Материалы доступны только для специалистов сферы здравоохранения.
Чтобы посмотреть материал полностью
Авторизуйтесь
или зарегистрируйтесь.
Ферроптоз-ассоциированное повреждение как потенциальная мишень в терапии сердечно-сосудистых заболеваний - Журнал Терапевтический архив №12 Vario 2022
Ферроптоз-ассоциированное повреждение как потенциальная мишень в терапии сердечно-сосудистых заболеваний
Подзолков В.И., Тарзиманова А.И., Пономарева Л.А., Попова Е.Н., Пономарев А.Б. Ферроптоз-ассоциированное повреждение как потенциальная мишень в терапии сердечно-сосудистых заболеваний. Терапевтический архив. 2022;94(12):1421–1425. DOI: 10.26442/00403660.2022.12.201996
© ООО «КОНСИЛИУМ МЕДИКУМ», 2022 г.
© ООО «КОНСИЛИУМ МЕДИКУМ», 2022 г.
________________________________________________
Материалы доступны только для специалистов сферы здравоохранения.
Чтобы посмотреть материал полностью
Авторизуйтесь
или зарегистрируйтесь.
Аннотация
Смерть клеток является важной особенностью развития многоклеточных организмов, критическим фактором возникновения сердечно-сосудистых заболеваний. Понимание механизмов, управляющих клеточной гибелью, имеет решающее значение для определения ее роли в развитии патологического процесса. Однако наиболее известные типы клеточной смерти не могут полностью объяснить патофизиологию заболеваний сердца. Понимание того, как умирают кардиомиоциты и почему их регенерация ограничена, является важной областью исследований. Ферроптоз представляет собой железозависимую гибель клеток, которая отличается от апоптоза, некроза, аутофагии и других форм гибели клеток по морфологии, метаболизму, экспрессии белков. Процесс ферроптотической гибели клеток характеризуется накоплением свободных радикалов, образующихся в результате перекисного окисления липидов, и последующим оксидативным стрессом, который можно предотвратить с помощью хелаторов железа (например, дефероксамина) и малых липофильных антиоксидантов (например, ферростатина, липрокстатина). В последние годы проведено много исследований ферроптоза в контексте развития атеросклероза, инфаркта миокарда, сердечной недостаточности и других заболеваний. Помимо сердечно-сосудистых заболеваний в обзоре также представлены данные о роли ферроптоза в развитии других социально значимых болезней, таких как COVID-19, хроническая обструктивная болезнь легких. По мере изучения ферроптоза появились данные о его участии в развитии бактериальной инфекции, связанной с персистированием в организме хозяина Pseudomonas aeruginosa (синегнойной палочки). В обзоре суммируются последние достижения в области изучения ферроптоза, характеризующие данный тип клеточной смерти как новую терапевтическую мишень.
Ключевые слова: ферроптоз, сердечно-сосудистые заболевания, свободные радикалы, оксидативный стресс, заболевания легких, синегнойная палочка
Keywords: ferroptosis, cardiovascular disease, reactive oxygen species, oxidative stress, lung disease, Pseudomonas aeruginosa
Ключевые слова: ферроптоз, сердечно-сосудистые заболевания, свободные радикалы, оксидативный стресс, заболевания легких, синегнойная палочка
________________________________________________
Keywords: ferroptosis, cardiovascular disease, reactive oxygen species, oxidative stress, lung disease, Pseudomonas aeruginosa
Полный текст
Список литературы
1. Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149(5):1060-72. DOI:10.1016/j.cell.2012.03.042
2. Stockwell BR, Jiang X, Gu W. Emerging Mechanisms and Disease Relevance of Ferroptosis. Trends Cell Biol. 2020;30(6):478-90. DOI:10.1016/j.tcb.2020.02.009
3. Kerr JF. A histochemical study of hypertrophy and ischaemic injury of rat liver with special reference to changes in lysosomes. J Pathol Bacteriol. 1965;90(2):419-35. DOI:10.1002/path.1700900210
4. Lockshin RA, Williams CM. Programmed cell death-II. Endocrine potentiation of the breakdown of the intersegmental muscles of silkmoths. J Insect Physiol. 1964;10(4):643-9. DOI:10.1016/0022-1910(64)90034-4
5. Lockshin RA, Williams CM. Programmed cell death-I. Cytology of degeneration in the intersegmental muscles of the pernyi silkmoth. J Insect Physiol. 1965;11:123-33. DOI:10.1016/0022-1910(65)90099-5
6. Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972;26(4):239-57. DOI:10.1038/bjc.1972.33
7. Dolma S, Lessnick SL, Hahn WC, Stockwell BR. Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells. Cancer Cell. 2003;3(3):285-96. DOI:10.1016/s1535-6108(03)00050-3
8. Yang WS, Stockwell BR. Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chem Biol. 2008;15(3):234-45. DOI:10.1016/j.chembiol.2008.02.010
9. Yagoda N, von Rechenberg M, Zaganjor E, et al. RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels. Nature. 2007;447(7146):864-8. DOI:10.1038/nature05859
10. Li J, Cao F, Yin HL, et al. Ferroptosis: past, present and future. Cell Death Dis. 2020;11(2):88. DOI:10.1038/s41419-020-2298-2
11. Xie Y, Hou W, Song X, et al. Ferroptosis: process and function. Cell Death Differ. 2016;23(3):369-79. DOI:10.1038/cdd.2015.158
12. Wu Z, Geng Y, Lu X, et al. Chaperone-mediated autophagy is involved in the execution of ferroptosis. Proc Natl Acad Sci U S A. 2019;116(8):2996-3005. DOI:10.1073/pnas.1819728116
13. Galanopoulos M, Gkeros F, Doukatas A, et al. COVID-19 pandemic: Pathophysiology and manifestations from the gastrointestinal tract. World J Gastroenterol. 2020;26(31):4579-88. DOI:10.3748/wjg.v26.i31.4579
14. Cavezzi A, Troiani E, Corrao S. COVID-19: hemoglobin, iron, and hypoxia beyond inflammation. A narrative review. Clin Pract. 2020;10(2):1271. DOI:10.4081/cp.2020.1271
15. Zhou C, Chen Y, Ji Y, et al. Increased serum levels of hepcidin and ferritin are associated with severity of COVID-19. Med Sci Monit. 2020;26:e926178. DOI:10.12659/MSM.926178
16. Edeas M, Saleh J, Peyssonnaux C. Iron: Innocent bystander or vicious culprit in COVID-19 pathogenesis? Int J Infect Dis. 2020;97:303-5. DOI:10.1016/j.ijid.2020.05.110
17. Ganz T, Nemeth E. Hepcidin and iron homeostasis. Biochim Biophys Acta. 2012;1823(9):1434-43. DOI:10.1016/j.bbamcr.2012.01.014
18. Ma TL, Zhou Y, Wang C, et al. Targeting Ferroptosis for Lung Diseases: Exploring Novel Strategies in Ferroptosis-Associated Mechanisms. Oxid Med Cell Longev. 2021;2021:1098970. DOI:10.1155/2021/1098970
19. Jacobs W, Lammens M, Kerckhofs A, et al. Fatal lymphocytic cardiac damage in coronavirus disease 2019 (COVID-19): autopsy reveals a ferroptosis signature. ESC Heart Fail. 2020;7(6):3772-81. DOI:10.1002/ehf2.12958
20. Fratta Pasini AM, Stranieri C, Girelli D, et al. Is ferroptosis a key component of the process leading to multiorgan damage in COVID-19? Antioxidants (Basel). 2021;10(11):1677. DOI:10.3390/antiox10111677
21. Global Initiative for Chronic Obstructive Lung Disease. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease. Revised 2020. Available at: https://goldcopd.org/wp-content/uploads/2019/11/GOLD-2020-REPORT-ver1.0wms.pdf. Accessed: 12.05.2022
22. Yoshida M, Minagawa S, Araya J, et al. Involvement of cigarette smoke-induced epithelial cell ferroptosis in COPD pathogenesis. Nat Commun. 2019;10(1):3145. DOI:10.1038/s41467-019-10991-7
23. Chiappori A, Folli C, Balbi F, et al. CD4(+)CD25(high)CD127(-) regulatory T-cells in COPD: smoke and drugs effect. World Allergy Organ J. 2016;9:5. DOI:10.1186/s40413-016-0095-2
24. Park EJ, Park YJ, Lee SJ, et al. Whole cigarette smoke condensates induce ferroptosis in human bronchial epithelial cells. Toxicol Lett. 2019;303:55-66. DOI:10.1016/j.toxlet.2018.12.007
25. Yellon DM, Hausenloy DJ. Myocardial reperfusion injury. N Engl J Med. 2007;357(11):1121-35. DOI:10.1056/NEJMra071667
26. Friedmann Angeli JP, Schneider M, Proneth B, et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat Cell Biol. 2014;16(12):1180-91. DOI:10.1038/ncb3064
27. Li W, Feng G, Gauthier JM, et al. Ferroptotic cell death and TLR4/Trif signaling initiate neutrophil recruitment after heart transplantation. J Clin Invest. 2019;129(6):2293-304. DOI:10.1172/JCI126428
28. Baba Y, Higa JK, Shimada BK, et al. Protective effects of the mechanistic target of rapamycin against excess iron and ferroptosis in cardiomyocytes. Am J Physiol Heart Circ Physiol. 2018;314(3):H659-68. DOI:10.1152/ajpheart.00452.2017
29. Fang X, Wang H, Han D, et al. Ferroptosis as a target for protection against cardiomyopathy. Proc Natl Acad Sci U S A. 2019;116(7):2672-80. DOI:10.1073/pnas.1821022116
30. Bai YT, Chang R, Wang H, et al. ENPP2 protects cardiomyocytes from erastin-induced ferroptosis. Biochem Biophys Res Commun. 2018;499(1):44-51. DOI:10.1016/j.bbrc.2018.03.113
31. Ouyang S, You J, Zhi C, et al. Ferroptosis: the potential value target in atherosclerosis. Cell Death Dis. 2021;12:782. DOI:10.1038/s41419-021-04054-3
32. Gong T, Liu L, Jiang W, Zhou R. DAMP-sensing receptors in sterile inflammation and inflammatory diseases. Nat Rev Immunol. 2020;20(2):95-112. DOI:10.1038/s41577-019-0215-7
33. Donia T, Khamis A. Management of oxidative stress and inflammation in cardiovascular diseases: mechanisms and challenges. Environ Sci Pollut Res Int. 2021;28(26):34121-53. DOI:10.1007/s11356-021-14109-9
34. Bai T, Li M, Liu Y, et al. Inhibition of ferroptosis alleviates atherosclerosis through attenuating lipid peroxidation and endothelial dysfunction in mouse aortic endothelial cell. Free Radic Biol Med. 2020;160:92-102. DOI:10.1016/j.freeradbiomed.2020.07.026
35. Marques VB, Leal MAS, Mageski JGA, et al. Chronic iron overload intensifies atherosclerosis in apolipoprotein E deficient mice: Role of oxidative stress and endothelial dysfunction. Life Sci. 2019;233:116702. DOI:10.1016/j.lfs.2019.116702
36. Moradali MF, Ghods S, Rehm BH. Pseudomonas aeruginosa lifestyle: a paradigm for adaptation, survival, and persistence. Front Cell Infect Microbiol. 2017;7:39. DOI:10.3389/fcimb.2017.00039
37. Ruffin M, Brochiero E. Repair process impairment by Pseudomonas aeruginosa in epithelial tissues: major features and potential therapeutic avenues. Front Cell Infect Microbiol. 2019;9:182. DOI:10.3389/fcimb.2019.00182
38. Fitzgerald ES, Luz NF, Jamieson AM. Competitive cell death interactions in pulmonary infection: host modulation versus pathogen manipulation. Front Immunol. 2020;11:814. DOI:10.3389/fimmu.2020.00814
39. Dar HH, Tyurina YY, Mikulska-Ruminska K, et al. Pseudomonas aeruginosa utilizes host polyunsaturated phosphatidylethanolamines to trigger theft-ferroptosis in bronchial epithelium. J Clin Invest. 2018;128(10):4639-53. DOI:10.1172/JCI99490
40. Dar HH, Anthonymuthu TS, Ponomareva LA, et al. A new thiol-independent mechanism of epithelial host defense against Pseudomonas aeruginosa: iNOS/NO sabotage of theft-ferroptosis. Redox Biol. 2021;45:102045. DOI:10.1016/j.redox.2021.102045
41. Kapralov AA, Yang Q, Dar HH, et al. Redox lipid reprogramming commands susceptibility of macrophages and microglia to ferroptotic death. Nat Chem Biol. 2020;16(3):278-90. DOI:10.1038/s41589-019-0462-8
2. Stockwell BR, Jiang X, Gu W. Emerging Mechanisms and Disease Relevance of Ferroptosis. Trends Cell Biol. 2020;30(6):478-90. DOI:10.1016/j.tcb.2020.02.009
3. Kerr JF. A histochemical study of hypertrophy and ischaemic injury of rat liver with special reference to changes in lysosomes. J Pathol Bacteriol. 1965;90(2):419-35. DOI:10.1002/path.1700900210
4. Lockshin RA, Williams CM. Programmed cell death-II. Endocrine potentiation of the breakdown of the intersegmental muscles of silkmoths. J Insect Physiol. 1964;10(4):643-9. DOI:10.1016/0022-1910(64)90034-4
5. Lockshin RA, Williams CM. Programmed cell death-I. Cytology of degeneration in the intersegmental muscles of the pernyi silkmoth. J Insect Physiol. 1965;11:123-33. DOI:10.1016/0022-1910(65)90099-5
6. Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972;26(4):239-57. DOI:10.1038/bjc.1972.33
7. Dolma S, Lessnick SL, Hahn WC, Stockwell BR. Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells. Cancer Cell. 2003;3(3):285-96. DOI:10.1016/s1535-6108(03)00050-3
8. Yang WS, Stockwell BR. Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chem Biol. 2008;15(3):234-45. DOI:10.1016/j.chembiol.2008.02.010
9. Yagoda N, von Rechenberg M, Zaganjor E, et al. RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels. Nature. 2007;447(7146):864-8. DOI:10.1038/nature05859
10. Li J, Cao F, Yin HL, et al. Ferroptosis: past, present and future. Cell Death Dis. 2020;11(2):88. DOI:10.1038/s41419-020-2298-2
11. Xie Y, Hou W, Song X, et al. Ferroptosis: process and function. Cell Death Differ. 2016;23(3):369-79. DOI:10.1038/cdd.2015.158
12. Wu Z, Geng Y, Lu X, et al. Chaperone-mediated autophagy is involved in the execution of ferroptosis. Proc Natl Acad Sci U S A. 2019;116(8):2996-3005. DOI:10.1073/pnas.1819728116
13. Galanopoulos M, Gkeros F, Doukatas A, et al. COVID-19 pandemic: Pathophysiology and manifestations from the gastrointestinal tract. World J Gastroenterol. 2020;26(31):4579-88. DOI:10.3748/wjg.v26.i31.4579
14. Cavezzi A, Troiani E, Corrao S. COVID-19: hemoglobin, iron, and hypoxia beyond inflammation. A narrative review. Clin Pract. 2020;10(2):1271. DOI:10.4081/cp.2020.1271
15. Zhou C, Chen Y, Ji Y, et al. Increased serum levels of hepcidin and ferritin are associated with severity of COVID-19. Med Sci Monit. 2020;26:e926178. DOI:10.12659/MSM.926178
16. Edeas M, Saleh J, Peyssonnaux C. Iron: Innocent bystander or vicious culprit in COVID-19 pathogenesis? Int J Infect Dis. 2020;97:303-5. DOI:10.1016/j.ijid.2020.05.110
17. Ganz T, Nemeth E. Hepcidin and iron homeostasis. Biochim Biophys Acta. 2012;1823(9):1434-43. DOI:10.1016/j.bbamcr.2012.01.014
18. Ma TL, Zhou Y, Wang C, et al. Targeting Ferroptosis for Lung Diseases: Exploring Novel Strategies in Ferroptosis-Associated Mechanisms. Oxid Med Cell Longev. 2021;2021:1098970. DOI:10.1155/2021/1098970
19. Jacobs W, Lammens M, Kerckhofs A, et al. Fatal lymphocytic cardiac damage in coronavirus disease 2019 (COVID-19): autopsy reveals a ferroptosis signature. ESC Heart Fail. 2020;7(6):3772-81. DOI:10.1002/ehf2.12958
20. Fratta Pasini AM, Stranieri C, Girelli D, et al. Is ferroptosis a key component of the process leading to multiorgan damage in COVID-19? Antioxidants (Basel). 2021;10(11):1677. DOI:10.3390/antiox10111677
21. Global Initiative for Chronic Obstructive Lung Disease. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease. Revised 2020. Available at: https://goldcopd.org/wp-content/uploads/2019/11/GOLD-2020-REPORT-ver1.0wms.pdf. Accessed: 12.05.2022
22. Yoshida M, Minagawa S, Araya J, et al. Involvement of cigarette smoke-induced epithelial cell ferroptosis in COPD pathogenesis. Nat Commun. 2019;10(1):3145. DOI:10.1038/s41467-019-10991-7
23. Chiappori A, Folli C, Balbi F, et al. CD4(+)CD25(high)CD127(-) regulatory T-cells in COPD: smoke and drugs effect. World Allergy Organ J. 2016;9:5. DOI:10.1186/s40413-016-0095-2
24. Park EJ, Park YJ, Lee SJ, et al. Whole cigarette smoke condensates induce ferroptosis in human bronchial epithelial cells. Toxicol Lett. 2019;303:55-66. DOI:10.1016/j.toxlet.2018.12.007
25. Yellon DM, Hausenloy DJ. Myocardial reperfusion injury. N Engl J Med. 2007;357(11):1121-35. DOI:10.1056/NEJMra071667
26. Friedmann Angeli JP, Schneider M, Proneth B, et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat Cell Biol. 2014;16(12):1180-91. DOI:10.1038/ncb3064
27. Li W, Feng G, Gauthier JM, et al. Ferroptotic cell death and TLR4/Trif signaling initiate neutrophil recruitment after heart transplantation. J Clin Invest. 2019;129(6):2293-304. DOI:10.1172/JCI126428
28. Baba Y, Higa JK, Shimada BK, et al. Protective effects of the mechanistic target of rapamycin against excess iron and ferroptosis in cardiomyocytes. Am J Physiol Heart Circ Physiol. 2018;314(3):H659-68. DOI:10.1152/ajpheart.00452.2017
29. Fang X, Wang H, Han D, et al. Ferroptosis as a target for protection against cardiomyopathy. Proc Natl Acad Sci U S A. 2019;116(7):2672-80. DOI:10.1073/pnas.1821022116
30. Bai YT, Chang R, Wang H, et al. ENPP2 protects cardiomyocytes from erastin-induced ferroptosis. Biochem Biophys Res Commun. 2018;499(1):44-51. DOI:10.1016/j.bbrc.2018.03.113
31. Ouyang S, You J, Zhi C, et al. Ferroptosis: the potential value target in atherosclerosis. Cell Death Dis. 2021;12:782. DOI:10.1038/s41419-021-04054-3
32. Gong T, Liu L, Jiang W, Zhou R. DAMP-sensing receptors in sterile inflammation and inflammatory diseases. Nat Rev Immunol. 2020;20(2):95-112. DOI:10.1038/s41577-019-0215-7
33. Donia T, Khamis A. Management of oxidative stress and inflammation in cardiovascular diseases: mechanisms and challenges. Environ Sci Pollut Res Int. 2021;28(26):34121-53. DOI:10.1007/s11356-021-14109-9
34. Bai T, Li M, Liu Y, et al. Inhibition of ferroptosis alleviates atherosclerosis through attenuating lipid peroxidation and endothelial dysfunction in mouse aortic endothelial cell. Free Radic Biol Med. 2020;160:92-102. DOI:10.1016/j.freeradbiomed.2020.07.026
35. Marques VB, Leal MAS, Mageski JGA, et al. Chronic iron overload intensifies atherosclerosis in apolipoprotein E deficient mice: Role of oxidative stress and endothelial dysfunction. Life Sci. 2019;233:116702. DOI:10.1016/j.lfs.2019.116702
36. Moradali MF, Ghods S, Rehm BH. Pseudomonas aeruginosa lifestyle: a paradigm for adaptation, survival, and persistence. Front Cell Infect Microbiol. 2017;7:39. DOI:10.3389/fcimb.2017.00039
37. Ruffin M, Brochiero E. Repair process impairment by Pseudomonas aeruginosa in epithelial tissues: major features and potential therapeutic avenues. Front Cell Infect Microbiol. 2019;9:182. DOI:10.3389/fcimb.2019.00182
38. Fitzgerald ES, Luz NF, Jamieson AM. Competitive cell death interactions in pulmonary infection: host modulation versus pathogen manipulation. Front Immunol. 2020;11:814. DOI:10.3389/fimmu.2020.00814
39. Dar HH, Tyurina YY, Mikulska-Ruminska K, et al. Pseudomonas aeruginosa utilizes host polyunsaturated phosphatidylethanolamines to trigger theft-ferroptosis in bronchial epithelium. J Clin Invest. 2018;128(10):4639-53. DOI:10.1172/JCI99490
40. Dar HH, Anthonymuthu TS, Ponomareva LA, et al. A new thiol-independent mechanism of epithelial host defense against Pseudomonas aeruginosa: iNOS/NO sabotage of theft-ferroptosis. Redox Biol. 2021;45:102045. DOI:10.1016/j.redox.2021.102045
41. Kapralov AA, Yang Q, Dar HH, et al. Redox lipid reprogramming commands susceptibility of macrophages and microglia to ferroptotic death. Nat Chem Biol. 2020;16(3):278-90. DOI:10.1038/s41589-019-0462-8
2. Stockwell BR, Jiang X, Gu W. Emerging Mechanisms and Disease Relevance of Ferroptosis. Trends Cell Biol. 2020;30(6):478-90. DOI:10.1016/j.tcb.2020.02.009
3. Kerr JF. A histochemical study of hypertrophy and ischaemic injury of rat liver with special reference to changes in lysosomes. J Pathol Bacteriol. 1965;90(2):419-35. DOI:10.1002/path.1700900210
4. Lockshin RA, Williams CM. Programmed cell death-II. Endocrine potentiation of the breakdown of the intersegmental muscles of silkmoths. J Insect Physiol. 1964;10(4):643-9. DOI:10.1016/0022-1910(64)90034-4
5. Lockshin RA, Williams CM. Programmed cell death-I. Cytology of degeneration in the intersegmental muscles of the pernyi silkmoth. J Insect Physiol. 1965;11:123-33. DOI:10.1016/0022-1910(65)90099-5
6. Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972;26(4):239-57. DOI:10.1038/bjc.1972.33
7. Dolma S, Lessnick SL, Hahn WC, Stockwell BR. Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells. Cancer Cell. 2003;3(3):285-96. DOI:10.1016/s1535-6108(03)00050-3
8. Yang WS, Stockwell BR. Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chem Biol. 2008;15(3):234-45. DOI:10.1016/j.chembiol.2008.02.010
9. Yagoda N, von Rechenberg M, Zaganjor E, et al. RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels. Nature. 2007;447(7146):864-8. DOI:10.1038/nature05859
10. Li J, Cao F, Yin HL, et al. Ferroptosis: past, present and future. Cell Death Dis. 2020;11(2):88. DOI:10.1038/s41419-020-2298-2
11. Xie Y, Hou W, Song X, et al. Ferroptosis: process and function. Cell Death Differ. 2016;23(3):369-79. DOI:10.1038/cdd.2015.158
12. Wu Z, Geng Y, Lu X, et al. Chaperone-mediated autophagy is involved in the execution of ferroptosis. Proc Natl Acad Sci U S A. 2019;116(8):2996-3005. DOI:10.1073/pnas.1819728116
13. Galanopoulos M, Gkeros F, Doukatas A, et al. COVID-19 pandemic: Pathophysiology and manifestations from the gastrointestinal tract. World J Gastroenterol. 2020;26(31):4579-88. DOI:10.3748/wjg.v26.i31.4579
14. Cavezzi A, Troiani E, Corrao S. COVID-19: hemoglobin, iron, and hypoxia beyond inflammation. A narrative review. Clin Pract. 2020;10(2):1271. DOI:10.4081/cp.2020.1271
15. Zhou C, Chen Y, Ji Y, et al. Increased serum levels of hepcidin and ferritin are associated with severity of COVID-19. Med Sci Monit. 2020;26:e926178. DOI:10.12659/MSM.926178
16. Edeas M, Saleh J, Peyssonnaux C. Iron: Innocent bystander or vicious culprit in COVID-19 pathogenesis? Int J Infect Dis. 2020;97:303-5. DOI:10.1016/j.ijid.2020.05.110
17. Ganz T, Nemeth E. Hepcidin and iron homeostasis. Biochim Biophys Acta. 2012;1823(9):1434-43. DOI:10.1016/j.bbamcr.2012.01.014
18. Ma TL, Zhou Y, Wang C, et al. Targeting Ferroptosis for Lung Diseases: Exploring Novel Strategies in Ferroptosis-Associated Mechanisms. Oxid Med Cell Longev. 2021;2021:1098970. DOI:10.1155/2021/1098970
19. Jacobs W, Lammens M, Kerckhofs A, et al. Fatal lymphocytic cardiac damage in coronavirus disease 2019 (COVID-19): autopsy reveals a ferroptosis signature. ESC Heart Fail. 2020;7(6):3772-81. DOI:10.1002/ehf2.12958
20. Fratta Pasini AM, Stranieri C, Girelli D, et al. Is ferroptosis a key component of the process leading to multiorgan damage in COVID-19? Antioxidants (Basel). 2021;10(11):1677. DOI:10.3390/antiox10111677
21. Global Initiative for Chronic Obstructive Lung Disease. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease. Revised 2020. Available at: https://goldcopd.org/wp-content/uploads/2019/11/GOLD-2020-REPORT-ver1.0wms.pdf. Accessed: 12.05.2022
22. Yoshida M, Minagawa S, Araya J, et al. Involvement of cigarette smoke-induced epithelial cell ferroptosis in COPD pathogenesis. Nat Commun. 2019;10(1):3145. DOI:10.1038/s41467-019-10991-7
23. Chiappori A, Folli C, Balbi F, et al. CD4(+)CD25(high)CD127(-) regulatory T-cells in COPD: smoke and drugs effect. World Allergy Organ J. 2016;9:5. DOI:10.1186/s40413-016-0095-2
24. Park EJ, Park YJ, Lee SJ, et al. Whole cigarette smoke condensates induce ferroptosis in human bronchial epithelial cells. Toxicol Lett. 2019;303:55-66. DOI:10.1016/j.toxlet.2018.12.007
25. Yellon DM, Hausenloy DJ. Myocardial reperfusion injury. N Engl J Med. 2007;357(11):1121-35. DOI:10.1056/NEJMra071667
26. Friedmann Angeli JP, Schneider M, Proneth B, et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat Cell Biol. 2014;16(12):1180-91. DOI:10.1038/ncb3064
27. Li W, Feng G, Gauthier JM, et al. Ferroptotic cell death and TLR4/Trif signaling initiate neutrophil recruitment after heart transplantation. J Clin Invest. 2019;129(6):2293-304. DOI:10.1172/JCI126428
28. Baba Y, Higa JK, Shimada BK, et al. Protective effects of the mechanistic target of rapamycin against excess iron and ferroptosis in cardiomyocytes. Am J Physiol Heart Circ Physiol. 2018;314(3):H659-68. DOI:10.1152/ajpheart.00452.2017
29. Fang X, Wang H, Han D, et al. Ferroptosis as a target for protection against cardiomyopathy. Proc Natl Acad Sci U S A. 2019;116(7):2672-80. DOI:10.1073/pnas.1821022116
30. Bai YT, Chang R, Wang H, et al. ENPP2 protects cardiomyocytes from erastin-induced ferroptosis. Biochem Biophys Res Commun. 2018;499(1):44-51. DOI:10.1016/j.bbrc.2018.03.113
31. Ouyang S, You J, Zhi C, et al. Ferroptosis: the potential value target in atherosclerosis. Cell Death Dis. 2021;12:782. DOI:10.1038/s41419-021-04054-3
32. Gong T, Liu L, Jiang W, Zhou R. DAMP-sensing receptors in sterile inflammation and inflammatory diseases. Nat Rev Immunol. 2020;20(2):95-112. DOI:10.1038/s41577-019-0215-7
33. Donia T, Khamis A. Management of oxidative stress and inflammation in cardiovascular diseases: mechanisms and challenges. Environ Sci Pollut Res Int. 2021;28(26):34121-53. DOI:10.1007/s11356-021-14109-9
34. Bai T, Li M, Liu Y, et al. Inhibition of ferroptosis alleviates atherosclerosis through attenuating lipid peroxidation and endothelial dysfunction in mouse aortic endothelial cell. Free Radic Biol Med. 2020;160:92-102. DOI:10.1016/j.freeradbiomed.2020.07.026
35. Marques VB, Leal MAS, Mageski JGA, et al. Chronic iron overload intensifies atherosclerosis in apolipoprotein E deficient mice: Role of oxidative stress and endothelial dysfunction. Life Sci. 2019;233:116702. DOI:10.1016/j.lfs.2019.116702
36. Moradali MF, Ghods S, Rehm BH. Pseudomonas aeruginosa lifestyle: a paradigm for adaptation, survival, and persistence. Front Cell Infect Microbiol. 2017;7:39. DOI:10.3389/fcimb.2017.00039
37. Ruffin M, Brochiero E. Repair process impairment by Pseudomonas aeruginosa in epithelial tissues: major features and potential therapeutic avenues. Front Cell Infect Microbiol. 2019;9:182. DOI:10.3389/fcimb.2019.00182
38. Fitzgerald ES, Luz NF, Jamieson AM. Competitive cell death interactions in pulmonary infection: host modulation versus pathogen manipulation. Front Immunol. 2020;11:814. DOI:10.3389/fimmu.2020.00814
39. Dar HH, Tyurina YY, Mikulska-Ruminska K, et al. Pseudomonas aeruginosa utilizes host polyunsaturated phosphatidylethanolamines to trigger theft-ferroptosis in bronchial epithelium. J Clin Invest. 2018;128(10):4639-53. DOI:10.1172/JCI99490
40. Dar HH, Anthonymuthu TS, Ponomareva LA, et al. A new thiol-independent mechanism of epithelial host defense against Pseudomonas aeruginosa: iNOS/NO sabotage of theft-ferroptosis. Redox Biol. 2021;45:102045. DOI:10.1016/j.redox.2021.102045
41. Kapralov AA, Yang Q, Dar HH, et al. Redox lipid reprogramming commands susceptibility of macrophages and microglia to ferroptotic death. Nat Chem Biol. 2020;16(3):278-90. DOI:10.1038/s41589-019-0462-8
________________________________________________
2. Stockwell BR, Jiang X, Gu W. Emerging Mechanisms and Disease Relevance of Ferroptosis. Trends Cell Biol. 2020;30(6):478-90. DOI:10.1016/j.tcb.2020.02.009
3. Kerr JF. A histochemical study of hypertrophy and ischaemic injury of rat liver with special reference to changes in lysosomes. J Pathol Bacteriol. 1965;90(2):419-35. DOI:10.1002/path.1700900210
4. Lockshin RA, Williams CM. Programmed cell death-II. Endocrine potentiation of the breakdown of the intersegmental muscles of silkmoths. J Insect Physiol. 1964;10(4):643-9. DOI:10.1016/0022-1910(64)90034-4
5. Lockshin RA, Williams CM. Programmed cell death-I. Cytology of degeneration in the intersegmental muscles of the pernyi silkmoth. J Insect Physiol. 1965;11:123-33. DOI:10.1016/0022-1910(65)90099-5
6. Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972;26(4):239-57. DOI:10.1038/bjc.1972.33
7. Dolma S, Lessnick SL, Hahn WC, Stockwell BR. Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells. Cancer Cell. 2003;3(3):285-96. DOI:10.1016/s1535-6108(03)00050-3
8. Yang WS, Stockwell BR. Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chem Biol. 2008;15(3):234-45. DOI:10.1016/j.chembiol.2008.02.010
9. Yagoda N, von Rechenberg M, Zaganjor E, et al. RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels. Nature. 2007;447(7146):864-8. DOI:10.1038/nature05859
10. Li J, Cao F, Yin HL, et al. Ferroptosis: past, present and future. Cell Death Dis. 2020;11(2):88. DOI:10.1038/s41419-020-2298-2
11. Xie Y, Hou W, Song X, et al. Ferroptosis: process and function. Cell Death Differ. 2016;23(3):369-79. DOI:10.1038/cdd.2015.158
12. Wu Z, Geng Y, Lu X, et al. Chaperone-mediated autophagy is involved in the execution of ferroptosis. Proc Natl Acad Sci U S A. 2019;116(8):2996-3005. DOI:10.1073/pnas.1819728116
13. Galanopoulos M, Gkeros F, Doukatas A, et al. COVID-19 pandemic: Pathophysiology and manifestations from the gastrointestinal tract. World J Gastroenterol. 2020;26(31):4579-88. DOI:10.3748/wjg.v26.i31.4579
14. Cavezzi A, Troiani E, Corrao S. COVID-19: hemoglobin, iron, and hypoxia beyond inflammation. A narrative review. Clin Pract. 2020;10(2):1271. DOI:10.4081/cp.2020.1271
15. Zhou C, Chen Y, Ji Y, et al. Increased serum levels of hepcidin and ferritin are associated with severity of COVID-19. Med Sci Monit. 2020;26:e926178. DOI:10.12659/MSM.926178
16. Edeas M, Saleh J, Peyssonnaux C. Iron: Innocent bystander or vicious culprit in COVID-19 pathogenesis? Int J Infect Dis. 2020;97:303-5. DOI:10.1016/j.ijid.2020.05.110
17. Ganz T, Nemeth E. Hepcidin and iron homeostasis. Biochim Biophys Acta. 2012;1823(9):1434-43. DOI:10.1016/j.bbamcr.2012.01.014
18. Ma TL, Zhou Y, Wang C, et al. Targeting Ferroptosis for Lung Diseases: Exploring Novel Strategies in Ferroptosis-Associated Mechanisms. Oxid Med Cell Longev. 2021;2021:1098970. DOI:10.1155/2021/1098970
19. Jacobs W, Lammens M, Kerckhofs A, et al. Fatal lymphocytic cardiac damage in coronavirus disease 2019 (COVID-19): autopsy reveals a ferroptosis signature. ESC Heart Fail. 2020;7(6):3772-81. DOI:10.1002/ehf2.12958
20. Fratta Pasini AM, Stranieri C, Girelli D, et al. Is ferroptosis a key component of the process leading to multiorgan damage in COVID-19? Antioxidants (Basel). 2021;10(11):1677. DOI:10.3390/antiox10111677
21. Global Initiative for Chronic Obstructive Lung Disease. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease. Revised 2020. Available at: https://goldcopd.org/wp-content/uploads/2019/11/GOLD-2020-REPORT-ver1.0wms.pdf. Accessed: 12.05.2022
22. Yoshida M, Minagawa S, Araya J, et al. Involvement of cigarette smoke-induced epithelial cell ferroptosis in COPD pathogenesis. Nat Commun. 2019;10(1):3145. DOI:10.1038/s41467-019-10991-7
23. Chiappori A, Folli C, Balbi F, et al. CD4(+)CD25(high)CD127(-) regulatory T-cells in COPD: smoke and drugs effect. World Allergy Organ J. 2016;9:5. DOI:10.1186/s40413-016-0095-2
24. Park EJ, Park YJ, Lee SJ, et al. Whole cigarette smoke condensates induce ferroptosis in human bronchial epithelial cells. Toxicol Lett. 2019;303:55-66. DOI:10.1016/j.toxlet.2018.12.007
25. Yellon DM, Hausenloy DJ. Myocardial reperfusion injury. N Engl J Med. 2007;357(11):1121-35. DOI:10.1056/NEJMra071667
26. Friedmann Angeli JP, Schneider M, Proneth B, et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat Cell Biol. 2014;16(12):1180-91. DOI:10.1038/ncb3064
27. Li W, Feng G, Gauthier JM, et al. Ferroptotic cell death and TLR4/Trif signaling initiate neutrophil recruitment after heart transplantation. J Clin Invest. 2019;129(6):2293-304. DOI:10.1172/JCI126428
28. Baba Y, Higa JK, Shimada BK, et al. Protective effects of the mechanistic target of rapamycin against excess iron and ferroptosis in cardiomyocytes. Am J Physiol Heart Circ Physiol. 2018;314(3):H659-68. DOI:10.1152/ajpheart.00452.2017
29. Fang X, Wang H, Han D, et al. Ferroptosis as a target for protection against cardiomyopathy. Proc Natl Acad Sci U S A. 2019;116(7):2672-80. DOI:10.1073/pnas.1821022116
30. Bai YT, Chang R, Wang H, et al. ENPP2 protects cardiomyocytes from erastin-induced ferroptosis. Biochem Biophys Res Commun. 2018;499(1):44-51. DOI:10.1016/j.bbrc.2018.03.113
31. Ouyang S, You J, Zhi C, et al. Ferroptosis: the potential value target in atherosclerosis. Cell Death Dis. 2021;12:782. DOI:10.1038/s41419-021-04054-3
32. Gong T, Liu L, Jiang W, Zhou R. DAMP-sensing receptors in sterile inflammation and inflammatory diseases. Nat Rev Immunol. 2020;20(2):95-112. DOI:10.1038/s41577-019-0215-7
33. Donia T, Khamis A. Management of oxidative stress and inflammation in cardiovascular diseases: mechanisms and challenges. Environ Sci Pollut Res Int. 2021;28(26):34121-53. DOI:10.1007/s11356-021-14109-9
34. Bai T, Li M, Liu Y, et al. Inhibition of ferroptosis alleviates atherosclerosis through attenuating lipid peroxidation and endothelial dysfunction in mouse aortic endothelial cell. Free Radic Biol Med. 2020;160:92-102. DOI:10.1016/j.freeradbiomed.2020.07.026
35. Marques VB, Leal MAS, Mageski JGA, et al. Chronic iron overload intensifies atherosclerosis in apolipoprotein E deficient mice: Role of oxidative stress and endothelial dysfunction. Life Sci. 2019;233:116702. DOI:10.1016/j.lfs.2019.116702
36. Moradali MF, Ghods S, Rehm BH. Pseudomonas aeruginosa lifestyle: a paradigm for adaptation, survival, and persistence. Front Cell Infect Microbiol. 2017;7:39. DOI:10.3389/fcimb.2017.00039
37. Ruffin M, Brochiero E. Repair process impairment by Pseudomonas aeruginosa in epithelial tissues: major features and potential therapeutic avenues. Front Cell Infect Microbiol. 2019;9:182. DOI:10.3389/fcimb.2019.00182
38. Fitzgerald ES, Luz NF, Jamieson AM. Competitive cell death interactions in pulmonary infection: host modulation versus pathogen manipulation. Front Immunol. 2020;11:814. DOI:10.3389/fimmu.2020.00814
39. Dar HH, Tyurina YY, Mikulska-Ruminska K, et al. Pseudomonas aeruginosa utilizes host polyunsaturated phosphatidylethanolamines to trigger theft-ferroptosis in bronchial epithelium. J Clin Invest. 2018;128(10):4639-53. DOI:10.1172/JCI99490
40. Dar HH, Anthonymuthu TS, Ponomareva LA, et al. A new thiol-independent mechanism of epithelial host defense against Pseudomonas aeruginosa: iNOS/NO sabotage of theft-ferroptosis. Redox Biol. 2021;45:102045. DOI:10.1016/j.redox.2021.102045
41. Kapralov AA, Yang Q, Dar HH, et al. Redox lipid reprogramming commands susceptibility of macrophages and microglia to ferroptotic death. Nat Chem Biol. 2020;16(3):278-90. DOI:10.1038/s41589-019-0462-8
Авторы
В.И. Подзолков, А.И. Тарзиманова*, Л.А. Пономарева, Е.Н. Попова, А.Б. Пономарев
ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова» Минздрава России (Сеченовский Университет), Москва, Россия
*tarzimanova@mail.ru
Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
*tarzimanova@mail.ru
ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова» Минздрава России (Сеченовский Университет), Москва, Россия
*tarzimanova@mail.ru
________________________________________________
Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
*tarzimanova@mail.ru
Цель портала OmniDoctor – предоставление профессиональной информации врачам, провизорам и фармацевтам.
