remdesivir for Hospitalized Adults with Covid-19. N Engl J Med. 2020. DOI:10.1056/NEJMoa2031994
90. Landewé RB, Machado PM, Kroon F, et al. EULAR provisional recommendations for the management of rheumatic and musculoskeletal diseases in the context of SARS-CoV-2. Ann Rheum Dis. 2020;79(7):851-8. DOI:10.1136/annrheumdis-2020-217877
91. Mikuls TR, Johnson SR, Fraenkel L, et al. American College of Rheumatology Guidance for the Management of Rheumatic Disease in Adult Patients During the COVID-19 Pandemic: Version 3. Arthritis Rheumatol. 2020;73(2):e1-e12. DOI:10.1002/art.41596
92. Schulze-Koops H, Krüger K, Hoyer BF, et al; Commission for Pharmacotherapy and the Board of Directors of the German Society for Rheumatology. Updated recommendations of the German Society for Rheumatology for the care of patients with inflammatory rheumatic diseases in times of SARS-CoV-2 – methodology, key messages and justifying information. Rheumatology (Oxford). 2021.
DOI:10.1093/rheumatology/keab072
93. Alunno A, Najm A, Mariette X, et al. Immunomodulatory therapies for SARS-CoV-2 infection: a systematic literature review to inform EULAR points to consider. Ann Rheum Dis. 2021. DOI:10.1136/annrheumdis-2020-219725
94. Price E, MacPhie E, Kay L, et al. Identifying rheumatic disease patients at high risk and requiring shielding during the COVID-19 pandemic. Clin Med (Lond). 2020. DOI:10.7861/clinmed.2020-0160
95. Beecker J, Papp KA, Dutz J, et al. Position statement for a pragmatic approach to immunotherapeutics in patients with inflammatory skin diseases during the coronavirus disease 2019 pandemic and beyond. J Eur Acad Dermatol Venereol. 2021. DOI:10.1111/jdv.17075
96. Barlow-Pay F, Htut TW, Khezrian M, Myint PK. Systematic review of immunosuppressant guidelines in the COVID-19 pandemic. Ther Adv Drug Saf. 2021;12. DOI:10.1177/2042098620985687
97. Tam LS, Tanaka Y, Handa R, et al. Care for patients with rheumatic diseases during COVID-19 pandemic: A position statement from APLAR. Int J Rheum Dis. 2020;23(6):717-22. DOI:10.1111/1756-185X.13863
98. Nasonov EL, Lila AM, Mazurov VI, et al. Koronavirusnaia bolezn' 2019 (COVID-19) i immunovospalitel'nye (autoimmunnye) revmaticheskie zabolevaniia. Proekt rekomendatsii Obshcherossiiskoi obshchestvennoi organizatsii "Assotsiatsiia revmatologov Rossii". Available at: https: //rheumatology.ru. Accessed: 08.07.2020 (in Russian)
99. Curtis JR, Johnson SR, Anthony DA, et al. American College of Rheumatology Guidance for COVID‐19 Vaccination in Patients with Rheumatic and Musculoskeletal Diseases – Version 1. Arthritis Rheumatol. 2021. DOI:10.1002/art.41734
100. Logunov DY, Dolzhikova IV, Zubkova OV, et al. Gam-COVID-Vac Vaccine Trial Group. Safety and immunogenicity of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine in two formulations: two open, non-randomised phase 1/2 studies from Russia. Lancet. 2020;396(10255):887-97. DOI:10.1016/S0140-6736(20)31866-3
101. Logunov DY, Dolzhikova IV, Shcheblyakov DV, et al.; Gam-COVID-Vac Vaccine Trial Group. Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: an interim analysis of a randomised controlled phase 3 trial in Russia. Lancet. 2021;397(10275):671-81. DOI:10.1016/S0140-6736(21)00234-8
102. Schulze-Koops H, Specker C, Skapenko A. Vaccination of patients with inflammatory rheumatic diseases against SARS-CoV-2: considerations before widespread availability of the vaccines. RMD Open. 2021;7(1):e001553. DOI:10.1136/rmdopen-2020-001553
103. Calabrese L, Winthrop KL. Rheumatology and COVID-19 at 1 year: facing the unknowns. Ann Rheum Dis. 2021. DOI:10.1136/annrheumdis-2021-219957
104. Dotan A, Muller S, Kanduc D, et al. The SARS-CoV-2 as an instrumental trigger of autoimmunity. Autoimmun Rev. 2021. DOI:10.1016/j.auyorev.2021.102792
105. Van der Made CI, Simons A, Schuurs-Hoeijmakers J, et al. Presence of genetic variants among young men with severe COVID-19. JAMA. 2020;8. DOI:10.1001/jama.2020.13719
106. Furer V, Rondaan C, Heijstek MW, et al. 2019 update of EULAR recommendations for vaccination in adult patients with autoimmune inflammatory rheumatic diseases. Ann Rheum Dis. 2020;79:39-52. DOI:10.1136/annrheumdis-2019-215882
107. Belov BS. Vaccination in rheumatic diseases: an ally or an enemy? Rheumatology Science and Practice. 2018;56(4):401-4 (in Russian) DOI:10.14412/1995-4484-2018-401-404
Авторы
Е.Л. Насонов*
ФГБНУ «Научно-исследовательский институт ревматологии им. В.А. Насоновой», Москва, Россия;
ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова» Минздрава России (Сеченовский Университет), Москва, Россия
*nasonov@irramn.ru
________________________________________________
Evgeny L. Nasonov*
Nasonova Research Institute of Rheumatology, Moscow, Russia;
Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
*nasonov@irramn.ru