Смерть клеток является важной особенностью развития многоклеточных организмов, критическим фактором возникновения сердечно-сосудистых заболеваний. Понимание механизмов, управляющих клеточной гибелью, имеет решающее значение для определения ее роли в развитии патологического процесса. Однако наиболее известные типы клеточной смерти не могут полностью объяснить патофизиологию заболеваний сердца. Понимание того, как умирают кардиомиоциты и почему их регенерация ограничена, является важной областью исследований. Ферроптоз представляет собой железозависимую гибель клеток, которая отличается от апоптоза, некроза, аутофагии и других форм гибели клеток по морфологии, метаболизму, экспрессии белков. Процесс ферроптотической гибели клеток характеризуется накоплением свободных радикалов, образующихся в результате перекисного окисления липидов, и последующим оксидативным стрессом, который можно предотвратить с помощью хелаторов железа (например, дефероксамина) и малых липофильных антиоксидантов (например, ферростатина, липрокстатина). В последние годы проведено много исследований ферроптоза в контексте развития атеросклероза, инфаркта миокарда, сердечной недостаточности и других заболеваний. Помимо сердечно-сосудистых заболеваний в обзоре также представлены данные о роли ферроптоза в развитии других социально значимых болезней, таких как COVID-19, хроническая обструктивная болезнь легких. По мере изучения ферроптоза появились данные о его участии в развитии бактериальной инфекции, связанной с персистированием в организме хозяина Pseudomonas aeruginosa (синегнойной палочки). В обзоре суммируются последние достижения в области изучения ферроптоза, характеризующие данный тип клеточной смерти как новую терапевтическую мишень.
Cell death is an important feature of the development of multicellular organisms, a critical factor in the occurrence of cardiovascular diseases. Understanding the mechanisms that control cell death is crucial to determine its role in the development of the pathological process. However, the most well-known types of cell death cannot fully explain the pathophysiology of heart disease. Understanding how cardiomyocytes die and why their regeneration is limited is an important area of research. Ferroptosis is an iron-dependent cell death that differs from apoptosis, necrosis, autophagy, and other forms of cell death in terms of morphology, metabolism, and protein expression. Ferroptotic cell death is characterized by the accumulation of reactive oxygen species resulting from lipid peroxidation and subsequent oxidative stress, which can be prevented by iron chelates (eg, deferoxamine) and small lipophilic antioxidants (eg, ferrostatin, liproхstatin). In recent years, many studies have been carried out on ferroptosis in the context of the development of atherosclerosis, myocardial infarction, heart failure, and other diseases. In addition to cardiovascular diseases, the review also presents data on the role of ferroptosis in the development of other socially significant diseases, such as COVID-19, chronic obstructive pulmonary disease. With the study of ferroptosis, it turned out that ferroptosis participates in the development of bacterial infection associated with the persistence in the host body of Pseudomonas aeruginosa. The review summarizes the recent advances in the study of ferroptosis, characterizing this type of cell death as a novel therapeutic target.
1. Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149(5):1060-72. DOI:10.1016/j.cell.2012.03.042
2. Stockwell BR, Jiang X, Gu W. Emerging Mechanisms and Disease Relevance of Ferroptosis. Trends Cell Biol. 2020;30(6):478-90. DOI:10.1016/j.tcb.2020.02.009
3. Kerr JF. A histochemical study of hypertrophy and ischaemic injury of rat liver with special reference to changes in lysosomes. J Pathol Bacteriol. 1965;90(2):419-35. DOI:10.1002/path.1700900210
4. Lockshin RA, Williams CM. Programmed cell death-II. Endocrine potentiation of the breakdown of the intersegmental muscles of silkmoths. J Insect Physiol. 1964;10(4):643-9. DOI:10.1016/0022-1910(64)90034-4
5. Lockshin RA, Williams CM. Programmed cell death-I. Cytology of degeneration in the intersegmental muscles of the pernyi silkmoth. J Insect Physiol. 1965;11:123-33. DOI:10.1016/0022-1910(65)90099-5
6. Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972;26(4):239-57. DOI:10.1038/bjc.1972.33
7. Dolma S, Lessnick SL, Hahn WC, Stockwell BR. Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells. Cancer Cell. 2003;3(3):285-96. DOI:10.1016/s1535-6108(03)00050-3
8. Yang WS, Stockwell BR. Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chem Biol. 2008;15(3):234-45. DOI:10.1016/j.chembiol.2008.02.010
9. Yagoda N, von Rechenberg M, Zaganjor E, et al. RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels. Nature. 2007;447(7146):864-8. DOI:10.1038/nature05859
10. Li J, Cao F, Yin HL, et al. Ferroptosis: past, present and future. Cell Death Dis. 2020;11(2):88. DOI:10.1038/s41419-020-2298-2
11. Xie Y, Hou W, Song X, et al. Ferroptosis: process and function. Cell Death Differ. 2016;23(3):369-79. DOI:10.1038/cdd.2015.158
12. Wu Z, Geng Y, Lu X, et al. Chaperone-mediated autophagy is involved in the execution of ferroptosis. Proc Natl Acad Sci U S A. 2019;116(8):2996-3005. DOI:10.1073/pnas.1819728116
13. Galanopoulos M, Gkeros F, Doukatas A, et al. COVID-19 pandemic: Pathophysiology and manifestations from the gastrointestinal tract. World J Gastroenterol. 2020;26(31):4579-88. DOI:10.3748/wjg.v26.i31.4579
14. Cavezzi A, Troiani E, Corrao S. COVID-19: hemoglobin, iron, and hypoxia beyond inflammation. A narrative review. Clin Pract. 2020;10(2):1271. DOI:10.4081/cp.2020.1271
15. Zhou C, Chen Y, Ji Y, et al. Increased serum levels of hepcidin and ferritin are associated with severity of COVID-19. Med Sci Monit. 2020;26:e926178. DOI:10.12659/MSM.926178
16. Edeas M, Saleh J, Peyssonnaux C. Iron: Innocent bystander or vicious culprit in COVID-19 pathogenesis? Int J Infect Dis. 2020;97:303-5. DOI:10.1016/j.ijid.2020.05.110
17. Ganz T, Nemeth E. Hepcidin and iron homeostasis. Biochim Biophys Acta. 2012;1823(9):1434-43. DOI:10.1016/j.bbamcr.2012.01.014
18. Ma TL, Zhou Y, Wang C, et al. Targeting Ferroptosis for Lung Diseases: Exploring Novel Strategies in Ferroptosis-Associated Mechanisms. Oxid Med Cell Longev. 2021;2021:1098970. DOI:10.1155/2021/1098970
19. Jacobs W, Lammens M, Kerckhofs A, et al. Fatal lymphocytic cardiac damage in coronavirus disease 2019 (COVID-19): autopsy reveals a ferroptosis signature. ESC Heart Fail. 2020;7(6):3772-81. DOI:10.1002/ehf2.12958
20. Fratta Pasini AM, Stranieri C, Girelli D, et al. Is ferroptosis a key component of the process leading to multiorgan damage in COVID-19? Antioxidants (Basel). 2021;10(11):1677. DOI:10.3390/antiox10111677
21. Global Initiative for Chronic Obstructive Lung Disease. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease. Revised 2020. Available at: https://goldcopd.org/wp-content/uploads/2019/11/GOLD-2020-REPORT-ver1.0wms.pdf. Accessed: 12.05.2022
22. Yoshida M, Minagawa S, Araya J, et al. Involvement of cigarette smoke-induced epithelial cell ferroptosis in COPD pathogenesis. Nat Commun. 2019;10(1):3145. DOI:10.1038/s41467-019-10991-7
23. Chiappori A, Folli C, Balbi F, et al. CD4(+)CD25(high)CD127(-) regulatory T-cells in COPD: smoke and drugs effect. World Allergy Organ J. 2016;9:5. DOI:10.1186/s40413-016-0095-2
24. Park EJ, Park YJ, Lee SJ, et al. Whole cigarette smoke condensates induce ferroptosis in human bronchial epithelial cells. Toxicol Lett. 2019;303:55-66. DOI:10.1016/j.toxlet.2018.12.007
25. Yellon DM, Hausenloy DJ. Myocardial reperfusion injury. N Engl J Med. 2007;357(11):1121-35. DOI:10.1056/NEJMra071667
26. Friedmann Angeli JP, Schneider M, Proneth B, et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat Cell Biol. 2014;16(12):1180-91. DOI:10.1038/ncb3064
27. Li W, Feng G, Gauthier JM, et al. Ferroptotic cell death and TLR4/Trif signaling initiate neutrophil recruitment after heart transplantation. J Clin Invest. 2019;129(6):2293-304. DOI:10.1172/JCI126428
28. Baba Y, Higa JK, Shimada BK, et al. Protective effects of the mechanistic target of rapamycin against excess iron and ferroptosis in cardiomyocytes. Am J Physiol Heart Circ Physiol. 2018;314(3):H659-68. DOI:10.1152/ajpheart.00452.2017
29. Fang X, Wang H, Han D, et al. Ferroptosis as a target for protection against cardiomyopathy. Proc Natl Acad Sci U S A. 2019;116(7):2672-80. DOI:10.1073/pnas.1821022116
30. Bai YT, Chang R, Wang H, et al. ENPP2 protects cardiomyocytes from erastin-induced ferroptosis. Biochem Biophys Res Commun. 2018;499(1):44-51. DOI:10.1016/j.bbrc.2018.03.113
31. Ouyang S, You J, Zhi C, et al. Ferroptosis: the potential value target in atherosclerosis. Cell Death Dis. 2021;12:782. DOI:10.1038/s41419-021-04054-3
32. Gong T, Liu L, Jiang W, Zhou R. DAMP-sensing receptors in sterile inflammation and inflammatory diseases. Nat Rev Immunol. 2020;20(2):95-112. DOI:10.1038/s41577-019-0215-7
33. Donia T, Khamis A. Management of oxidative stress and inflammation in cardiovascular diseases: mechanisms and challenges. Environ Sci Pollut Res Int. 2021;28(26):34121-53. DOI:10.1007/s11356-021-14109-9
34. Bai T, Li M, Liu Y, et al. Inhibition of ferroptosis alleviates atherosclerosis through attenuating lipid peroxidation and endothelial dysfunction in mouse aortic endothelial cell. Free Radic Biol Med. 2020;160:92-102. DOI:10.1016/j.freeradbiomed.2020.07.026
35. Marques VB, Leal MAS, Mageski JGA, et al. Chronic iron overload intensifies atherosclerosis in apolipoprotein E deficient mice: Role of oxidative stress and endothelial dysfunction. Life Sci. 2019;233:116702. DOI:10.1016/j.lfs.2019.116702
36. Moradali MF, Ghods S, Rehm BH. Pseudomonas aeruginosa lifestyle: a paradigm for adaptation, survival, and persistence. Front Cell Infect Microbiol. 2017;7:39. DOI:10.3389/fcimb.2017.00039
37. Ruffin M, Brochiero E. Repair process impairment by Pseudomonas aeruginosa in epithelial tissues: major features and potential therapeutic avenues. Front Cell Infect Microbiol. 2019;9:182. DOI:10.3389/fcimb.2019.00182
38. Fitzgerald ES, Luz NF, Jamieson AM. Competitive cell death interactions in pulmonary infection: host modulation versus pathogen manipulation. Front Immunol. 2020;11:814. DOI:10.3389/fimmu.2020.00814
39. Dar HH, Tyurina YY, Mikulska-Ruminska K, et al. Pseudomonas aeruginosa utilizes host polyunsaturated phosphatidylethanolamines to trigger theft-ferroptosis in bronchial epithelium. J Clin Invest. 2018;128(10):4639-53. DOI:10.1172/JCI99490
40. Dar HH, Anthonymuthu TS, Ponomareva LA, et al. A new thiol-independent mechanism of epithelial host defense against Pseudomonas aeruginosa: iNOS/NO sabotage of theft-ferroptosis. Redox Biol. 2021;45:102045. DOI:10.1016/j.redox.2021.102045
41. Kapralov AA, Yang Q, Dar HH, et al. Redox lipid reprogramming commands susceptibility of macrophages and microglia to ferroptotic death. Nat Chem Biol. 2020;16(3):278-90. DOI:10.1038/s41589-019-0462-8
________________________________________________
1. Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149(5):1060-72. DOI:10.1016/j.cell.2012.03.042
2. Stockwell BR, Jiang X, Gu W. Emerging Mechanisms and Disease Relevance of Ferroptosis. Trends Cell Biol. 2020;30(6):478-90. DOI:10.1016/j.tcb.2020.02.009
3. Kerr JF. A histochemical study of hypertrophy and ischaemic injury of rat liver with special reference to changes in lysosomes. J Pathol Bacteriol. 1965;90(2):419-35. DOI:10.1002/path.1700900210
4. Lockshin RA, Williams CM. Programmed cell death-II. Endocrine potentiation of the breakdown of the intersegmental muscles of silkmoths. J Insect Physiol. 1964;10(4):643-9. DOI:10.1016/0022-1910(64)90034-4
5. Lockshin RA, Williams CM. Programmed cell death-I. Cytology of degeneration in the intersegmental muscles of the pernyi silkmoth. J Insect Physiol. 1965;11:123-33. DOI:10.1016/0022-1910(65)90099-5
6. Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972;26(4):239-57. DOI:10.1038/bjc.1972.33
7. Dolma S, Lessnick SL, Hahn WC, Stockwell BR. Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells. Cancer Cell. 2003;3(3):285-96. DOI:10.1016/s1535-6108(03)00050-3
8. Yang WS, Stockwell BR. Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chem Biol. 2008;15(3):234-45. DOI:10.1016/j.chembiol.2008.02.010
9. Yagoda N, von Rechenberg M, Zaganjor E, et al. RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels. Nature. 2007;447(7146):864-8. DOI:10.1038/nature05859
10. Li J, Cao F, Yin HL, et al. Ferroptosis: past, present and future. Cell Death Dis. 2020;11(2):88. DOI:10.1038/s41419-020-2298-2
11. Xie Y, Hou W, Song X, et al. Ferroptosis: process and function. Cell Death Differ. 2016;23(3):369-79. DOI:10.1038/cdd.2015.158
12. Wu Z, Geng Y, Lu X, et al. Chaperone-mediated autophagy is involved in the execution of ferroptosis. Proc Natl Acad Sci U S A. 2019;116(8):2996-3005. DOI:10.1073/pnas.1819728116
13. Galanopoulos M, Gkeros F, Doukatas A, et al. COVID-19 pandemic: Pathophysiology and manifestations from the gastrointestinal tract. World J Gastroenterol. 2020;26(31):4579-88. DOI:10.3748/wjg.v26.i31.4579
14. Cavezzi A, Troiani E, Corrao S. COVID-19: hemoglobin, iron, and hypoxia beyond inflammation. A narrative review. Clin Pract. 2020;10(2):1271. DOI:10.4081/cp.2020.1271
15. Zhou C, Chen Y, Ji Y, et al. Increased serum levels of hepcidin and ferritin are associated with severity of COVID-19. Med Sci Monit. 2020;26:e926178. DOI:10.12659/MSM.926178
16. Edeas M, Saleh J, Peyssonnaux C. Iron: Innocent bystander or vicious culprit in COVID-19 pathogenesis? Int J Infect Dis. 2020;97:303-5. DOI:10.1016/j.ijid.2020.05.110
17. Ganz T, Nemeth E. Hepcidin and iron homeostasis. Biochim Biophys Acta. 2012;1823(9):1434-43. DOI:10.1016/j.bbamcr.2012.01.014
18. Ma TL, Zhou Y, Wang C, et al. Targeting Ferroptosis for Lung Diseases: Exploring Novel Strategies in Ferroptosis-Associated Mechanisms. Oxid Med Cell Longev. 2021;2021:1098970. DOI:10.1155/2021/1098970
19. Jacobs W, Lammens M, Kerckhofs A, et al. Fatal lymphocytic cardiac damage in coronavirus disease 2019 (COVID-19): autopsy reveals a ferroptosis signature. ESC Heart Fail. 2020;7(6):3772-81. DOI:10.1002/ehf2.12958
20. Fratta Pasini AM, Stranieri C, Girelli D, et al. Is ferroptosis a key component of the process leading to multiorgan damage in COVID-19? Antioxidants (Basel). 2021;10(11):1677. DOI:10.3390/antiox10111677
21. Global Initiative for Chronic Obstructive Lung Disease. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease. Revised 2020. Available at: https://goldcopd.org/wp-content/uploads/2019/11/GOLD-2020-REPORT-ver1.0wms.pdf. Accessed: 12.05.2022
22. Yoshida M, Minagawa S, Araya J, et al. Involvement of cigarette smoke-induced epithelial cell ferroptosis in COPD pathogenesis. Nat Commun. 2019;10(1):3145. DOI:10.1038/s41467-019-10991-7
23. Chiappori A, Folli C, Balbi F, et al. CD4(+)CD25(high)CD127(-) regulatory T-cells in COPD: smoke and drugs effect. World Allergy Organ J. 2016;9:5. DOI:10.1186/s40413-016-0095-2
24. Park EJ, Park YJ, Lee SJ, et al. Whole cigarette smoke condensates induce ferroptosis in human bronchial epithelial cells. Toxicol Lett. 2019;303:55-66. DOI:10.1016/j.toxlet.2018.12.007
25. Yellon DM, Hausenloy DJ. Myocardial reperfusion injury. N Engl J Med. 2007;357(11):1121-35. DOI:10.1056/NEJMra071667
26. Friedmann Angeli JP, Schneider M, Proneth B, et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat Cell Biol. 2014;16(12):1180-91. DOI:10.1038/ncb3064
27. Li W, Feng G, Gauthier JM, et al. Ferroptotic cell death and TLR4/Trif signaling initiate neutrophil recruitment after heart transplantation. J Clin Invest. 2019;129(6):2293-304. DOI:10.1172/JCI126428
28. Baba Y, Higa JK, Shimada BK, et al. Protective effects of the mechanistic target of rapamycin against excess iron and ferroptosis in cardiomyocytes. Am J Physiol Heart Circ Physiol. 2018;314(3):H659-68. DOI:10.1152/ajpheart.00452.2017
29. Fang X, Wang H, Han D, et al. Ferroptosis as a target for protection against cardiomyopathy. Proc Natl Acad Sci U S A. 2019;116(7):2672-80. DOI:10.1073/pnas.1821022116
30. Bai YT, Chang R, Wang H, et al. ENPP2 protects cardiomyocytes from erastin-induced ferroptosis. Biochem Biophys Res Commun. 2018;499(1):44-51. DOI:10.1016/j.bbrc.2018.03.113
31. Ouyang S, You J, Zhi C, et al. Ferroptosis: the potential value target in atherosclerosis. Cell Death Dis. 2021;12:782. DOI:10.1038/s41419-021-04054-3
32. Gong T, Liu L, Jiang W, Zhou R. DAMP-sensing receptors in sterile inflammation and inflammatory diseases. Nat Rev Immunol. 2020;20(2):95-112. DOI:10.1038/s41577-019-0215-7
33. Donia T, Khamis A. Management of oxidative stress and inflammation in cardiovascular diseases: mechanisms and challenges. Environ Sci Pollut Res Int. 2021;28(26):34121-53. DOI:10.1007/s11356-021-14109-9
34. Bai T, Li M, Liu Y, et al. Inhibition of ferroptosis alleviates atherosclerosis through attenuating lipid peroxidation and endothelial dysfunction in mouse aortic endothelial cell. Free Radic Biol Med. 2020;160:92-102. DOI:10.1016/j.freeradbiomed.2020.07.026
35. Marques VB, Leal MAS, Mageski JGA, et al. Chronic iron overload intensifies atherosclerosis in apolipoprotein E deficient mice: Role of oxidative stress and endothelial dysfunction. Life Sci. 2019;233:116702. DOI:10.1016/j.lfs.2019.116702
36. Moradali MF, Ghods S, Rehm BH. Pseudomonas aeruginosa lifestyle: a paradigm for adaptation, survival, and persistence. Front Cell Infect Microbiol. 2017;7:39. DOI:10.3389/fcimb.2017.00039
37. Ruffin M, Brochiero E. Repair process impairment by Pseudomonas aeruginosa in epithelial tissues: major features and potential therapeutic avenues. Front Cell Infect Microbiol. 2019;9:182. DOI:10.3389/fcimb.2019.00182
38. Fitzgerald ES, Luz NF, Jamieson AM. Competitive cell death interactions in pulmonary infection: host modulation versus pathogen manipulation. Front Immunol. 2020;11:814. DOI:10.3389/fimmu.2020.00814
39. Dar HH, Tyurina YY, Mikulska-Ruminska K, et al. Pseudomonas aeruginosa utilizes host polyunsaturated phosphatidylethanolamines to trigger theft-ferroptosis in bronchial epithelium. J Clin Invest. 2018;128(10):4639-53. DOI:10.1172/JCI99490
40. Dar HH, Anthonymuthu TS, Ponomareva LA, et al. A new thiol-independent mechanism of epithelial host defense against Pseudomonas aeruginosa: iNOS/NO sabotage of theft-ferroptosis. Redox Biol. 2021;45:102045. DOI:10.1016/j.redox.2021.102045
41. Kapralov AA, Yang Q, Dar HH, et al. Redox lipid reprogramming commands susceptibility of macrophages and microglia to ferroptotic death. Nat Chem Biol. 2020;16(3):278-90. DOI:10.1038/s41589-019-0462-8
ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова» Минздрава России (Сеченовский Университет), Москва, Россия
*tarzimanova@mail.ru
________________________________________________
Valery I. Podzolkov, Aida I. Tarzimanova*, Liubov A. Ponomareva, Elena N. Popova, Andrey B. Ponomarev
Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
*tarzimanova@mail.ru