Обоснование. Синдром Ли–Фраумени (СЛФ) – редкое доминантно наследуемое заболевание, характеризующееся генетической предрасположенностью к опухолям различной природы, в том числе к опухолям кроветворной ткани. Генетической основой СЛФ являются мутации гена TP53. Пациентам с СЛФ и их родственникам требуются генетическое консультирование с последующим наблюдением и выбор оптимальной терапевтической тактики в случае развития онкологического заболевания. Цель. Описать серию клинических наблюдений пациентов с острым лимфобластным лейкозом (ОЛЛ) и СЛФ и рассмотреть общие вопросы диагностики и лечения взрослых больных с этим наследственным генетическим синдромом. Материалы и методы. Исследование мутаций гена TP53 выполнено 180 больным de novo Ph-негативным (В- и Т-клеточным) и Ph-позитивным ОЛЛ, лечение которым проводили по протоколам российской исследовательской группы (ОЛЛ-2009, ОЛЛ-2012, ОЛЛ-2016) в ФГБУ «НМИЦ гематологии» и региональных клиниках – участниках многоцентровых исследований. Результаты. Мутации гена TP53 обнаружены у 7,8% (n=14) больных de novo ОЛЛ. Для доказательства герминального характера мутаций и подтверждения СЛФ статус гена TP53 оценивали в ремиссии на образцах костного мозга и периферической крови, на образцах костного мозга после трансплантации аллогенных гемопоэтических стволовых клеток и в тканях некроветворного происхождения. Всего в анализ включены 5 больных (из 14, у которых обнаружены мутации), неопухолевый биологический материал которых доступен для исследования. Герминальный характер мутаций, свидетельствующий о наличии СЛФ, подтвержден у 4 из 5 – В-клеточный ОЛЛ (n=3), Т-клеточный ОЛЛ (n=1) – обследованных пациентов. Заключение. Таким образом, важным практическим выводом работы является наблюдение, что основная часть мутаций гена TP53 у больных Ph-негативным В-клеточным ОЛЛ носит герминальный характер и ассоциирована с CЛФ.
Background. Li–Fraumeni syndrome (LFS) is a rare, autosomal dominant, hereditary disorder that is characterized by an increased risk for certain types of cancer, acute lymphoblastic leukemia (ALL), particularly. Germline TP53 mutations are associated with LFS. Genetic counseling and follow-up is essential for patients with LFS and their relatives. Special therapeutic approaches are needed for treatment of oncological disease in these patients. The article presents a series of clinical cases of patients with ALL and SLF, considers general issues of diagnosis and treatment of adult patients with this hereditary genetic syndrome. Aim. Describe clinical observations of patients with acute lymphoblastic leukemia (ALL) and LFS and consider general issues of diagnosis and treatment of adult patients with LFS and ALL. Materials and methods. TP53 gene mutations were screened using Sanger sequencing in 180 de novo patients with Ph-negative (B- and T-cell) and Ph-positive ALL treated by Russian multicenter protocols (ALL-2009, ALL-2012, ALL-2016) at the National Research Center for Hematology, Moscow, Russia, and at the hematology departments of regional clinics of Russia (multicenter study participants). Results. TP53 gene mutations were found in 7.8% (n=14) of de novo ALL patients. In patients, whose biological material was available TP53 gene mutational status was determined in non-tumor cells (bone marrow and peripheral blood during remission, bone marrow samples after allogeneic hematopoietic stem cells transplantation and in tissue of non-hematopoietic origin) for discriminating germline mutations. The analysis included 5 patients (out of 14 with TP53 mutations), whose non-tumor biological material was available for research. Germline status was confirmed in 4 out of 5 – B-cell ALL (n=3), T-cell ALL (n=1) – investigated patients. Conclusion. Practical value of the research is the observation that the greater part of TP53 gene mutations in patients with Ph-negative B-cell ALL are germinal and associated with LFS.
1. Garber JE, Offit K. Hereditary cancer predisposition syndromes. J Clin Oncol. 2005;23(2):276-92. DOI:10.1200/JCO.2005.10.042
2. Ngeow J, Liu C, Zhou K, et al. Detecting Germline PTEN Mutations Among At-Risk Patients With Cancer: An Age- and Sex-Specific Cost-Effectiveness Analysis. J Clin Oncol. 2015;33(23):2537-44. DOI:10.1200/JCO.2014.60.3456
3. Rahman N. Realizing the promise of cancer predisposition genes. Nature. 2014;505(7483):302-8. DOI:10.1038/nature12981
4. Collopy LC, Walne AJ, Cardoso S, et al. Triallelic and epigenetic-like inheritance in human disorders of telomerase. Blood. 2015;126(2):176‑84. DOI:10.1182/blood-2015-03-633388
5. Steinke V, Engel C, Büttner R, et al. Hereditary nonpolyposis colorectal cancer (HNPCC)/Lynch syndrome. Dtsch Arztebl Int. 2013;110(3):32-8. DOI:10.3238/arztebl.2013.0032
6. Lax SF. Hereditary breast and ovarian cancer. Pathologe. 2017;38(3):149‑55. DOI:10.1007/s00292-017-0298-5
7. DiNardo CD, Bannon SA, Routbort M, et al. Evaluation of Patients and Families With Concern for Predispositions to Hematologic Malignancies Within the Hereditary Hematologic Malignancy Clinic (HHMC). Clin Lymphoma Myeloma Leuk. 2016;16(7):417-28.e2. DOI:10.1016/j.clml.2016.04.001
8. Godley LA, Shimamura A. Genetic predisposition to hematologic malignancies: management and surveillance. Blood. 2017;130(4):424-32. DOI:10.1182/blood-2017-02-735290
9. Bannon SA, DiNardo CD. Hereditary Predispositions to Myelodysplastic Syndrome. Int J Mol Sci. 2016;17(6):838. DOI:10.3390/ijms17060838
10. Topka S, Vijai J, Walsh MF, et al. Germline ETV6 Mutations Confer Susceptibility to Acute Lymphoblastic Leukemia and Thrombocytopenia. PLoS Genet. 2015;11(6):e1005262. DOI:10.1371/journal.pgen.1005262
11. Pippucci T, Savoia A, Perrotta S, et al. Mutations in the 5’ UTR of ANKRD26, the ankirin repeat domain 26 gene, cause an autosomal-dominant form of inherited thrombocytopenia, THC2. Am J Hum Genet. 2011;88(1):115-20. DOI:10.1016/j.ajhg.2010.12.006
12. Tawana K, Fitzgibbon J. Inherited DDX41 mutations: 11 genes and counting. Blood. 2016;127(8):960-1. DOI:10.1182/blood-2016-01-690909
13. Maciejewski JP, Padgett RA, Brown AL, Müller-Tidow C. DDX41-related myeloid neoplasia. Semin Hematol. 2017;54(2):94-7.
DOI:10.1053/j.seminhematol.2017.04.007
14. Kanagal-Shamanna R, Loghavi S, DiNardo CD, et al. Bone marrow pathologic abnormalities in familial platelet disorder with propensity for myeloid malignancy and germline RUNX1 mutation. Haematologica. 2017;102(10):1661-70. DOI:10.3324/haematol.2017.167726
15. Wlodarski MW, Hirabayashi S, Pastor V, et al. Prevalence, clinical characteristics, and prognosis of GATA2-related myelodysplastic syndromes in children and adolescents. Blood. 2016;127(11):1387-97. DOI:10.1182/blood-2015-09-669937
16. Nickels EM, Soodalter J, Churpek JE, Godley LA. Recognizing familial myeloid leukemia in adults. Ther Adv Hematol. 2013;4(4):254-69. DOI:10.1177/2040620713487399
17. Chompret A, Brugières L, Ronsin M, et al. P53 germline mutations in childhood cancers and cancer risk for carrier individuals. Br J Cancer. 2000;82(12):1932-7. DOI:10.1054/bjoc.2000.1167
18. Bougeard G, Renaux-Petel M, Flaman JM, et al. Revisiting Li–Fraumeni Syndrome From TP53 Mutation Carriers. J Clin Oncol. 2015;33(21):2345-52. DOI:10.1200/JCO.2014.59.5728
19. Valdez JM, Nichols KE, Kesserwan C. Li–Fraumeni syndrome: a paradigm for the understanding of hereditary cancer predisposition. Br J Haematol. 2017;176(4):539-52. DOI:10.1111/bjh.14461
20. Birch JM, Hartley AL, Marsden HB, et al. Excess risk of breast cancer in the mothers of children with soft tissue sarcomas. Br J Cancer. 1984;49(3):325-31. DOI:10.1038/bjc.1984.51
21. Li FP, Fraumeni JFJr,, Mulvihill JJ, et al. A cancer family syndrome in twenty-four kindreds. Cancer Res. 1988;48(18):5358-62
22. Birch JM, Hartley AL, Blair V, et al. Identification of factors associated with high breast cancer risk in the mothers of children with soft tissue sarcoma. J Clin Oncol. 1990;8(4):583-90. DOI:10.1200/JCO.1990.8.4.583
23. Swaminathan M, Bannon SA, Routbort M, et al. Hematologic malignancies and Li–Fraumeni syndrome. Cold Spring Harb Mol Case Stud. 2019;5(1):a003210. DOI:10.1101/mcs.a003210
24. Varley JM, Evans DG, Birch JM. Li–Fraumeni syndrome--a molecular and clinical review. Br J Cancer. 1997;76(1):1-14. DOI:10.1038/bjc.1997.328
25. McBride KA, Ballinger ML, Killick E, et al. Li–Fraumeni syndrome: cancer risk assessment and clinical management. Nat Rev Clin Oncol. 2014;11(5):260-71. DOI:10.1038/nrclinonc.2014.41
26. Petitjean A, Mathe E, Kato S, et al. Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database. Hum Mutat. 2007;28(6):622-9. DOI:10.1002/humu.20495
27. Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391-405. DOI:10.1182/blood-2016-03-643544
28. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Oxford, 1999; p. 95-8.
29. Зарубина К.И., Паровичникова Е.Н., Басхаева Г.А., и др. Трудности диагностики и терапии Ph-подобных острых лимфобластных лейкозов: описание 3 клинических случаев. Терапевтический архив. 2018;90(7):110-7 [Zarubina KI, Parovichnikova EN, Baskhaeva GA, et al. Diagnostics and Treatment Challenges of Ph-like Acute Lymphoblastic Leukemia: A Description of 3 Clinical Cases. Terapevticheskii Arkhiv (Ter. Arkh.). 2018;90(7):110-7 (in Russian)]. DOI:10.26442/terarkh2018907110-117
30. Holmfeldt L, Wei L, Diaz-Flores E, et al. The genomic landscape of hypodiploid acute lymphoblastic leukemia. Nat Genet. 2013;45(3):242‑52. DOI:10.1038/ng.2532
31. Hsiao MH, Yu AL, Yeargin J, et al. Nonhereditary p53 mutations in T-cell acute lymphoblastic leukemia are associated with the relapse phase. Blood. 1994;83(10):2922-30
32. Comeaux EQ, Mullighan CG. TP53 Mutations in Hypodiploid Acute Lymphoblastic Leukemia. Cold Spring Harb Perspect Med. 2017;7(3):a026286. DOI:10.1101/cshperspect.a026286
33. Correa H. Li–Fraumeni Syndrome. J Pediatr Genet. 2016;5(2):84-8. DOI:10.1055/s-0036-1579759
34. Pepper C, Thomas A, Hoy T. Leukemic and non-leukemic lymphocytes from patients with Li–Fraumeni syndrome demonstrate loss of p53 function, Bcl-2 family dysregulation and intrinsic resistance to conventional chemotherapeutic drugs but not flavopiridol. Cell Cycle. 2003;2(1):53-8
35. Akpan IJ, Osman AEG, Drazer MW, Godley LA. Hereditary Myelodysplastic Syndrome and Acute Myeloid Leukemia: Diagnosis, Questions, and Controversies. Curr Hematol Malig Rep. 2018;13(6):426‑34. DOI:10.1007/s11899-018-0473-7
36. University of Chicago Hematopoietic Malignancies Cancer Risk Team. How I diagnose and manage individuals at risk for inherited myeloid malignancies. Blood. 2016;128(14):1800-13. DOI:10.1182/blood-2016-05-670240
________________________________________________
1. Garber JE, Offit K. Hereditary cancer predisposition syndromes. J Clin Oncol. 2005;23(2):276-92. DOI:10.1200/JCO.2005.10.042
2. Ngeow J, Liu C, Zhou K, et al. Detecting Germline PTEN Mutations Among At-Risk Patients With Cancer: An Age- and Sex-Specific Cost-Effectiveness Analysis. J Clin Oncol. 2015;33(23):2537-44. DOI:10.1200/JCO.2014.60.3456
3. Rahman N. Realizing the promise of cancer predisposition genes. Nature. 2014;505(7483):302-8. DOI:10.1038/nature12981
4. Collopy LC, Walne AJ, Cardoso S, et al. Triallelic and epigenetic-like inheritance in human disorders of telomerase. Blood. 2015;126(2):176‑84. DOI:10.1182/blood-2015-03-633388
5. Steinke V, Engel C, Büttner R, et al. Hereditary nonpolyposis colorectal cancer (HNPCC)/Lynch syndrome. Dtsch Arztebl Int. 2013;110(3):32-8. DOI:10.3238/arztebl.2013.0032
6. Lax SF. Hereditary breast and ovarian cancer. Pathologe. 2017;38(3):149‑55. DOI:10.1007/s00292-017-0298-5
7. DiNardo CD, Bannon SA, Routbort M, et al. Evaluation of Patients and Families With Concern for Predispositions to Hematologic Malignancies Within the Hereditary Hematologic Malignancy Clinic (HHMC). Clin Lymphoma Myeloma Leuk. 2016;16(7):417-28.e2. DOI:10.1016/j.clml.2016.04.001
8. Godley LA, Shimamura A. Genetic predisposition to hematologic malignancies: management and surveillance. Blood. 2017;130(4):424-32. DOI:10.1182/blood-2017-02-735290
9. Bannon SA, DiNardo CD. Hereditary Predispositions to Myelodysplastic Syndrome. Int J Mol Sci. 2016;17(6):838. DOI:10.3390/ijms17060838
10. Topka S, Vijai J, Walsh MF, et al. Germline ETV6 Mutations Confer Susceptibility to Acute Lymphoblastic Leukemia and Thrombocytopenia. PLoS Genet. 2015;11(6):e1005262. DOI:10.1371/journal.pgen.1005262
11. Pippucci T, Savoia A, Perrotta S, et al. Mutations in the 5’ UTR of ANKRD26, the ankirin repeat domain 26 gene, cause an autosomal-dominant form of inherited thrombocytopenia, THC2. Am J Hum Genet. 2011;88(1):115-20. DOI:10.1016/j.ajhg.2010.12.006
12. Tawana K, Fitzgibbon J. Inherited DDX41 mutations: 11 genes and counting. Blood. 2016;127(8):960-1. DOI:10.1182/blood-2016-01-690909
13. Maciejewski JP, Padgett RA, Brown AL, Müller-Tidow C. DDX41-related myeloid neoplasia. Semin Hematol. 2017;54(2):94-7.
DOI:10.1053/j.seminhematol.2017.04.007
14. Kanagal-Shamanna R, Loghavi S, DiNardo CD, et al. Bone marrow pathologic abnormalities in familial platelet disorder with propensity for myeloid malignancy and germline RUNX1 mutation. Haematologica. 2017;102(10):1661-70. DOI:10.3324/haematol.2017.167726
15. Wlodarski MW, Hirabayashi S, Pastor V, et al. Prevalence, clinical characteristics, and prognosis of GATA2-related myelodysplastic syndromes in children and adolescents. Blood. 2016;127(11):1387-97. DOI:10.1182/blood-2015-09-669937
16. Nickels EM, Soodalter J, Churpek JE, Godley LA. Recognizing familial myeloid leukemia in adults. Ther Adv Hematol. 2013;4(4):254-69. DOI:10.1177/2040620713487399
17. Chompret A, Brugières L, Ronsin M, et al. P53 germline mutations in childhood cancers and cancer risk for carrier individuals. Br J Cancer. 2000;82(12):1932-7. DOI:10.1054/bjoc.2000.1167
18. Bougeard G, Renaux-Petel M, Flaman JM, et al. Revisiting Li–Fraumeni Syndrome From TP53 Mutation Carriers. J Clin Oncol. 2015;33(21):2345-52. DOI:10.1200/JCO.2014.59.5728
19. Valdez JM, Nichols KE, Kesserwan C. Li–Fraumeni syndrome: a paradigm for the understanding of hereditary cancer predisposition. Br J Haematol. 2017;176(4):539-52. DOI:10.1111/bjh.14461
20. Birch JM, Hartley AL, Marsden HB, et al. Excess risk of breast cancer in the mothers of children with soft tissue sarcomas. Br J Cancer. 1984;49(3):325-31. DOI:10.1038/bjc.1984.51
21. Li FP, Fraumeni JFJr,, Mulvihill JJ, et al. A cancer family syndrome in twenty-four kindreds. Cancer Res. 1988;48(18):5358-62
22. Birch JM, Hartley AL, Blair V, et al. Identification of factors associated with high breast cancer risk in the mothers of children with soft tissue sarcoma. J Clin Oncol. 1990;8(4):583-90. DOI:10.1200/JCO.1990.8.4.583
23. Swaminathan M, Bannon SA, Routbort M, et al. Hematologic malignancies and Li–Fraumeni syndrome. Cold Spring Harb Mol Case Stud. 2019;5(1):a003210. DOI:10.1101/mcs.a003210
24. Varley JM, Evans DG, Birch JM. Li–Fraumeni syndrome--a molecular and clinical review. Br J Cancer. 1997;76(1):1-14. DOI:10.1038/bjc.1997.328
25. McBride KA, Ballinger ML, Killick E, et al. Li–Fraumeni syndrome: cancer risk assessment and clinical management. Nat Rev Clin Oncol. 2014;11(5):260-71. DOI:10.1038/nrclinonc.2014.41
26. Petitjean A, Mathe E, Kato S, et al. Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database. Hum Mutat. 2007;28(6):622-9. DOI:10.1002/humu.20495
27. Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391-405. DOI:10.1182/blood-2016-03-643544
28. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Oxford, 1999; p. 95-8.
29. Zarubina KI, Parovichnikova EN, Baskhaeva GA, et al. Diagnostics and Treatment Challenges of Ph-like Acute Lymphoblastic Leukemia: A Description of 3 Clinical Cases. Terapevticheskii Arkhiv (Ter. Arkh.). 2018;90(7):110-7 (in Russian)
DOI:10.26442/terarkh2018907110-117
30. Holmfeldt L, Wei L, Diaz-Flores E, et al. The genomic landscape of hypodiploid acute lymphoblastic leukemia. Nat Genet. 2013;45(3):242‑52. DOI:10.1038/ng.2532
31. Hsiao MH, Yu AL, Yeargin J, et al. Nonhereditary p53 mutations in T-cell acute lymphoblastic leukemia are associated with the relapse phase. Blood. 1994;83(10):2922-30
32. Comeaux EQ, Mullighan CG. TP53 Mutations in Hypodiploid Acute Lymphoblastic Leukemia. Cold Spring Harb Perspect Med. 2017;7(3):a026286. DOI:10.1101/cshperspect.a026286
33. Correa H. Li–Fraumeni Syndrome. J Pediatr Genet. 2016;5(2):84-8. DOI:10.1055/s-0036-1579759
34. Pepper C, Thomas A, Hoy T. Leukemic and non-leukemic lymphocytes from patients with Li–Fraumeni syndrome demonstrate loss of p53 function, Bcl-2 family dysregulation and intrinsic resistance to conventional chemotherapeutic drugs but not flavopiridol. Cell Cycle. 2003;2(1):53-8
35. Akpan IJ, Osman AEG, Drazer MW, Godley LA. Hereditary Myelodysplastic Syndrome and Acute Myeloid Leukemia: Diagnosis, Questions, and Controversies. Curr Hematol Malig Rep. 2018;13(6):426‑34. DOI:10.1007/s11899-018-0473-7
36. University of Chicago Hematopoietic Malignancies Cancer Risk Team. How I diagnose and manage individuals at risk for inherited myeloid malignancies. Blood. 2016;128(14):1800-13. DOI:10.1182/blood-2016-05-670240
ФГБУ «Национальный медицинский исследовательский центр гематологии» Минздрава России, Москва, Россия
*ksenijazarubina@mail.com
________________________________________________
Kseniia I. Zarubina*, Elena N. Parovichnikova, Vadim L. Surin, Olesia S. Pshenichnikova, Olga A. Gavrilina, Galina A. Isinova, Vera V. Troitskaya, Andrei N. Sokolov, Irina V. Galtseva, Nikolai M. Kapranov, Juliia O. Davydova, Tatiana N. Obukhova, Elena E. Nikulina, Andrei B. Sudarikov, Valerii G. Savchenko