Материалы доступны только для специалистов сферы здравоохранения.
Чтобы посмотреть материал полностью
Авторизуйтесь
или зарегистрируйтесь.
Значимость клинико-лабораторных индексов в диагностике неалкогольной жировой болезни печени - Журнал Терапевтический архив №8 Вопросы лечения 2021
Значимость клинико-лабораторных индексов в диагностике неалкогольной жировой болезни печени
Носов А.Е., Зенина М.Т., Горбушина О.Ю., Байдина А.С., Власова Е.М., Алексеев В.Б. Значимость клинико-лабораторных индексов в диагностике неалкогольной жировой болезни печени. Терапевтический архив. 2021; 93 (8): 883–889.
DOI: 10.26442/00403660.2021.08.200973
DOI: 10.26442/00403660.2021.08.200973
DOI: 10.26442/00403660.2021.08.200973
________________________________________________
DOI: 10.26442/00403660.2021.08.200973
Материалы доступны только для специалистов сферы здравоохранения.
Чтобы посмотреть материал полностью
Авторизуйтесь
или зарегистрируйтесь.
Аннотация
Цель. Изучить значимость клинико-лабораторных неинвазивных индексов в сочетании с индексом инсулинорезистентности в диагностике неалкогольной жировой болезни печени (НАЖБП) при скрининговых обследованиях.
Материалы и методы. В исследование включены 348 работников нефтедобывающего предприятия. Выполнялось ультразвуковое сканирование (УЗИ) печени с оценкой критериев НАЖБП. Вычислялись индексы: fatty liver index (FLI), hepatic steatosis index (HSI), lipid accumulation products (LAP), индекс инсулинорезистентности (HOMA1-IR). Прогностическая значимость данных индексов в отношении вероятности диагностики НАЖБП по данным УЗИ изучалась в моделях однофакторной и многофакторной логистической регрессии с выполнением ROC-анализа.
Результаты. Индексы FLI, HSI и HOMA1-IR в моделях однофакторной логистической регрессии показали высокую статистическую значимость в диагностике НАЖБП с хорошей калибрационной способностью моделей. Доля правильной бинарной классификации в отношении наличия/отсутствия НАЖБП составила для FLI 82,4%, для HSI – 79,7%, а для HOMA1-IR – 72,7% (р<0,001). По данным ROC-анализа, площадь под кривой (AUC) при диагностике НАЖБП составила для этих индексов 0,917 (95% доверительный интервал – ДИ 0,889–0,945), 0,880 (95% ДИ 0,846–0,915) и 0,849 (95% ДИ 0,764–0,934) соответственно. Многофакторная логистическая регрессионная модель с включением FLI и HOMA1-IR позволила достичь правильной бинарной классификации в отношении НАЖБП в 84,2% случаев, а в ROC-анализе на основании предсказанных в многофакторной логистической модели вероятностей в качестве тестируемой переменной и НАЖБП при УЗИ в качестве переменной состояния установили значение AUC=0,933 (95% ДИ 0,882–0,985).
Заключение. Изученные клинико-лабораторные индексы (FLI, HSI, HOMA1-IR) обладают высокой диагностической значимостью в отношении НАЖБП, установленной по ультрасонографическим критериям. Применение предложенной двухфакторной логистической модели позволяет в условиях массового обследования достаточно точно прогнозировать наличие НАЖБП без дополнительного широкого привлечения специалистов ультразвуковой диагностики в целях рационального использования медицинских ресурсов.
Ключевые слова: неалкогольная жировая болезнь печени, ультразвуковое сканирование печени, инсулинорезистентность, индексы стеатоза
Materials and methods. The study involved 348 employees working at oil-production enterprises. An ultrasound scanning of the liver was carried out to assess the criteria of NAFLD. The following indexes were calculated: fatty liver index (FLI), hepatic steatosis index (HSI), lipid accumulation products (LAP), and homeostasis model assessment of insulin resistance (HOMA1-IR). The prognostic significance of these indexes in relation to the probability of NAFLD diagnosis based on ultrasound data was studied using single-factor and multi-factor logistic regression models followed by ROC-analysis.
Results. The FLI, HSI, and HOMA1-IR indexes in single-factor logistic regression models showed a high statistical significance when carrying out diagnostic assessment the NAFLD with good model calibration capability. The percentage of correct binary classification regards the presence/absence of NAFLD amounted to 82.4% for FLI, 79.7% for HSI, and 72.7% for HOMA1-IR (p<0.001). According to the ROC-analysis, the area under the curve (AUC) by the NAFLD diagnostic assessment was 0.917 (95% CI 0.889–0.945); 0.880 (95% CI 0.846–0.915) and 0.849 (95% CI 0.764–0.934), respectively. The multi-factor logistic regression model with the inclusion of FLI and HOMA1-IR 72.7% enabled us to achieve the correct binary classification in terms of NAFLD in 84.2% of cases. When it comes to the ROC-analysis, considering the probabilities predicted in the multi-factor logistic model as the test variable and NAFLD in ultrasound examination as the state variable, it was possible to set the value of AUC 0.933 (95% CI 0.882–0.985).
Conclusion. The studied clinical and laboratory indexes (FLI, HSI, HOMA1-IR) have a high diagnostic significance regarding NAFLD diagnosed using ultrasonographic criteria. The application of the proposed two-factor logistics model makes it possible to predict the presence of NAFLD when examining a large number of patients, without involving additional ultrasound diagnostics specialists in order to use medical resources rationally.
Keywords: non-alcoholic fatty liver disease, ultrasound scanning of the liver, insulin resistance, steatosis indexes
Материалы и методы. В исследование включены 348 работников нефтедобывающего предприятия. Выполнялось ультразвуковое сканирование (УЗИ) печени с оценкой критериев НАЖБП. Вычислялись индексы: fatty liver index (FLI), hepatic steatosis index (HSI), lipid accumulation products (LAP), индекс инсулинорезистентности (HOMA1-IR). Прогностическая значимость данных индексов в отношении вероятности диагностики НАЖБП по данным УЗИ изучалась в моделях однофакторной и многофакторной логистической регрессии с выполнением ROC-анализа.
Результаты. Индексы FLI, HSI и HOMA1-IR в моделях однофакторной логистической регрессии показали высокую статистическую значимость в диагностике НАЖБП с хорошей калибрационной способностью моделей. Доля правильной бинарной классификации в отношении наличия/отсутствия НАЖБП составила для FLI 82,4%, для HSI – 79,7%, а для HOMA1-IR – 72,7% (р<0,001). По данным ROC-анализа, площадь под кривой (AUC) при диагностике НАЖБП составила для этих индексов 0,917 (95% доверительный интервал – ДИ 0,889–0,945), 0,880 (95% ДИ 0,846–0,915) и 0,849 (95% ДИ 0,764–0,934) соответственно. Многофакторная логистическая регрессионная модель с включением FLI и HOMA1-IR позволила достичь правильной бинарной классификации в отношении НАЖБП в 84,2% случаев, а в ROC-анализе на основании предсказанных в многофакторной логистической модели вероятностей в качестве тестируемой переменной и НАЖБП при УЗИ в качестве переменной состояния установили значение AUC=0,933 (95% ДИ 0,882–0,985).
Заключение. Изученные клинико-лабораторные индексы (FLI, HSI, HOMA1-IR) обладают высокой диагностической значимостью в отношении НАЖБП, установленной по ультрасонографическим критериям. Применение предложенной двухфакторной логистической модели позволяет в условиях массового обследования достаточно точно прогнозировать наличие НАЖБП без дополнительного широкого привлечения специалистов ультразвуковой диагностики в целях рационального использования медицинских ресурсов.
Ключевые слова: неалкогольная жировая болезнь печени, ультразвуковое сканирование печени, инсулинорезистентность, индексы стеатоза
________________________________________________
Materials and methods. The study involved 348 employees working at oil-production enterprises. An ultrasound scanning of the liver was carried out to assess the criteria of NAFLD. The following indexes were calculated: fatty liver index (FLI), hepatic steatosis index (HSI), lipid accumulation products (LAP), and homeostasis model assessment of insulin resistance (HOMA1-IR). The prognostic significance of these indexes in relation to the probability of NAFLD diagnosis based on ultrasound data was studied using single-factor and multi-factor logistic regression models followed by ROC-analysis.
Results. The FLI, HSI, and HOMA1-IR indexes in single-factor logistic regression models showed a high statistical significance when carrying out diagnostic assessment the NAFLD with good model calibration capability. The percentage of correct binary classification regards the presence/absence of NAFLD amounted to 82.4% for FLI, 79.7% for HSI, and 72.7% for HOMA1-IR (p<0.001). According to the ROC-analysis, the area under the curve (AUC) by the NAFLD diagnostic assessment was 0.917 (95% CI 0.889–0.945); 0.880 (95% CI 0.846–0.915) and 0.849 (95% CI 0.764–0.934), respectively. The multi-factor logistic regression model with the inclusion of FLI and HOMA1-IR 72.7% enabled us to achieve the correct binary classification in terms of NAFLD in 84.2% of cases. When it comes to the ROC-analysis, considering the probabilities predicted in the multi-factor logistic model as the test variable and NAFLD in ultrasound examination as the state variable, it was possible to set the value of AUC 0.933 (95% CI 0.882–0.985).
Conclusion. The studied clinical and laboratory indexes (FLI, HSI, HOMA1-IR) have a high diagnostic significance regarding NAFLD diagnosed using ultrasonographic criteria. The application of the proposed two-factor logistics model makes it possible to predict the presence of NAFLD when examining a large number of patients, without involving additional ultrasound diagnostics specialists in order to use medical resources rationally.
Keywords: non-alcoholic fatty liver disease, ultrasound scanning of the liver, insulin resistance, steatosis indexes
Полный текст
Список литературы
1. Jennison E, Patel J, Scorletti E, Byrne CD. Diagnosis and management of non-alcoholic fatty liver disease. Postgrad Med J. 2019;95(1124):314-22.
DOI:10.1136/postgradmedj-2018-136316
2. European Association for the Study of the Liver (EASL); European Association for the Study of Diabetes (EASD); European Association for the Study of Obesity (EASO). EASL-EASD-EASO Clinical Practice Guidelines for the Management of Non-Alcoholic Fatty Liver Disease. Obesity Facts. 2016;9(2):65-90. DOI:10.1159/000443344
3. Singh S, Allen AM, Wang Z, et al. Fibrosis progression in nonalcoholic fatty liver vs nonalcoholic steatohepatitis: a systematic review and meta-analysis of paired-biopsy studies. Clinical Gastroenterol Hepatol. 2015;13:643-54. DOI:10.1016/j.cgh.2014.04.014
4. Targher G, Byrne CD, Lonardo A, et al. Non-alcoholic fatty liver disease and risk of incident cardiovascular disease: A meta-analysis.
J Hepatol. 2016;65(3):589-600. DOI:10.1016/j.jhep.2016.05.013
5. Byrne CD, Targher G. NAFLD: A multisystem disease. J Hepatol. 2015;62(1):47-64. DOI:10.1016/j.jhep.2014.12.012
6. Mantovani A, Zaza G, Byrne CD, et al. Nonalcoholic fatty liver disease increases risk of incident chronic kidney disease: A systematic review and meta-analysis. Metabolism. 2018;79:64-76. DOI:10.1016/j.metabol.2017.11.003
7. Оганов Р.Г., Симаненков В.И., Бакулин И.Г., и др. Коморбидная патология в клинической практике. Кардиоваскулярная терапия и профилактика. 2019;18(1):5-66 [Oganov RG, Simanenkov VI, Bakulin IG, et al. Comorbidities in clinical practice. Algorithms for diagnostics and treatment. Cardiovascular Therapy and Prevention. 2019;(1):5-66 (in Russian)]. DOI:10.15829/1728-8800-2019-1-5-66
8. Практическое руководство по ультразвуковой диагностике. Общая ультразвуковая диагностика. Под ред. В.В. Митькова. М.: Видар-М, 2005
[A practical guide to ultrasound diagnostics. General ultrasound diagnostics. Ed. VV Mitkov. Moscow: Vidar-M, 2005 (in Russian)].
9. Li X, Zhou Z, Qi H, et al. Replacement of insulin by fasting C-peptide in modified homeostasis model assessment to evaluate insulin resistance and islet beta cell function. Journal of Central South University. Medical sciences. 2004;29(4):419-23
10. Basukala P, Jha B, Yadav BK, Shrestha PK. Determination of Insulin Resistance and Beta-Cell Function Using Homeostatic Model Assessment in Type 2 Diabetic Patients at Diagnosis. Diabetes Metab J. 2018;9(3):790. DOI:10.4172/2155-6156.1000790
11. Валеева В.Ф., Нуруллина Г.И. Диагностическая ценность С-пептида и модифицированных индексов HOMA при различных нарушениях углеводного обмена на фоне терапии глюкокортикоидами. Мед. вестн. юга России. 2018;9(1):23-31 [Valeeva FV, Nurullina GI. C-peptide and modified HOMA-index in different carbohydrate metabolism disturbances during glucocorticoid therapy. Medical Herald of the South of Russia. 2018;9(1):23-31 (in Russian)]. DOI:10.21886/2219-8075-2018-9-1-23-31
12. Nurullina G. The role of HOMA-IR and HOMA_ISLET indices in different carbohydrate metabolism disorders during glucocorticoid therapy. Ann Rheum Dis. 2017;76:1161. DOI:10.1136/annrheumdis-2017-eular.5721
13. Browning JD, Szczepaniak LS, Dobbins R, et al. Prevalence of hepatic steatosis in an urban population in the United States: impact of ethnicity. Hepatology. 2004;40:1387-95. DOI:10.1002/hep.20466
14. Prati D, Taioli E, Zanella A, et al. Updated deinitions of healthy ranges for serum alanine aminotransferase levels. Ann Intern Med. 2002;137:1-10.
DOI:10.7326/0003-4819-137-1-200207020-00006
15. Ballestri S, Nascimbeni F, Baldelli E, et al. Ultrasonographic fatty liver indicator detects mild steatosis and correlates with metabolic/histological parameters in various liver diseases. Metabolism. 2017;72:57-65. DOI:10.1016/j.metabol.2017.04.003
16. Bedogni G, Bellentani S, Miglioli L, et al. The Fatty Liver Index: a simple and accurate predictor of hepatic steatosis in the general population. BMC Gastroenterol. 2006;6(33). DOI:10.1186/1471-230X-6-33
17. Bedogni G, Kahn HS, Bellentani S, Tiribelli C. A simple index of lipid overaccumulation is a good marker of liver steatosis. BMC Gastroenterol. 2010;10(98).
DOI:10.1186/1471-230X-10-98
18. Xia C, Li R, Zhang S, et al. Lipid accumulation product is a powerful index for recognizing insulin resistance in non-diabetic individuals. Eur J Clin Nutr. 2012;66(9):1035-8. DOI:10.1038/ejcn.2012.83
19. Zhu J, He M, Zhang Y, et al. Validation of simple indexes for nonalcoholic fatty liver disease in western China: a retrospective cross-sectional study. Endocr J. 2018;65(3):373-81. DOI:10.1507/endocrj.EJ17-0466
20. Lee JH, Kim D, Kim HJ, et al. Hepatic steatosis index: a simple screening tool reflecting nonalcoholic fatty liver disease. Dig Liver Dis. 2010;42:503-8. DOI:10.1016/j.dld.2009.08.002
21. Cuthbertson DJ, Weickert MO, Lythgoe D, et al. External validation of the fatty liver index and lipid accumulation product indices, using 1H-magnetic resonance spectroscopy, to identify hepatic steatosis in healthy controls and obese, insulin-resistant individuals. Eur J Endocrinol. 2014;171(5):561-9. DOI:10.1530/EJE-14-0112
22. Huang X, Xu M, Chen Y, et al. Validation of the Fatty Liver Index for Nonalcoholic Fatty Liver Disease in Middle-Aged and Elderly Chinese. Medicine. 2015;94(40):e1682. DOI:10.1097/MD.0000000000001682
23. Yang BL, Wu WC, Fang KC, et al. External validation of fatty liver index for identifying ultrasonographic fatty liver in a large-scale cross-sectional study in Taiwan. PLoS One. 2015;10(3):e0120443. DOI:10.1371/journal.pone.0120443
DOI:10.1136/postgradmedj-2018-136316
2. European Association for the Study of the Liver (EASL); European Association for the Study of Diabetes (EASD); European Association for the Study of Obesity (EASO). EASL-EASD-EASO Clinical Practice Guidelines for the Management of Non-Alcoholic Fatty Liver Disease. Obesity Facts. 2016;9(2):65-90. DOI:10.1159/000443344
3. Singh S, Allen AM, Wang Z, et al. Fibrosis progression in nonalcoholic fatty liver vs nonalcoholic steatohepatitis: a systematic review and meta-analysis of paired-biopsy studies. Clinical Gastroenterol Hepatol. 2015;13:643-54. DOI:10.1016/j.cgh.2014.04.014
4. Targher G, Byrne CD, Lonardo A, et al. Non-alcoholic fatty liver disease and risk of incident cardiovascular disease: A meta-analysis.
J Hepatol. 2016;65(3):589-600. DOI:10.1016/j.jhep.2016.05.013
5. Byrne CD, Targher G. NAFLD: A multisystem disease. J Hepatol. 2015;62(1):47-64. DOI:10.1016/j.jhep.2014.12.012
6. Mantovani A, Zaza G, Byrne CD, et al. Nonalcoholic fatty liver disease increases risk of incident chronic kidney disease: A systematic review and meta-analysis. Metabolism. 2018;79:64-76. DOI:10.1016/j.metabol.2017.11.003
7. Oganov RG, Simanenkov VI, Bakulin IG, et al. Comorbidities in clinical practice. Algorithms for diagnostics and treatment. Cardiovascular Therapy and Prevention. 2019;(1):5-66 (in Russian) DOI:10.15829/1728-8800-2019-1-5-66
8. A practical guide to ultrasound diagnostics. General ultrasound diagnostics. Ed. VV Mitkov. Moscow: Vidar-M, 2005 (in Russian)
9. Li X, Zhou Z, Qi H, et al. Replacement of insulin by fasting C-peptide in modified homeostasis model assessment to evaluate insulin resistance and islet beta cell function. Journal of Central South University. Medical sciences. 2004;29(4):419-23
10. Basukala P, Jha B, Yadav BK, Shrestha PK. Determination of Insulin Resistance and Beta-Cell Function Using Homeostatic Model Assessment in Type 2 Diabetic Patients at Diagnosis. Diabetes Metab J. 2018;9(3):790. DOI:10.4172/2155-6156.1000790
11. Valeeva FV, Nurullina GI. C-peptide and modified HOMA-index in different carbohydrate metabolism disturbances during glucocorticoid therapy. Medical Herald of the South of Russia. 2018;9(1):23-31 (in Russian) DOI:10.21886/2219-8075-2018-9-1-23-31
12. Nurullina G. The role of HOMA-IR and HOMA_ISLET indices in different carbohydrate metabolism disorders during glucocorticoid therapy. Ann Rheum Dis. 2017;76:1161. DOI:10.1136/annrheumdis-2017-eular.5721
13. Browning JD, Szczepaniak LS, Dobbins R, et al. Prevalence of hepatic steatosis in an urban population in the United States: impact of ethnicity. Hepatology. 2004;40:1387-95. DOI:10.1002/hep.20466
14. Prati D, Taioli E, Zanella A, et al. Updated deinitions of healthy ranges for serum alanine aminotransferase levels. Ann Intern Med. 2002;137:1-10.
DOI:10.7326/0003-4819-137-1-200207020-00006
15. Ballestri S, Nascimbeni F, Baldelli E, et al. Ultrasonographic fatty liver indicator detects mild steatosis and correlates with metabolic/histological parameters in various liver diseases. Metabolism. 2017;72:57-65. DOI:10.1016/j.metabol.2017.04.003
16. Bedogni G, Bellentani S, Miglioli L, et al. The Fatty Liver Index: a simple and accurate predictor of hepatic steatosis in the general population. BMC Gastroenterol. 2006;6(33). DOI:10.1186/1471-230X-6-33
17. Bedogni G, Kahn HS, Bellentani S, Tiribelli C. A simple index of lipid overaccumulation is a good marker of liver steatosis. BMC Gastroenterol. 2010;10(98).
DOI:10.1186/1471-230X-10-98
18. Xia C, Li R, Zhang S, et al. Lipid accumulation product is a powerful index for recognizing insulin resistance in non-diabetic individuals. Eur J Clin Nutr. 2012;66(9):1035-8. DOI:10.1038/ejcn.2012.83
19. Zhu J, He M, Zhang Y, et al. Validation of simple indexes for nonalcoholic fatty liver disease in western China: a retrospective cross-sectional study. Endocr J. 2018;65(3):373-81. DOI:10.1507/endocrj.EJ17-0466
20. Lee JH, Kim D, Kim HJ, et al. Hepatic steatosis index: a simple screening tool reflecting nonalcoholic fatty liver disease. Dig Liver Dis. 2010;42:503-8. DOI:10.1016/j.dld.2009.08.002
21. Cuthbertson DJ, Weickert MO, Lythgoe D, et al. External validation of the fatty liver index and lipid accumulation product indices, using 1H-magnetic resonance spectroscopy, to identify hepatic steatosis in healthy controls and obese, insulin-resistant individuals. Eur J Endocrinol. 2014;171(5):561-9. DOI:10.1530/EJE-14-0112
22. Huang X, Xu M, Chen Y, et al. Validation of the Fatty Liver Index for Nonalcoholic Fatty Liver Disease in Middle-Aged and Elderly Chinese. Medicine. 2015;94(40):e1682. DOI:10.1097/MD.0000000000001682
23. Yang BL, Wu WC, Fang KC, et al. External validation of fatty liver index for identifying ultrasonographic fatty liver in a large-scale cross-sectional study in Taiwan. PLoS One. 2015;10(3):e0120443. DOI:10.1371/journal.pone.0120443
DOI:10.1136/postgradmedj-2018-136316
2. European Association for the Study of the Liver (EASL); European Association for the Study of Diabetes (EASD); European Association for the Study of Obesity (EASO). EASL-EASD-EASO Clinical Practice Guidelines for the Management of Non-Alcoholic Fatty Liver Disease. Obesity Facts. 2016;9(2):65-90. DOI:10.1159/000443344
3. Singh S, Allen AM, Wang Z, et al. Fibrosis progression in nonalcoholic fatty liver vs nonalcoholic steatohepatitis: a systematic review and meta-analysis of paired-biopsy studies. Clinical Gastroenterol Hepatol. 2015;13:643-54. DOI:10.1016/j.cgh.2014.04.014
4. Targher G, Byrne CD, Lonardo A, et al. Non-alcoholic fatty liver disease and risk of incident cardiovascular disease: A meta-analysis.
J Hepatol. 2016;65(3):589-600. DOI:10.1016/j.jhep.2016.05.013
5. Byrne CD, Targher G. NAFLD: A multisystem disease. J Hepatol. 2015;62(1):47-64. DOI:10.1016/j.jhep.2014.12.012
6. Mantovani A, Zaza G, Byrne CD, et al. Nonalcoholic fatty liver disease increases risk of incident chronic kidney disease: A systematic review and meta-analysis. Metabolism. 2018;79:64-76. DOI:10.1016/j.metabol.2017.11.003
7. Оганов Р.Г., Симаненков В.И., Бакулин И.Г., и др. Коморбидная патология в клинической практике. Кардиоваскулярная терапия и профилактика. 2019;18(1):5-66 [Oganov RG, Simanenkov VI, Bakulin IG, et al. Comorbidities in clinical practice. Algorithms for diagnostics and treatment. Cardiovascular Therapy and Prevention. 2019;(1):5-66 (in Russian)]. DOI:10.15829/1728-8800-2019-1-5-66
8. Практическое руководство по ультразвуковой диагностике. Общая ультразвуковая диагностика. Под ред. В.В. Митькова. М.: Видар-М, 2005
[A practical guide to ultrasound diagnostics. General ultrasound diagnostics. Ed. VV Mitkov. Moscow: Vidar-M, 2005 (in Russian)].
9. Li X, Zhou Z, Qi H, et al. Replacement of insulin by fasting C-peptide in modified homeostasis model assessment to evaluate insulin resistance and islet beta cell function. Journal of Central South University. Medical sciences. 2004;29(4):419-23
10. Basukala P, Jha B, Yadav BK, Shrestha PK. Determination of Insulin Resistance and Beta-Cell Function Using Homeostatic Model Assessment in Type 2 Diabetic Patients at Diagnosis. Diabetes Metab J. 2018;9(3):790. DOI:10.4172/2155-6156.1000790
11. Валеева В.Ф., Нуруллина Г.И. Диагностическая ценность С-пептида и модифицированных индексов HOMA при различных нарушениях углеводного обмена на фоне терапии глюкокортикоидами. Мед. вестн. юга России. 2018;9(1):23-31 [Valeeva FV, Nurullina GI. C-peptide and modified HOMA-index in different carbohydrate metabolism disturbances during glucocorticoid therapy. Medical Herald of the South of Russia. 2018;9(1):23-31 (in Russian)]. DOI:10.21886/2219-8075-2018-9-1-23-31
12. Nurullina G. The role of HOMA-IR and HOMA_ISLET indices in different carbohydrate metabolism disorders during glucocorticoid therapy. Ann Rheum Dis. 2017;76:1161. DOI:10.1136/annrheumdis-2017-eular.5721
13. Browning JD, Szczepaniak LS, Dobbins R, et al. Prevalence of hepatic steatosis in an urban population in the United States: impact of ethnicity. Hepatology. 2004;40:1387-95. DOI:10.1002/hep.20466
14. Prati D, Taioli E, Zanella A, et al. Updated deinitions of healthy ranges for serum alanine aminotransferase levels. Ann Intern Med. 2002;137:1-10.
DOI:10.7326/0003-4819-137-1-200207020-00006
15. Ballestri S, Nascimbeni F, Baldelli E, et al. Ultrasonographic fatty liver indicator detects mild steatosis and correlates with metabolic/histological parameters in various liver diseases. Metabolism. 2017;72:57-65. DOI:10.1016/j.metabol.2017.04.003
16. Bedogni G, Bellentani S, Miglioli L, et al. The Fatty Liver Index: a simple and accurate predictor of hepatic steatosis in the general population. BMC Gastroenterol. 2006;6(33). DOI:10.1186/1471-230X-6-33
17. Bedogni G, Kahn HS, Bellentani S, Tiribelli C. A simple index of lipid overaccumulation is a good marker of liver steatosis. BMC Gastroenterol. 2010;10(98).
DOI:10.1186/1471-230X-10-98
18. Xia C, Li R, Zhang S, et al. Lipid accumulation product is a powerful index for recognizing insulin resistance in non-diabetic individuals. Eur J Clin Nutr. 2012;66(9):1035-8. DOI:10.1038/ejcn.2012.83
19. Zhu J, He M, Zhang Y, et al. Validation of simple indexes for nonalcoholic fatty liver disease in western China: a retrospective cross-sectional study. Endocr J. 2018;65(3):373-81. DOI:10.1507/endocrj.EJ17-0466
20. Lee JH, Kim D, Kim HJ, et al. Hepatic steatosis index: a simple screening tool reflecting nonalcoholic fatty liver disease. Dig Liver Dis. 2010;42:503-8. DOI:10.1016/j.dld.2009.08.002
21. Cuthbertson DJ, Weickert MO, Lythgoe D, et al. External validation of the fatty liver index and lipid accumulation product indices, using 1H-magnetic resonance spectroscopy, to identify hepatic steatosis in healthy controls and obese, insulin-resistant individuals. Eur J Endocrinol. 2014;171(5):561-9. DOI:10.1530/EJE-14-0112
22. Huang X, Xu M, Chen Y, et al. Validation of the Fatty Liver Index for Nonalcoholic Fatty Liver Disease in Middle-Aged and Elderly Chinese. Medicine. 2015;94(40):e1682. DOI:10.1097/MD.0000000000001682
23. Yang BL, Wu WC, Fang KC, et al. External validation of fatty liver index for identifying ultrasonographic fatty liver in a large-scale cross-sectional study in Taiwan. PLoS One. 2015;10(3):e0120443. DOI:10.1371/journal.pone.0120443
________________________________________________
DOI:10.1136/postgradmedj-2018-136316
2. European Association for the Study of the Liver (EASL); European Association for the Study of Diabetes (EASD); European Association for the Study of Obesity (EASO). EASL-EASD-EASO Clinical Practice Guidelines for the Management of Non-Alcoholic Fatty Liver Disease. Obesity Facts. 2016;9(2):65-90. DOI:10.1159/000443344
3. Singh S, Allen AM, Wang Z, et al. Fibrosis progression in nonalcoholic fatty liver vs nonalcoholic steatohepatitis: a systematic review and meta-analysis of paired-biopsy studies. Clinical Gastroenterol Hepatol. 2015;13:643-54. DOI:10.1016/j.cgh.2014.04.014
4. Targher G, Byrne CD, Lonardo A, et al. Non-alcoholic fatty liver disease and risk of incident cardiovascular disease: A meta-analysis.
J Hepatol. 2016;65(3):589-600. DOI:10.1016/j.jhep.2016.05.013
5. Byrne CD, Targher G. NAFLD: A multisystem disease. J Hepatol. 2015;62(1):47-64. DOI:10.1016/j.jhep.2014.12.012
6. Mantovani A, Zaza G, Byrne CD, et al. Nonalcoholic fatty liver disease increases risk of incident chronic kidney disease: A systematic review and meta-analysis. Metabolism. 2018;79:64-76. DOI:10.1016/j.metabol.2017.11.003
7. Oganov RG, Simanenkov VI, Bakulin IG, et al. Comorbidities in clinical practice. Algorithms for diagnostics and treatment. Cardiovascular Therapy and Prevention. 2019;(1):5-66 (in Russian) DOI:10.15829/1728-8800-2019-1-5-66
8. A practical guide to ultrasound diagnostics. General ultrasound diagnostics. Ed. VV Mitkov. Moscow: Vidar-M, 2005 (in Russian)
9. Li X, Zhou Z, Qi H, et al. Replacement of insulin by fasting C-peptide in modified homeostasis model assessment to evaluate insulin resistance and islet beta cell function. Journal of Central South University. Medical sciences. 2004;29(4):419-23
10. Basukala P, Jha B, Yadav BK, Shrestha PK. Determination of Insulin Resistance and Beta-Cell Function Using Homeostatic Model Assessment in Type 2 Diabetic Patients at Diagnosis. Diabetes Metab J. 2018;9(3):790. DOI:10.4172/2155-6156.1000790
11. Valeeva FV, Nurullina GI. C-peptide and modified HOMA-index in different carbohydrate metabolism disturbances during glucocorticoid therapy. Medical Herald of the South of Russia. 2018;9(1):23-31 (in Russian) DOI:10.21886/2219-8075-2018-9-1-23-31
12. Nurullina G. The role of HOMA-IR and HOMA_ISLET indices in different carbohydrate metabolism disorders during glucocorticoid therapy. Ann Rheum Dis. 2017;76:1161. DOI:10.1136/annrheumdis-2017-eular.5721
13. Browning JD, Szczepaniak LS, Dobbins R, et al. Prevalence of hepatic steatosis in an urban population in the United States: impact of ethnicity. Hepatology. 2004;40:1387-95. DOI:10.1002/hep.20466
14. Prati D, Taioli E, Zanella A, et al. Updated deinitions of healthy ranges for serum alanine aminotransferase levels. Ann Intern Med. 2002;137:1-10.
DOI:10.7326/0003-4819-137-1-200207020-00006
15. Ballestri S, Nascimbeni F, Baldelli E, et al. Ultrasonographic fatty liver indicator detects mild steatosis and correlates with metabolic/histological parameters in various liver diseases. Metabolism. 2017;72:57-65. DOI:10.1016/j.metabol.2017.04.003
16. Bedogni G, Bellentani S, Miglioli L, et al. The Fatty Liver Index: a simple and accurate predictor of hepatic steatosis in the general population. BMC Gastroenterol. 2006;6(33). DOI:10.1186/1471-230X-6-33
17. Bedogni G, Kahn HS, Bellentani S, Tiribelli C. A simple index of lipid overaccumulation is a good marker of liver steatosis. BMC Gastroenterol. 2010;10(98).
DOI:10.1186/1471-230X-10-98
18. Xia C, Li R, Zhang S, et al. Lipid accumulation product is a powerful index for recognizing insulin resistance in non-diabetic individuals. Eur J Clin Nutr. 2012;66(9):1035-8. DOI:10.1038/ejcn.2012.83
19. Zhu J, He M, Zhang Y, et al. Validation of simple indexes for nonalcoholic fatty liver disease in western China: a retrospective cross-sectional study. Endocr J. 2018;65(3):373-81. DOI:10.1507/endocrj.EJ17-0466
20. Lee JH, Kim D, Kim HJ, et al. Hepatic steatosis index: a simple screening tool reflecting nonalcoholic fatty liver disease. Dig Liver Dis. 2010;42:503-8. DOI:10.1016/j.dld.2009.08.002
21. Cuthbertson DJ, Weickert MO, Lythgoe D, et al. External validation of the fatty liver index and lipid accumulation product indices, using 1H-magnetic resonance spectroscopy, to identify hepatic steatosis in healthy controls and obese, insulin-resistant individuals. Eur J Endocrinol. 2014;171(5):561-9. DOI:10.1530/EJE-14-0112
22. Huang X, Xu M, Chen Y, et al. Validation of the Fatty Liver Index for Nonalcoholic Fatty Liver Disease in Middle-Aged and Elderly Chinese. Medicine. 2015;94(40):e1682. DOI:10.1097/MD.0000000000001682
23. Yang BL, Wu WC, Fang KC, et al. External validation of fatty liver index for identifying ultrasonographic fatty liver in a large-scale cross-sectional study in Taiwan. PLoS One. 2015;10(3):e0120443. DOI:10.1371/journal.pone.0120443
Авторы
А.Е. Носов*, М.Т. Зенина, О.Ю. Горбушина, А.С. Байдина, Е.М. Власова, В.Б. Алексеев
ФБУН «Федеральный научный центр медико-профилактических технологий управления рисками здоровью населения» Роспотребнадзора, Пермь, Россия
*nosov@fcrisk.ru
Federal Scientific Center for Medical and Preventive Health Risk Management Technologies, Perm, Russia
*nosov@fcrisk.ru
ФБУН «Федеральный научный центр медико-профилактических технологий управления рисками здоровью населения» Роспотребнадзора, Пермь, Россия
*nosov@fcrisk.ru
________________________________________________
Federal Scientific Center for Medical and Preventive Health Risk Management Technologies, Perm, Russia
*nosov@fcrisk.ru
Цель портала OmniDoctor – предоставление профессиональной информации врачам, провизорам и фармацевтам.
