Национальный мультидисциплинарный Консенсус подготовлен при участии Национальной медицинской Ассоциации по изучению сочетанных заболеваний (НАСЗ), Российского общества по изучению печени (РОПИП), Российской Ассоциации эндокринологов (РАЭ), Российской Ассоциации геронтологов и гериатров (РАГГ), Национального общества профилактической кардиологии, Профессионального фонда содействия развитию медицины «ПРОФМЕДФОРУМ».
Цель мультидисциплинарного консенсуса – в подробном анализе течения неалкогольной жировой болезни печени (НАЖБП) и основных ассоциированных с ней состояний. Дано определение НАЖБП, описаны ее распространенность, методы диагностики таких составляющих, как стеатоз, воспаление и фиброз. Проанализирована связь НАЖБП с рядом кардиометаболических заболеваний (артериальной гипертонией, атеросклерозом, тромботическими осложнениями, сахарным диабетом 2-го типа, ожирением, дислипидемией и др.), хронической болезнью почек и риском развития гепатоцеллюлярного рака. Представлен обзор немедикаментозных методов лечения НАЖБП и современных возможностей фармакотерапии. Рассмотрены возможности новых молекул в лечении НАЖБП: агонистов ядерных рецепторов, антагонистов провоспалительных молекул и т.п. Описаны положительные свойства и недостатки применяемых в настоящее время препаратов (витамин Е, тиазолидиндионы и др.). Особое внимание уделено мультитаргетной молекуле урсодезоксихолевой кислоты в комплексном лечении НАЖБП как мультифакторного заболевания. Рассмотрены ее противовоспалительные, антиоксидантные и цитопротективные свойства, способность через модуляцию аутофагии уменьшать стеатоз – независимый фактор риска развития сердечно-сосудистой патологии, уменьшать воспаление и печеночный фиброз. Продемонстрированы способности урсодезоксихолевой кислоты влиять на гомеостаз глюкозы и липидов, оказывать антиканцерогенное действие. В Консенсусе выработаны положения для практикующих врачей по оптимизации диагностики и лечения НАЖБП и связанных с ней общими патогенетическими звеньями кардиометаболических заболеваний.
The National Consensus was prepared with the participation of the National Medical Association for the Study of the Multimorbidity, Russian Scientific Liver Society, Russian Association of Endocrinologists, Russian Association of Gerontologists and Geriatricians, National Society for Preventive Cardiology, Professional Foundation for the Promotion of Medicine – Fund PROFMEDFORUM.
The aim of the multidisciplinary consensus is a detailed analysis of the course of non-alcoholic fatty liver disease (NAFLD) and the main associated conditions. The definition of NAFLD is given, its prevalence is described, methods for diagnosing its components such as steatosis, inflammation and fibrosis are described. The association of NAFLD with a number of cardio-metabolic diseases (arterial hypertension, atherosclerosis, thrombotic complications, type 2 diabetes mellitus, obesity, dyslipidemia, etc.), chronic kidney disease and the risk of developing hepatocellular cancer were analyzed. The review of non-drug methods of treatment of NAFLD and modern opportunities of pharmacotherapy are presented. The possibilities of new molecules in the treatment of NAFLD are considered: agonists of nuclear receptors, antagonists of pro-inflammatory molecules, etc. The positive properties and disadvantages of currently used drugs (vitamin E, thiazolidinediones, etc.) are described. Special attention is paid to the multi-target ursodeoxycholic acid molecule in the complex treatment of NAFLD as a multifactorial disease. Its anti-inflammatory, anti-oxidant and cytoprotective properties, the ability to reduce steatosis – an independent risk factor for the development of cardiovascular pathology, reduce inflammation and hepatic fibrosis through the modulation of autophagy are considered. The ability of ursodeoxycholic acid to influence glucose and lipid homeostasis and to have an anticarcinogenic effect has been demonstrated. The Consensus statement has advanced provisions for practitioners to optimize the diagnosis and treatment of NAFLD and related common pathogenetic links of cardio-metabolic diseases.
1. Kleiner DE, Makhlouf HR. Histology of Nonalcoholic Fatty Liver Disease and Nonalcoholic Steatohepatitis in Adults and Children. Clin Liver Dis. 2016;20(2):293-312. 2. Jichitu A, Bungau S, Stanescu AMA, et al. Non-Alcoholic Fatty Liver Disease and Cardiovascular Comorbidities: Pathophysiological Links, Diagnosis, and Therapeutic Management. Diagnostics (Basel). 2021;11(4):689. DOI:10.3390/diagnostics11040689 3. Ивашкин В.Т., Маевская М.В., Павлов Ч.С., и др. Клинические рекомендации по диагностике и лечению неалкогольной жировой болезни печени Российского общества по изучению печени и Российской гастроэнтерологической ассоциации. Российский журнал гастроэнтерологии, гепатологии, колопроктологии. 2016;26(2):24-42 [Ivashkin VT, Mayevskaya MV, Pavlov ChS, et al. Clinical guidelines for the diagnosis and treatment of non-alcoholic fatty liver disease of the Russian Society for the Study of the Liver and the Russian Gastroenterological Association. Russian Journal of Gastroenterology, Hepatology, Coloproctology. 2016;26(2):24-42 (in Russian)]. DOI:10.22416/1382-4376-2016-26-2-24-42 4. Шархун О.О. Формирование кардиометаболических нарушений при НАЖБП, ассоциированной с инсулинорезистентностью. Автореф. дис. ... д-ра мед наук. М., 2019 [Sharkhun OO. Formation of cardiometabolic disorders in NAFLD associated with insulin resistance.Abstract of the dissertation for the degree of Doctor of Medical Sciences.Moscow, 2019 (in Russian)]. 5. Комова А.Г., Маевская М.В., Ивашкин В.Т. Принципы эффективной диагностики диффузных заболеваний печени на амбулаторном этапе. Рос. журн. гастроэнтерологии, гепатологии, колопроктологии. 2014;24(5):36-41 [Komova AG, Mayevskaya MV, Ivashkin VT. Principles of effective diagnosis of diffuse liver diseases at the outpatient stage. Russian Journal of Gastroenterology, Hepatology, Coloproctology. 2014;24(5):36-41 (in Russian)]. 6. Povsic M, Wong OY, Perry R, Bottomley J. A Structured Literature Review of the Epidemiology and Disease Burden of Non-Alcoholic Steatohepatitis (NASH). Adv Ther. 2019;36(7):1574-94. DOI:10.1007/s12325-019-00960-3 7. Estes C, Anstee QM, Arias-Loste MT, et al. Modeling NAFLD disease burden in China, France, Germany, Italy, Japan, Spain, United Kingdom, and United States for the period 2016–2030. J Hepatol. 2018;69(4):896-904. DOI:10.1016/j.jhep.2018.05.036 8. Day CP, James OF. Steatohepatitis: a tale of two ‘hits’? Gastroenterology. 1998;114:842-5. 9. Byrne CD, Targher G. NAFLD: A multisystem disease. J Hepatol. 2015;62(1S):S47-S64. 10. Fang YL, Chen H, Wang CL, Liang L. Pathogenesis of non-alcoholic fatty liver disease in children and adolescence: from “two hit theory” to “multiple hit model”. World J Gastroenterol. 2018;24:2974-83. 11. Xian YX, Weng JP, Xu F. MAFLD vs. NAFLD: shared features and potential changes in epidemiology, pathophysiology, diagnosis, and pharmacotherapy. Chin Med J. 2021;134:8-19. 12. Parthasarathy G, Revelo X, Malhi H. Pathogenesis of Nonalcoholic Steatohepatitis: An Overview. Hepatology Communications. 2020;4(4):478-92. 13. Haas JT, Francque S, Staels B. Pathophysiology and mechanisms of nonalcoholic fatty liver disease. Annu Rev Physiol. 2016;78:181-205. 14. Friedman J. Leptin at 20: an overview. J Endocrinol. 2014;223:1-T8. 15. Samuel VT, Shulman GI. The pathogenesis of insulin resistance: integrating signaling pathways and substrate flux. J Clin Invest. 2016;126:12-22. 16. Ipsen DH, Lykkesfeldt J, Tveden-Nyborg P. Molecular mechanisms of hepatic lipid accumulation in non-alcoholic fatty liver disease. Cell Mol Life Sci. 2018;75:3313-27. 17. Lambert JE, Ramos-Roman MA, Browning JD, Parks EJ. Increased de novo lipogenesis is a distinct characteristic of individuals with nonalcoholic fatty liver disease. Gastroenterology. 2014;146:726-35. 18. Ter Horst KW, Serlie MJ. Fructose consumption, lipogenesis, and non-alcoholic fatty liver disease. Nutrients. 2017;9:E981. 19. Basaranoglu M, Basaranoglu G, Bugianesi E. Carbohydrate intake and nonalcoholic fatty liver disease: Fructose as a weapon of mass destruction. Hepatobiliary Surg Nutr. 2015;4:109-16. DOI:10.3978/j.issn.2304-3881.2014.11.05 20. Jensen T, Abdelmalek MF, Sullivan S, et al. Fructose and sugar: a major mediator of non-alcoholic fatty liver disease. J Hepatol. 2018; 68:1063-75. 21. Birkenfeld AL, Shulman GI. Nonalcoholic fatty liver disease, hepatic insulin resistance, and type 2 diabetes. Hepatology. 2014;59:713-23. 22. Ghorpade DS, Ozcan L, Zheng Z, et al. Hepatocyte-secreted DPP4 in obesity promotes adipose inflammation and insulin resistance. Nature. 2018;555:673-77. 23. Ferramosca A, Zara V. Modulation of hepatic steatosis by dietary fatty acids. World J Gastroenterol. 2014;20:1746-55. 24. Malhi H, Gores GJ. Molecular mechanisms of lipotoxicity in nonalcoholic fatty liver disease. Semin Liver Dis. 2008;28:360-9. 25. Musso G, Cassader M, Paschetta E, Gambino R. Bioactive lipid species and metabolic pathways in progression and resolution of nonalcoholic steatohepatitis. Gastroenterology. 2018;155:282-302.e288. 26. Parry SA, Rosqvist F, Mozes FE, et al. Intrahepatic fat and postprandial glycemia increase after consumption of a diet enriched in saturated fat compared with free sugars. Diabetes Care. 2020;43:1134-41. 27. Драпкина О.М., Буеверов А.О. Неалкогольная жировая болезнь как мультидисциплинарная патология. М.: Видокс, 2019 [Drapkina OM, Bueverov AO. Nonalcoholic fatty disease as a multidisciplinary pathology. Moscow: Vidox, 2019 (in Russian)]. 28. Buzzetti E, Pinzani M, Tsochatzis EA. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabolism. 2016;65:1038-48. 29. Шифф Ю.Р., Соррел М.Ф., Мэддрей У.С. Алкогольные, лекарственные, генетические и метаболические заболевания; пер. с англ. М.: ГЭОТАР-Медиа, 2011 [Schiff YR, Sorrell MF, Maddray WS. Alcoholic, medicinal, genetic and metabolic diseases. Moscow: GEOTAR-Media, 2011 (in Russian)]. 30. Sasaki A, Nitta H, Otsuka K, et al. Bariatric surgery and non-alcoholic fatty liver disease: current and potential future treatments. Front Endocrinol. 2014;5:164. 31. Shen J, Sakaida I, Uchida K, et al. Leptin enhances TNF-alpha production via p38 and JNK MAPK in LPS-stimulated Kupffer cells. Life Sci. 2005;77:1502-15. 32. Subichin M, Clanton J, Makuszewski M, et al. Liver disease in the morbidly obese: a review of 1000 consecutive patients undergoing weight loss surgery. Surg Obes Relat Dis. 2015;11:137-41. 33. Stanton MC, Chen S-C, Jackson JV, et al. Inflammatory signals shift from adipose to liver during high fat feeding and influence the development of steatohepatitis in mice. J Inflamm (Lond). 2011;8:8. 34. Virtue S, Vidal-Puig A. Adipose tissue expandability, lipotoxicity and the metabolic syndrome – an allostatic perspective. Biochim Biophys Acta. 2010;1801:338-49. 35. Stojsavljevic S, Gomercic Palcic M, Virovic Jukic L, et al. Adipokines and proinflammatory cytokines, the key mediators in the pathogenesis of nonalcoholic fatty liver disease. World J Gastroenterol. 2014;20:18070-91. 36. Osborn O, Olefsky JM. The cellular and signaling networks linking the immune system and metabolism in disease. Nat Med. 2012;18:363-74. 37. Marra F, Svegliati-Baroni G. Lipotoxicity and the gut-liver axis in NASH pathogenesis. J Hepatol. 2018;68:280-95. 38. Di Maira G, Pastore M, Marra F. Liver fibrosis in the context of nonalcoholic steatohepatitis: the role of adipokines. Minerva Gastroenterol Dietol. 2018;64:39-50. DOI:10.23736/S1121-421X.17.02427-8 39. Remmerie A, Martens L, Scott CL. Macrophage subsets in obesity, aligning the liver and adipose tissue. Front Endocrinol (Lausanne). 2020;11:259. 40. Machado MV, Cortez-Pinto H. Gut microbiota and nonalcoholic fatty liver disease. Ann Hepatol. 2012;11(4): 440-9. 41. Anstee QM, Targher G, Day CP. Progression of NAFLD to diabetes mellitus, cardiovascular disease or cirrhosis. Nat Rev Gastroenterol Hepatol. 2013;10:330-44. 42. Thomson AW, Knolle PA. Antigen-presenting cell function in the tolerogenic liver environment. Nat Rev Immunol. 2010;10:753-66. 43. Lotze MT, Zeh HJ, Rubartelli A, et al. The grateful dead: damage-associated molecular pattern molecules and reduction/oxidation regulate immunity. Immunol Rev. 2007;220:60-81. 44. Szabo G, Csak T. Inflammasomes in liver diseases. J Hepatol. 2012;57:642-54. 45. Luedde T, Schwabe RF. NF-κB in the liver – linking injury, fibrosis and hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol. 2011;8:108-18. 46. Klein I, Cornejo JC, Polakos NK, et al. Kupffer cell heterogeneity: functional properties of bone marrow derived and sessile hepatic macrophages. Blood. 2007;110:4077-85. 47. Tomita K, Tamiya G, Ando S, et al. Tumour necrosis factor alpha signalling through activation of Kupffer cells plays an essential role in liver fibrosis of non-alcoholic steatohepatitis in mice. Gut. 2006;55:415-24. 48. Kremer M, Hines IN, Milton RJ, Wheeler MD. Favored T helper 1 response in a mouse model of hepatosteatosis is associated with enhanced T cell-mediated hepatitis. Hepatology. 2006;44:216-27. 49. Ghazarian M, Revelo XS, Nohr MK, et al. Type I interferon responses drive intrahepatic T cells to promote metabolic syndrome. Sci Immunol. 2017;2:7616. 50. Плотникова Е.Ю., Грачева Т.Ю., Ержанова Е.А. Роль кишечной микрофлоры в формировании неалкогольной жировой болезни печени. Лечащий врач. 2017;2:32-8 [Plotnikova EYu, Gracheva TYu, Yerzhanova EA. The role of intestinal microflora in the formation of non-alcoholic fatty liver disease. The Attending Physician. 2017;2:32-8 (in Russian)]. 51. Poeta M, Pierri L, Vajro P. Gut-Liver Axis Derangement in Non-Alcoholic Fatty Liver Disease. Children (Basel). 2017;4:66. 52. Paolella G, Mandato C, Pierri L, et al. Gut-liver axis and probiotics: their role in non-alcoholic fatty liver disease. World J Gastroenterol. 2014;20:15518-31. 53. Zorn AM, Wells JM. Vertebrate endoderm development and organ formation. Annu Rev Cell Dev Biol. 2009;25:221-51. 54. Zhang Y, Lee FY, Barrera G, et al. Activation of the nuclear receptor FXR improves hyperglycemia and hyperlipidemia in diabetic mice. Proc Natl Acad Sci USA. 2006;103:1006-11. 55. Watanabe M, Houten SM, Wang L, et al. Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c. J Clin Invest. 2004;113:1408-18. 56. Parseus A, Sommer N, Sommer F, et al. Microbiota-induced obesity requires farnesoid X receptor. Gut. 2017;66:429-37. 57. Van Nierop FS, Scheltema MJ, Eggink HM, et al. Clinical relevance of the bile acid receptor TGR5 in metabolism. Lancet Diabetes Endocrinol. 2017;5:224-33. 58. Amir M, Czaja MJ. Autophagy in nonalcoholic steatohepatitis. Expert Rev Gastroenterol Hepatol. 2011;5(2):159-66. 59. Wu P, Zhao J, Guo Y, et al. Ursodeoxycholic acid alleviates nonalcoholic fatty liver disease by inhibiting apoptosis and improving autophagy via activating AMPK. Biochem Biophys Res Commun. 2020;27;529(3):834-8. 60. Kurashima Y, Kiyono H. Mucosal ecological network of epithelium and immune cells for gut homeostasis and tissue healing. Annu Rev Immunol. 2017;35:119-47. 61. Nevo S, Kadouri N, Abramson J. Tuft cells: From the mucosa to the thymus. Immunol Lett. 2019;210:1-9. 62. Turner JR. Intestinal mucosal barrier function in health and disease. Nat Rev Immunol. 2009;9:799-809. 63. Van Itallie CM, Holmes J, Bridges A, et al. The density of small tight junction pores varies among cell types and is increased by expression of claudin-2. J Cell Sci. 2008;121:298-305. 64. Clemente MG, Mandato C, Poeta M, Vajro P. Pediatric non-alcoholic fatty liver disease: Recent solutions, unresolved issues, and future research directions. World J Gastroenterol. 2016;22:8078-93. 65. Ulluwishewa D, Anderson RC, McNabb WC, et al. Regulation of tight junction permeability by intestinal bacteria and dietary components. J Nutr. 2011;141:769-76. 66. Kapil S, Duseja A, Sharma BK, et al. Small intestinal bacterial overgrowth and toll-like receptor signaling in patients with non-alcoholic fatty liver disease. J Gastroenterol Hepatol. 2016;31:213-21. 67. Ахмедов В.А., Меликов Т.И. Генетические аспекты формирования неалкогольной жировой болезни печени. Лечащий врач. 2019;8:28-31 [Akhmedov VA, Melikov TI. Genetic aspects of the formation of non-alcoholic fatty liver disease. The Attending Physician. 2019;8:28-31 (in Russian)]. 68. Al-Serri A, Anstee QM, Valenti L, et al. The sod2 c47t polymorphism influences NAFLD fibrosis severity: evidence from case-control and intra-familial allele association studie. J Hepatol. 2011;56(2):448-54. 69. Dongiovanni P, Romeo S, Valenti L. Genetic Factors in the Pathogenesis of Nonalcoholic Fatty Liver and Steatohepatitis. BioMed Research International. 2015;460190:10. 70. Petersen KF, Dufour S, Hariri A, et al. Apolipoprotein C3 gene variants in nonalcoholic fatty liver disease. N Engl J Med. 2010;362(12):1082-89. 71. Sazci A, Akpinar G, Aygun C, et al. Association of apolipoprotein E polymorphisms in patients with non-alcoholic steatohepatitis. Dig Dis Sci. 2008;53:3218-24. 72. BasuRay S, Wang Y, Smagris E, et al. Accumulation of PNPLA3 on lipid droplets is the basis of associated hepatic steatosis. Proc Natl Acad Sci USA. 2019;116:9521-26. 73. Kotronen A, Johansson LE, Johansson LM, et al. A common variant in PNPLA3, which encodes adiponutrin, is associated with liver fat content in humans. Diabetologia. 2009;52:1056-60. 74. Kawaguchi T, Sumida Y, Umemura A, et al. Japan Study Group of Nonalcoholic Fatty Liver, Genetic polymorphisms of the human PNPLA3 gene are strongly associated with severity of non-alcoholic fatty liver disease in Japanese. PLoS One. 2012;7:e38322. 75. Zain SM, Mohamed R, Mahadeva S, et al. A multi-ethnic study of a PNPLA3 gene variant and its association with disease severity in non-alcoholic fatty liver disease. Hum Genet. 2012;131(7):1145-52. 76. Takeuchi Y, Ikeda F, Moritou Y, et al. The impact of patatin-like phospholipase domaincontaining protein 3 polymorphism on hepatocellular carcinoma prognosis. J Gastroenterol. 2012;48(3):405-12. 77. Musso G, Gambino R, De Michiel F, et al. Adiponectin gene polymorphisms modulate acute adiponectin response to dietary fat: possible pathogenetic role in NASH. Hepatology. 2008;47:1167-77. 78. Li X-L, Sui J-Q, Lu L-L, et al. Gene polymorphisms associated with non-alcoholic fatty liver disease and coronary artery disease: a concise review. Lipids Health Dis. 2016;15:53. 79. Zhang C, Guo L, Guo X. Interaction of polymorphisms of Leptin receptor gene Gln223Arg, MnSOD9Ala/Val genes and smoking in nonalcoholic fatty liver disease. Wei Sheng Yan Jiu. 2014;43(5):724-31. 80. Fedchuk L, Nascimbeni F, Pais R, et al. Performance and limitations of steatosis biomarkers in patients with nonalcoholic fatty liver disease. Aliment Pharmacol Ther. 2014;40:1209-22. 81. Bril F, Ortiz-Lopez C, Lomonaco R, et al. Clinical value of liver ultrasound for the diagnosis of nonalcoholic fatty liver disease in overweight and obese patients. Liver Internat. 2015;35:2139-46. 82. Petroff D, Blank V, Newsome PN, et al. Assessment of hepatic steatosis by controlled attenuation parameter using the M and XL probes: an individual patient data meta-analysis. Lancet Gastroenterol Hepatol. 2021;6(3):185-98. DOI:10.1016/S2468-1253(20)30357-5 83. EASL Clinical Practice Guidelines on non-invasive tests for evaluation of liver disease severity and prognosis – 2021 update. J Hepatol. 2021;75(3):659-89. DOI:10.1016/j.jhep.2021.05.025 84. Staufer K, Halilbasic E, Spindelboeck W, et al. Evaluation and comparison of six noninvasive tests for prediction of significant or advanced fibrosis in nonalcoholic fatty liver disease. United European Gastroenterol J. 2019;7(8):1113-23. DOI:10.1177/2050640619865133 85. Xiao G, Zhu S, Xiao X, et al. Comparison of laboratory tests, ultrasound, or magnetic resonance elastography to detect fibrosis in patients with nonalcoholic fatty liver disease: a meta-analysis. Hepаtology. 2017;66:1486-501. 86. Papatheodoridi M, Hiriart JB, Lupsor-Platon M, et al. Refining the Baveno VI elastography criteria for the definition of compensated advanced chronic liver disease. J Hepatol. 2021;74(5):1109-16. DOI:10.1016/j.jhep.2020.11.050 87. Simeone JC, Bae JP, Hoogwerf BJ, et al. Clinical course of nonalcoholic fatty liver disease: an assessment of severity, progression, and outcomes. Clin Epidemiol. 2017;9:679-88. DOI:10.2147/CLEP.S144368 88. Маевская М.В., Надинская М.Ю., Луньков В.Д., и др. Влияние урсодезоксихолевой кислоты на воспаление, стеатоз и фиброз печени и факторы атерогенеза у больных неалкогольной жировой болезнью печени: результаты исследования УСПЕХ. Российский журнал гастроэнтерологии, гепатологии, колопроктологии. 2019;29(6):22-9 [Mayevskaya MV, Nadinskaya MYu, Lunkov VD, et al. The effect of ursodeoxycholic acid on inflammation, steatosis and fibrosis of the liver and factors of atherogenesis in patients with non-alcoholic fatty liver disease: the results of the study SUCCESS. Russian Journal of Gastroenterology, Hepatology, Coloproctology. 2019;29(6):22-9 (in Russian)]. DOI:10.22416/1382-4376-2019-29-6-22-29 89. Streba LA, Vere CC, Rogoveanu I, Streba CT. Nonalcoholic fatty liver disease, metabolic risk factors, and hepatocellular carcinoma: an open question. World J Gastroenterol. 2015;21(14):4103-10. DOI:10.3748/wjg.v21.i14.4103 90. Vilar-Gomez E, Martinez-Perez Y, Calzadilla-Bertot L, et al. Weight Loss Through Lifestyle Modification Significantly Reduces Features of Nonalcoholic Steatohepatitis. Gastroenterology. 2015;149(2):367-78. DOI:10.1053/j.gastro.2015.04.005 91. Koutoukidis DA, Astbury NM, Tudor KE, et al. Association of Weight Loss Interventions With Changes in Biomarkers of Nonalcoholic Fatty Liver Disease: A Systematic Review and Meta-analysis. JAMA Intern Med. 2019;179(9):1262-71. DOI:10.1001/jamainternmed.2019.2248. Erratum in: JAMA Intern Med. 2019;179(9):1303-04. 92. Keating SE, Hackett DA, George J, Johnson NA. Exercise and non-alcoholic fatty liver disease: a systematic review and meta-analysis. J Hepatol. 2012;57(1):157-66. DOI:10.1016/j.jhep.2012.02.023 93. Cheng S, Ge J, Zhao C, et al. Effect of aerobic exercise and diet on liver fat in pre-diabetic patients with non-alcoholic-fatty-liver-disease: A randomized controlled trial. Sci Rep. 2017;7(1):15952.DOI:10.1038/s41598-017-16159-x 94. Hallsworth K, Thoma C, Hollingsworth KG, et al. Modified high-intensity interval training reduces liver fat and improves cardiac function in non-alcoholic fatty liver disease: a randomized controlled trial. Clin Sci (Lond). 2015;129(12):1097-105. DOI:10.1042/CS20150308 95. Hashida R, Kawaguchi T, Bekki M, et al. Aerobic vs. resistance exercise in non-alcoholic fatty liver disease: A systematic review. J Hepatol. 2017;66(1):142-52. DOI:10.1016/j.jhep.2016.08.023 96. Katsagoni CN, Georgoulis M, Papatheodoridis GV, et al. Effects of lifestyle interventions on clinical characteristics of patients with non-alcoholic fatty liver disease: A meta-analysis. Metabolism. 2017;68:119-32. DOI:10.1016/j.metabol.2016.12.006 97. Golabi P, Locklear CT, Austin P, et al. Effectiveness of exercise in hepatic fat mobilization in non-alcoholic fatty liver disease: Systematic review. World J Gastroenterol. 2016;22(27):6318-27. DOI:10.3748/wjg.v22.i27.6318 98. Smart NA, King N, McFarlane JR, et al. Effect of exercise training on liver function in adults who are overweight or exhibit fatty liver disease: a systematic review and meta-analysis. Br J Sports Med. 2018;52(13):834-43. DOI:10.1136/bjsports-2016-096197 99. Rector RS, Thyfault JP, Morris RT, et al. Daily exercise increases hepatic fatty acid oxidation and prevents steatosis in Otsuka Long-Evans Tokushima Fatty rats. Am J Physiol Gastrointest Liver Physiol. 2008;294(3):G619-26. DOI:10.1152/ajpgi.00428.2007 100. European Association for the Study of the Liver (EASL); European Association for the Study of Diabetes (EASD); European Association for the Study of Obesity (EASO). EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. J Hepatol. 2016;64(6):1388-402. DOI:10.1016/j.jhep.2015.11.004 101. Ryan MC, Itsiopoulos C, Thodis T, et al. The Mediterranean diet improves hepatic steatosis and insulin sensitivity in individuals with non-alcoholic fatty liver disease. J Hepatol. 2013;59(1):138-43. DOI:10.1016/j.jhep.2013.02.012 102. Kontogianni MD, Tileli N, Margariti A, et al. Adherence to the Mediterranean diet is associated with the severity of non-alcoholic fatty liver disease. Clin Nutr. 2014;33(4):678-83. DOI:10.1016/j.clnu.2013.08.014 103. Saeed N, Nadeau B, Shannon C, Tincopa M. Evaluation of Dietary Approaches for the Treatment of Non-Alcoholic Fatty Liver Disease: A Systematic Review. Nutrients. 2019;11(12):3064. DOI:10.3390/nu11123064 104. Moosavian SP, Arab A, Paknahad Z. The effect of a Mediterranean diet on metabolic parameters in patients with non-alcoholic fatty liver disease: A systematic review of randomized controlled trials. Clin Nutr ESPEN. 2020;35:40-6. DOI:10.1016/j.clnesp.2019.10.008 105. Tendler D, Lin S, Yancy WS Jr, et al. The effect of a low-carbohydrate, ketogenic diet on nonalcoholic fatty liver disease: a pilot study. Dig Dis Sci. 2007;52(2):589-93. DOI:10.1007/s10620-006-9433-5 106. Wong VW, Wong GL, Chan RS, et al. Beneficial effects of lifestyle intervention in non-obese patients with non-alcoholic fatty liver disease. J Hepatol. 2018;69(6):1349-56. DOI:10.1016/j.jhep.2018.08.011 107. Francque SM, Marchesini G, Kautz A, et al. Non-alcoholic fatty liver disease: A patient guideline. JHEP Rep. 2021;3(5):100322. DOI:10.1016/j.jhepr.2021.100322 108. Xia Y, Zhang S, Zhang Q, et al. Insoluble dietary fibre intake is associated with lower prevalence of newly-diagnosed non-alcoholic fatty liver disease in Chinese men: a large population-based cross-sectional study. Nutr Metab (Lond). 2020;17:4. DOI:10.1186/s12986-019-0420-1 109. Zhao L, Zhang F, Ding X, et al. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science. 2018;359(6380):1151-56. DOI:10.1126/science.aao5774 110. Kenneally S, Sier JH, Moore JB. Efficacy of dietary and physical activity intervention in non-alcoholic fatty liver disease: a systematic review. BMJ Open Gastroenterol. 2017;4(1):e000139. DOI:10.1136/bmjgast-2017-000139 111. Parry SA, Hodson L. Managing NAFLD in Type 2 Diabetes: The Effect of Lifestyle Interventions, a Narrative Review. Adv Ther. 2020;37(4):1381-406. DOI:10.1007/s12325-020-01281-6 112. Lemstra M, Bird Y, Nwankwo C, et al. Weight loss intervention adherence and factors promoting adherence: a meta-analysis. Patient Prefer Adherence. 2016;10:1547-59. DOI:10.2147/PPA.S103649 113. Scragg J, Hallsworth K, Taylor G, et al Factors associated with engagement and adherence to a low-energy diet to promote 10% weight loss in patients with clinically significant non-alcoholic fatty liver disease. BMJ Open Gastroenterol. 2021;8:e000678. DOI:10.1136/bmjgast-2021-000678 114. Angulo P, Kleiner DE, Dam-Larsen S, et al. Liver Fibrosis, but No Other Histologic Features, Is Associated With Long-term Outcomes of Patients With Nonalcoholic Fatty Liver Disease. Gastroenterology. 2015;149(2):389-97.e10. DOI:10.1053/j.gastro.2015.04.043 115. Polyzos SA, Kang ES, Boutari C, et al. Current and emerging pharmacological options for the treatment of nonalcoholic steatohepatitis. Metabolism. 2020;111S:154203. DOI:10.1016/j.metabol.2020.154203 116. Sanyal AJ, Chalasani N, Kowdley KV, et al. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N Engl J Med. 2010;362(18):1675-85. DOI:10.1056/NEJMoa0907929 117. Cusi K, Orsak B, Bril F, et al. Long-Term Pioglitazone Treatment for Patients With Nonalcoholic Steatohepatitis and Prediabetes or Type 2 Diabetes Mellitus: A Randomized Trial. Ann Intern Med. 2016;165(5):305-15. DOI:10.7326/M15-1774 118. Musso G, Cassader M, Paschetta E, Gambino R. Thiazolidinediones and Advanced Liver Fibrosis in Nonalcoholic Steatohepatitis: A Meta-analysis. JAMA Intern Med. 2017;177(5):633-40. DOI:10.1001/jamainternmed.2016.9607 119. Budd J, Cusi K. Role of Agents for the Treatment of Diabetes in the Management of Nonalcoholic Fatty Liver Disease. Curr Diab Rep. 2020;20(11):59. DOI:10.1007/s11892-020-01349-1 120. Chalasani N, Younossi Z, Lavine JE, et al. The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases. Hepatology. 2018;67(1):328-57. DOI:10.1002/hep.29367 121. Ando Y, Jou JH. Nonalcoholic Fatty Liver Disease and Recent Guideline Updates. Clin Liver Dis (Hoboken). 2021;17(1):23-8. DOI:10.1002/cld.1045. PMID: 33552482; PMCID: PMC7849298. 122. Bril F, Biernacki DM, Kalavalapalli S, et al. Role of Vitamin E for Nonalcoholic Steatohepatitis in Patients With Type 2 Diabetes: A Randomized Controlled Trial. Diabetes Care. 2019;42(8):1481-88. DOI:10.2337/dc19-0167 123. Miller ER 3rd, Pastor-Barriuso R, Dalal D, et al. Meta-analysis: high-dosage vitamin E supplementation may increase all-cause mortality. Ann Intern Med. 2005;142(1):37-46. DOI:10.7326/0003-4819-142-1-200501040-00110 124. Abner EL, Schmitt FA, Mendiondo MS, et al. Vitamin E and all-cause mortality: a meta-analysis. Curr Aging Sci. 2011;4(2):158-70. DOI:10.2174/1874609811104020158 125. Dufour JF, Oneta CM, Gonvers JJ, et al. Swiss Association for the Study of the Liver. Randomized placebo-controlled trial of ursodeoxycholic acid with vitamin e in nonalcoholic steatohepatitis. Clin Gastroenterol Hepatol. 2006;4(12):1537-43. DOI:10.1016/j.cgh.2006.09.025 126. Ratziu V, de Ledinghen V, Oberti F, et al. FRESGUN. A randomized controlled trial of high-dose ursodesoxycholic acid for nonalcoholic steatohepatitis. J Hepatol. 2011;54(5):1011-9. DOI:10.1016/j.jhep.2010.08.030 127. Simental-Mendía LE, Simental-Mendía M, Sánchez-García A, et al. Impact of ursodeoxycholic acid on circulating lipid concentrations: a systematic review and meta-analysis of randomized placebo-controlled trials. Lipids Health Dis. 2019;18(1):88. DOI:10.1186/s12944-019-1041-4 128. Maton PN, Ellis HJ, Higgins MJ, Dowling RH. Hepatic HMGCoA reductase in human cholelithiasis: effects of chenodeoxycholic and ursodeoxycholic acids. Eur J Clin Invest. 1980;10(4):325-32. DOI:10.1111/j.1365-2362.1980.tb00040.x 129. Salen G, Colalillo A, Verga D, et al. Effect of high and low doses of ursodeoxycholic acid on gallstone dissolution in humans. Gastroenterology. 1980;78(6):1412-8. 130. Ponz de Leon M, Carulli N, Loria P, et al. Cholesterol absorption during bile acid feeding. Effect of ursodeoxycholic acid (UDCA) administration. Gastroenterology. 1980;78(2):214-9. 131. Марцевич С.Ю., Кутишенко Н.П., Дроздова Л.Ю., и др. Исследование РАКУРС: повышение эффективности и безопасности терапии статинами у больных с заболеваниями печени, желчного пузыря и/или желчевыводящих путей с помощью урсодезоксихолевой кислоты. Терапевтический архив. 2014;86(12):48-52 [Martsevich SYu, Kutishenko NP, Drozdova LYu, et al. Research PERSPECTIVE: improving the effectiveness and safety of statin therapy in patients with diseases of the liver, gallbladder and/or biliary tract using ursodeoxycholic acid. Terapevticheskii Arkhiv (Ter. Arkh.). 2014;86(12):48-52 (in Russian)]. 132. Nadinskaia M, Maevskaya M, Ivashkin V, et al. Ursodeoxycholic acid as a means of preventing atherosclerosis, steatosis and liver fibrosis in patients with nonalcoholic fatty liver disease. World J Gastroenterol. 2021;27(10):959-75. DOI:10.3748/wjg.v27.i10.959 133. Sánchez-García A, Sahebkar A, Simental-Mendía M, Simental-Mendía LE. Effect of ursodeoxycholic acid on glycemic markers: A systematic review and meta-analysis of clinical trials. Pharmacol Res. 2018;135:144-9. DOI:10.1016/j.phrs.2018.08.008 134. Stokes CS, Gluud LL, Casper M, Lammert F. Ursodeoxycholic acid and diets higher in fat prevent gallbladder stones during weight loss: a meta-analysis of randomized controlled trials. Clin Gastroenterol Hepatol. 2014;12(7):1090-100.e2; quiz e61. DOI:10.1016/j.cgh.2013.11.031 135. Boerlage TCC, Haal S, Maurits de Brauw L, et al. Ursodeoxycholic acid for the prevention of symptomatic gallstone disease after bariatric surgery: study protocol for a randomized controlled trial (UPGRADE trial). BMC Gastroenterol. 2017;17(1):164. DOI:10.1186/s12876-017-0674-x 136. Ratziu V, Sanyal A, Harrison SA, et al. Cenicriviroc Treatment for Adults With Nonalcoholic Steatohepatitis and Fibrosis: Final Analysis of the Phase 2b CENTAUR Study. Hepatology. 2020;72(3):892-905. DOI:10.1002/hep.31108 137. Harrison SA, Wong VW, Okanoue T, et al. STELLAR-3 and STELLAR-4 Investigators. Selonsertib for patients with bridging fibrosis or compensated cirrhosis due to NASH: Results from randomized phase III STELLAR trials. J Hepatol. 2020;73(1):26-39. DOI:10.1016/j.jhep.2020.02.027 138. Fougerat A, Montagner A, Loiseau N, et al. Peroxisome Proliferator-Activated Receptors and Their Novel Ligands as Candidates for the Treatment of Non-Alcoholic Fatty Liver Disease. Cells. 2020;9(7):1638. DOI:10.3390/cells9071638 139. Younossi ZM, Ratziu V, Loomba R, et al. REGENERATE Study Investigators. Obeticholic acid for the treatment of non-alcoholic steatohepatitis: interim analysis from a multicentre, randomised, placebo-controlled phase 3 trial. Lancet. 2019;394(10215):2184-96. DOI:10.1016/S0140-6736(19)33041-7 140. Ratziu V, Harrison SA, Francque S, et al. GOLDEN-505 Investigator Study Group. Elafibranor, an Agonist of the Peroxisome Proliferator-Activated Receptor-α and -δ, Induces Resolution of Nonalcoholic Steatohepatitis Without Fibrosis Worsening. Gastroenterology. 2016;150(5):1147-59.e5. DOI:10.1053/j.gastro.2016.01.038 141. Agrawal R. The first approved agent in the Glitazar's Class: Saroglitazar. Curr Drug Targets. 2014;15(2):151-5. DOI:10.2174/13894501113149990199 142. Kaul U, Parmar D, Manjunath K, et al. New dual peroxisome proliferator activated receptor agonist-Saroglitazar in diabetic dyslipidemia and non-alcoholic fatty liver disease: integrated analysis of the real world evidence. Cardiovasc Diabetol. 2019;18(1):80. DOI:10.1186/s12933-019-0884-3 143. Yamashita S, Masuda D, Matsuzawa Y. Pemafibrate, a New Selective PPARα Modulator: Drug Concept and Its Clinical Applications for Dyslipidemia and Metabolic Diseases. Curr Atheroscler Rep. 2020;22(1):5. DOI:10.1007/s11883-020-0823-5 144. Sven MF, Pierre B, Manal FA, et al. A randomised, double-blind, placebo-controlled, multi-centre, dose-range, proof-of-concept, 24-week treatment study of lanifibranor in adult subjects with non-alcoholic steatohepatitis: Design of the NATIVE study. Contemp Clin Trials. 2020;98:106170. DOI:10.1016/j.cct.2020.106170 145. Global Burden of Disease Cancer Collaboration. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 cancer groups, 1990 to 2015: a systematic analysis for the global burden of disease study. JAMA Oncol. 2017;3:524-48. 146. Yang JD, Hainaut P, Gores GJ, et al. A global view of hepatocellular carcinoma: trends, risk, prevention and management. Nat Rev Gastroenterol Hepatol. 2019;16:589-604. 147. Younossi Z, Stepanova M, Ong JP, et al. Nonalcoholic steatohepatitis is the fastest growing cause of hepatocellular carcinoma in liver transplant candidates. Clin Gastroenterol Hepatol. 2019;17(4):748-55.e743. 148. Anstee QM, Reeves HL, Kotsiliti E, et al. From NASH to HCC: current concepts and future challenges. Nat Rev Gastroenterol Hepatol. 2019;16(7):411-28.30. 149. Anstee QM, Darlay R, Cockell S, et al. Genome-wide association study of non-alcoholic fatty liver and steatohepatitis in a histologically characterised cohort. J Hepatol. 2020;73(3):505-15. 150. Geh D, Anstee QM, Reeves HL. NAFLD-Associated HCC: Progress and Opportunities. J Hepatocell Carcinoma. 2021;8:223-39S272213. 151. Yang JD, Addissie BD, Mara KC, et al. GALAD score for hepatocellular carcinoma detection in comparison with liver ultrasound and proposal of GALADUS score. Cancer Epidemiol Biomarkers Prev. 2019;28(3):531-8. 152. Best J, Bechmann LP, Sowa JP, et al. GALAD score detects early hepatocellular carcinoma in an International cohort of patients with nonalcoholic steatohepatitis. Clin Gastroenterol Hepatol. 2020;18(3):728-35.e724. 153. Piscaglia F, Svegliati-Baroni G, Barchetti A, et al. Clinical patterns of hepatocellular carcinoma in nonalcoholic fatty liver disease: a multicenter prospective study. Hepatology. 2016;63(3):827-38. 154. Stine JG, Wentworth BJ, Zimmet A, et al. Systematic review with meta-analysis: risk of hepatocellular carcinoma in non-alcoholic steatohepatitis without cirrhosis compared to other liver diseases. Aliment Pharmacol Ther. 2018;48(7):696-703. 155. Ma S, Zheng Y, Xiao Y, et al. Meta-analysis of studies using metformin as a reducer for liver cancer risk in diabetic patients. Medicine (Baltimore). 2017;96(19):e6888. 156. Simon TG, Duberg AS, Aleman S, et al. Lipophilic statins and risk for hepatocellular carcinoma and death in patients with chronic viral hepatitis: results from a Nationwide Swedish Population. Ann Intern Med. 2019;171(5):318-27. 157. Simon TG, Duberg A-S, Aleman S, et al. Association of aspirin with hepatocellular carcinoma and liver-related mortality. N Engl J Med. 2020;382(11):1018-28. 158. Liu H, Xu HW, Zhang YZ, et al. Ursodeoxycholic acid induces apoptosis in hepatocellular carcinoma xenografts in mice. World J Gastroenterol. 2015;21(36):10367-74. DOI:10.3748/wjg.v21.i36.10367 159. Zhang H, Xu H, Zhang C, et al. Ursodeoxycholic acid suppresses the malignant progression of colorectal cancer through TGR5-YAP axis. Cell Death Discov. 2021;7:207. DOI:10.1038/s41420-021-00589-8 160. Alberts DS, Martínez ME, Hess LM, et al. Phoenix and Tucson Gastroenterologist Networks. Phase III trial of ursodeoxycholic acid to prevent colorectal adenoma recurrence. J Natl Cancer Inst. 2005;97(11):846-53. DOI:10.1093/jnci/dji144 161. Finn RS, Qin S, Ikeda M, et al. IMbrave150: updated overall survival data from a global, randomized, open-label Phase III study of atezolizumab + bevacizumab vs sorafenib in patients with unresectable hepatocellular carcinoma. J Clin Oncol. 2021;39:267. 162. Finn RS, Qin S, Ikeda M, et al. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. N Engl J Med. 2020;382(20):1894-905. 163. Bellentani S. The epidemiology of non-alcoholic fatty liver disease. Liver International. 2017;37:S1,81-84. DOI:10.1111/liv.13299 164. International Diabetes Federation. IDF Diabetes atlas. 10TH Edition, 2021. Available at: http://www.diabetesatlas.org. Accessed: 10.12.2021. 165. Portillo Sanchez P. High Prevalence of Nonalcoholic Fatty Liver Disease in Patients with Type 2 Diabetes Mellitus and Normal Plasma Aminotransferase Levels. J Clin Endocrinol Metab. 2014;100:jc20142739. DOI:10.1210/jc.2014-2739 166. Doycheva I. Non-invasive screening of diabetics in primary care for NAFLD and advanced fibrosis by MRI and MRE. Aliment Pharmacol Ther. 2016;43(1):83-95. DOI:10.1111/apt.13405 167. Eslam M, Sanyal AJ, George J. On behalf of an international consensus panel. MAFLD: A consensus-driven proposed nomenclature for metabolic associated fatty liver disease. Gastroenterology. 2020;158(7):1999-2014. DOI:10.1053/j.gastro.2019.11.312 168. Targher G, Marchesini G, Byrne CD. Risk of type 2 diabetes in patients with non-alcoholic fatty liver disease: Causal association or epiphenomenon? Diabetes Metab. 2016;42(3):142-56. DOI:10.1016/j.diabet.2016.04.002 169. Shah RV. Liver fat, statin use, and incident diabetes: The Multi-Ethnic Study of Atherosclerosis. Atherosclerosis. 2015;242(1):211-7. DOI:10.1016/j.atherosclerosis.2015.07.018 170. Brar G, Tsukamoto H. Alcoholic and non-alcoholic steatohepatitis: global perspective and emerging science. J Gastroenterol. 2019;54(3):218-25. DOI:10.1007/s00535-018-01542-w 171. Armstrong MJ, Gaunt P, Aithal GP, et al. Liraglutide safety and efficacy in patients with non-alcoholic steatohepatitis (LEAN): a multicentre, double-blind, randomised, placebocontrolled phase 2 study. Lancet. 2016;387(10019):679-90. DOI:10.1016/S0140-6736(15)00803-X 172. Newsome PN, Buchholtz K, Cusi K, et al. NN9931-4296 Investigators. A Placebo-Controlled Trial of Subcutaneous Semaglutide in Nonalcoholic Steatohepatitis. N Engl J Med. 2021;384(12):1113-24. DOI:10.1056/NEJMoa2028395 173. Boettcher E, Csako G, Pucino F, et al. Meta-analysis: pioglitazone improves liver histology and fibrosis in patients with nonalcoholic steatohepatitis. Aliment Pharmacol Ther. 2012;35(1):66-75. DOI:10.1111/j.1365-2036.2011.04912.x 174. Gautam A, Agrawal PK, Doneria J, Nigam A. Effects of Canagliflozin on Abnormal Liver Function Tests in Patients of Type 2 Diabetes with Non-Alcoholic Fatty Liver Disease. J Assoc Physicians India. 2018;66(8):62-6. 175. Lazo M, Clark J. The epidemiology of nonalcoholic fatty liver disease: a global perspective. Semin Liver Dis. 2008;28(4):339-50. 176. Misra V. Nonalcoholic Fatty Liver Disease and Cardiovascular Risk. Curr Gastroenterol Rep. 2009;11:50-5. 177. Stefan N. Causes and Metabolic Consequences of Fatty Liver. Endoc Rev. 2008;29(7):939-60. 178. Musso G. Non-alcoholic fatty liver disease from pathogenesis to management: an update. Obesity Reviews. 2010;11(6):430-45. 179. Ong J, Younossi Z. Epidemiology and natural history of NAFLD and NASH. Clin Liver Dis. 2007;11:1-16. 180. Leite N, et al. Prevalence and associated factors of non-alcoholic fatty liver disease in patients with type-2 diabetes mellitus. Liver Int. 2009;29:113-9. 181. Younossi Z. Global epidemiology of nonalcoholic fatty liver desease – Meta-analytic assessment of prevalence, incidence and outcomes. Hepatology. 2016;64:73-84. 182. Utzschneider K, Kahn S. The Role of Insulin Resistance in Nonalcoholic Fatty Liver Disease. J Clin Endocrinol Metab. 2006;91(12):4753-61. 183. Targher G. Non-alcoholic hepatic steatosis and its relation to increased plasma biomarkers of inflammation and endothelial dysfunction in non-diabetic men. Role of visceral adipose tissue. Diabet Med. 2005;22(10):1354-8. 184. Tilg H. Cytokines and the pathogenesis of non-alcoholic steatohepatitis. Gut. 2005;54:303-6. 185. Marchesini G, et al. Nonalcoholic fatty liver, steatohepatitis and the metabolic syndrome. Hepatology. 2003;37:917-23. 186. Karlas T, Petroff D, Sasso M, et al. Individual patient data meta-analysis of controlled attenuation parameter (CAP) technology for assessing steatosis. J Hepatol. 2017;66(5):1022-30. 187. Siddiqui MS, Vuppalanchi R, Van Natta ML, et al. Vibration-Controlled Transient Elastography to Assess Fibrosis and Steatosis in Patients With Nonalcoholic Fatty Liver Disease. Clin Gastroenterol Hepatol. 2019;17(1):156-63 e2. 188. Eddowes PJ, Sasso M, Allison M, et al. Accuracy of FibroScan Controlled Attenuation Parameter and Liver Stiffness Measurement in Assessing Steatosis and Fibrosis in Patients With Nonalcoholic Fatty Liver Disease. Gastroenterology. 2019;156(6):1717-30. 189. Haufe S. Randomized comparison of reduced fat and reduced carbohydrate hypocaloric diets on intrahepatic fat in overweight and obese human subjects. Hepatology. 2011;53:1504-14. 190. Asrih M. Diets and nonalcoholic fatty liver disease: the good and the bad. Clin Nutr. 2014;33:186-190. 191. Houmard J. Effect of the volume and intensity of exercise training on insulin sensitivity. J Appl Physiol. 2004;96:101-6. 192. Kopp C. Weight loss reduces tissue factor in morbidly obese patients. Obes Res. 2003;11(8):950-6. 193. American Association for the Study of Liver Diseases; United States Food and Drug Administration. Challenges and opportunities in drug and biomarker development for nonalcoholic steatohepatitis: findings and recommendations from an American Association for the Study of Liver Diseases-U.S. Food and Drug Administration Joint Workshop. Hepatology. 2015;61:1392-405. 194. Musso G. A meta-analysis of randomized trials for the treatment of nonalcoholic fatty liver disease. Hepatology. 2010;52:79-104. 195. Vilsbøll T. Effects of glucagon-like peptide-1 receptor agonists on weight loss: systematic review and meta-analyses of randomised controlled trials. BMJ. 2012;344:d7771. 196. Armstrong M. Liraglutide safety and efficacy in patients with non-alcoholic steatohepatitis (LEAN): a multicentre, double blind, randomised, placebo-controlled phase 2 study. Lancet. 2016;387:679-90. 197. Lassailly G. Bariatric Surgery Reduces Features of Nonalcoholic Steatohepatitis in Morbidly Obese Patients. Gastroenterology. 2015;149:379-88. 198. Bower G. Bariatric Surgery and Non-Alcoholic Fatty Liver Disease: a Systematic Review of Liver Biochemistry and Histology. Obes Surg. 2015;25:2280-9. 199. Nomura J, Busso N, Ives A, et al. Febuxostat, an inhibitor of xanthine oxidase, suppresses lipopolysaccharide-induced MCP-1 production via MAPK phosphatase-1-mediated inactivation of JNK. PLoS One. 2013;25(8):e75527. DOI:10.1371/journal. pone.0075527 200. Sertoglu E, Ercin CN, Celebi G, et al. The relationship of serum uric acid with nonalcoholic fatty liver disease. Clin Biochem. 2014;47(6):383-8. DOI:10.1016/j.clinbiochem.2014.01.029 201. Lonardo A, Loria P, Leonardi F, et al. Fasting insulin and uric acid levels but not indices of iron metabolism are independent predictors of non-alcoholic fatty liver disease. A case-control study. Dig Liver Dis. 2002;34(3):204-11. 202. Li Y, Xu C, Yu C, et al. Association of serum uric acid level with non-alcoholic fatty liver disease: A crosssectional study. J Hepatol. 2009;50(5):1029-34. DOI:10.1016/j.jhep.2008.11.021 203. Ryu S, Chang Y, Kim SG, et al. Serum uric acid levels predict incident nonalcoholic fatty liver disease in healthy Korean men. Metabolism. 2011;60(6):860-6. DOI:10.1016/j.metabol.2010.08.005 204. Gong S, Song J, Wang L, et al. Hyperuricemia and risk of nonalcoholic fatty liver disease: a systematic review and meta-analysis. Eur J Gastroenterol Hepatol. 2016;28(2):132-8. DOI:10.1097/MEG.0000000000000507 205. Sirota JC, McFann K, Targher G, et al. Elevated serum uric acid levels are associated with non-alcoholic fatty liver disease independently of metabolic syndrome features in the United States: Liver ultrasound data from the National Health and Nutrition Examination Survey. Metabolism. 2013;62(3):392-9. DOI:10.1016/j.metabol.2012.08.013 206. Oral A, Sahin T, Turker F, et al. Relationship between Serum Uric Acid Levels and Nonalcoholic Fatty Liver Disease in Non-Obese Patients. Medicina. 2019;55(9):600. DOI:10.3390/medicina55090600 207. Утвержденные АРР в 2013 г. Федеральные клинические рекомендации по «ревматологии» с дополнениями от 2016 г. Режим доступа: https://rheumatolog.ru/experts/klinicheskie-rekomendacii/ Ссылка активна на 10.12.2021 [Federal Clinical Guidelines on "Rheumatology" approved by the ARR in 2013 with additions from 2016. Available at: 10.12.2021. Accessed: 10.12.2021 (in Russian)]. 208. Filip R, Radzki RP, Bieńko M. Novel insights into the relationship between nonalcoholic fatty liver disease and osteoporosis. Clin Interv Aging. 2018;13:1879-91. DOI:10.2147/CIA.S170533 209. Zhu X, Yan H, Chang X, et al. Association between non-alcoholic fatty liver disease-associated hepatic fibrosis and bone mineral density in postmenopausal women with type 2 diabetes or impaired glucose regulation. BMJ Open Diabetes Res Care. 2020;8(1):e000999. DOI:10.1136/bmjdrc-2019-000999 210. Mikami K, Endo T, Sawada N, et al. Association of Bone Metabolism with Fatty Liver Disease in the Elderly in Japan: A Community-based Study. Intern Med. 2020;59(10):1247-56. DOI:10.2169/internalmedicine.3906-19 211. Chen HJ, Yang HY, Hsueh KC, et al. Increased risk of osteoporosis in patients with nonalcoholic fatty liver disease: A population-based retrospective cohort study. Medicine (Baltimore). 2018;97(42):e12835. DOI:10.1097/MD.0000000000012835 212. Rosato V, Masarone M, Dallio M, et al. NAFLD and Extra-Hepatic Comorbidities: Current Evidence on a Multi-Organ Metabolic Syndrome. Int J Environ Res Public Health. 2019;16(18):3415. DOI:10.3390/ijerph16183415 213. Adams LA, Anstee QM, Tilg H, Targher G. Non-alcoholic fatty liver disease and its relationship with cardiovascular disease and other extrahepatic diseases. Gut. 2017;66(6):1138-53. DOI:10.1136/gutjnl-2017-313884 214. Yilmaz Y. Review article: non-alcoholic fatty liver disease and osteoporosis – clinical and molecular crosstalk. Aliment Pharmacol Ther. 2012;36(4):345-52. DOI:10.1111/j.1365-2036.2012.05196.x 215. Poggiogalle E, Donini LM, Lenzi A, et al. Non-alcoholic fatty liver disease connections with fat-free tissues: A focus on bone and skeletal muscle. World J Gastroenterol. 2017;23(10):1747-57. DOI:10.3748/wjg.v23.i10.1747 216. Sung J, Ryu S, Song YM, Cheong HK. Relationship Between Non-alcoholic Fatty Liver Disease and Decreased Bone Mineral Density: A Retrospective Cohort Study in Korea. J Prev Med Public Health. 2020;53(5):342-52. DOI:10.3961/jpmph.20.089 217. Chen DZ, Xu QM, Wu XX, et al. The Combined Effect of Nonalcoholic Fatty Liver Disease and Metabolic Syndrome on Osteoporosis in Postmenopausal Females in Eastern China. Int J Endocrinol. 2018;2018:2314769. DOI:10.1155/2018/2314769 218. Белая Ж.Е., Рожинская Л.Я., Гребенникова Т.А., и др. Краткое изложение проекта федеральных клинических рекомендаций по остеопорозу. Остеопороз и остеопатии. 2020;23(2):4-21 [Belaya ZhE, Rozhinskaya LYa, Grebennikova TA, et al. Summary of the draft federal clinical guidelines on osteoporosis.Osteoporosis and Osteopathies. 2020;23(2):4-21 (in Russian)]. DOI:10.14341/osteo12710 219. Targher G, Bertolini L, Scala L, et al. Associations between serum 25-hydroxyvitamin D3 concentrations and liver histology in patients with nonalcoholic fatty liver disease. Nutr Metab Cardiovasc Dis. 2007;17:517-24. 220. Barchetta I, Angelico F, Del Ben M, et al. Strong association between non alcoholic fatty liver disease (NAFLD) and low 25(OH) vitamin D levels in an adult population with normal serum liver enzymes. BMC Med. 2011;9:85. 221. Sookoian S, Pirola CJ. Non-alcoholic fatty liver disease is strongly associated with carotid atherosclerosis: a systematic review. J Hepatol. 2008;49(4):600-7. 222. Madan SA, John F, Pyrsopoulos N, et al. Nonalcoholic fatty liver disease and carotid artery atherosclerosis in children and adults: a meta-analysis. Eur J Gastroenterol Hepatol. 2015;27(11):1237-48. 223. Bhatia L, Scorletti E, Curzen N, et al. Improvement in non-alcoholic fatty liver disease severity is associated with a reduction in carotid intima-media thickness progression. Atherosclerosis. 2016;246:13-20. 224. Oni ET, Agatston AS, Blaha MJ, et al. A systematic review: burden and severity of subclinical cardiovascular disease among those with nonalcoholic fatty liver; hould we care? Atherosclerosis. 2013;230(2):258-67. 225. Luo J, Xu L, Li J, et al. Nonalcoholic fatty liver disease as a potential risk factor of cardiovascular disease. Eur J Gastroenterol Hepatol. 2015;27(3):193-9. 226. Targher G, Byrne CD, Lonardo A, et al. Non-alcoholic fatty liver disease and risk of incident cardiovascular disease: A meta-analysis. J Hepatol. 2016;65:589-600. 227. Ekstedt M, Hagström H, Nasr P, et al. Fibrosis stage is the strongest predictor for disease-specific mortality in NAFLD after up to 33 years of follow-up. Hepatology. 2015;61:1547-54. 228. Mahfood Haddad T, Hamdeh S, Kanmanthareddy A, Alla VM. Nonalcoholic fatty liver disease and the risk of clinical cardiovascular events: A systematic review and meta-analysis. Diabetes Metab Syndr. 2017;11(Suppl.1):209-16. 229. Mellinger JL, Pencina KM, Massaro JM, et al. Hepatic steatosis and cardiovascular disease outcomes: An analysis of the Framingham Heart Study. J Hepatol. 2015;63:470-6. 230. Wong VS, Wong GL-H, Yip GW-K, et al. Coronary artery disease and cardiovascular outcomes in patients with non-alcoholic fatty liver disease. Gut. 2011;60:1721-27. 231. Wong VW, Wong GL, Yeung JC, et al. Long-term clinical outcomes after fatty liver screening in patients undergoing coronary angiogram: A prospective cohort study. Hepatology. 2016;63:754-63. 232. Ichikawa K, Miyoshi T, Osawa K, et al. Incremental prognostic value of non-alcoholic fatty liver disease over coronary computed tomography angiography findings in patients with suspected coronary artery disease. Eur J Prev Cardiol. 2021;19:zwab120. DOI:10.1093/eurjpc/zwab12 233. Targher G, Bertolini L, Rodella S, et al. Nonalcoholic Fatty Liver Disease Is Independently Associated With an Increased Incidence of Cardiovascular Events in Type 2 Diabetic Patients. Diabetes Care. 2007;30:2119-21. 234. Hu J, Xu Y, He Z, et al. Increased risk of cerebrovascular accident related to non-alcoholic fatty liver disease: A meta-analysis. Oncotarget. 2017;9:2752-60. 235. Athyros VG, Boutari C, Stavropoulos K, et al. Statins: An Under-Appreciated Asset for the Prevention and the Treatment of NAFLD or NASH and the Related Cardiovascular Risk. Curr Vasc Pharmacol. 2018;16:246-53. 236. Ishii N, Ohashi T, Nakade Y, et al. Ezetimibe for the treatment of non-alcoholic fatty liver disease: A meta-analysis. Hepatol Res. 2017;47:1417-28. 237. Lee CH, Fu Y, Yang SJ, Chi CC. Effects of Omega-3 Polyunsaturated Fatty Acid Supplementation on Non-Alcoholic Fatty Liver: A Systematic Review and Meta-Analysis. Nutrients. 2020;12(9):2769. DOI:10.3390/nu12092769 238. Lopez-Suarez A, Guerrero JM, Elvira-Gonzalez J, et al. Nonalcoholic fatty liver disease is associated with blood pressure in hypertensive and nonhypertensive individuals from the general population with normal levels of alanine aminotransferase. Eur J Gastroenterol Hepatol. 2011;23:1011-17. DOI:10.1097/MEG.0b013e32834b8d52 239. Feng RN, Du SS, Wang C, et al. Leannon-alcoholic fatty liver disease increases risk for metabolic disorders in a normal weight Chinese population. World J Gastroenterol. 2014;20:17932-40. DOI:10.3748/wjg.v20.i47.17932 240. Lorbeer R, Bayerl C, Auweter S, et al. Association between MRI-derived hepatic fat fraction and blood pressure in participants without history of cardiovascular disease. J Hypertens. 2017;35:737-44. DOI:10.1097/HJH.0000000000001245 241. Wang J, Chiu WH, Chen RC, et al. The clinical investigation of disparity of nonalcoholic fatty liver disease in a Chinese occupational population in Taipei, Taiwan: experience at a teaching hospital. Asia Pac J Public Health. 2015;27:NP1793-804. DOI:10.1177/1010539513483830 242. Qian LY, Tu JF, Ding YH, et al. Association of blood pressure level with nonalcoholic fatty liver disease in nonhypertensive population: normal is not the new normal. Medicine (Baltimore). 2016;95:e4293. DOI:10.1097/MD.0000000000004293 243. Bonnet F, Gastaldelli A, Pihan-Le Bars F, et al. D.E.S.I.R., RISC Study Groups. Gamma-glutamyltransferase, fatty liver index and hepatic insulin resistance are associated with incident hypertension in two longitudinal studies. J Hypertens. 2017;35:493-500. DOI:10.1097/HJH.0000000000001204 244. Zhou K, Cen J. The fatty liver index (FLI) and incident hypertension: a longitudinal study among Chinese population. Lipids Health Dis. 2018;17:214. DOI:10.1186/s12944-018-0858-6 245. Huh JH, Ahn SV, Koh SB, et al. A Prospective Study of fatty liver index and incident hypertension: the KoGES-ARIRANG Study. PLoS One. 2015;10:e0143560. DOI:10.1371/journal.pone.0143560 246. Lau K, Lorbeer R, Haring R, et al. The association between fatty liver disease and blood pressure in a population-based prospective longitudinal study. J Hypertens. 2010;28:1829-35. DOI:10.1097/HJH.0b013e32833c211b 247. Ryoo JH, Ham WT, Choi JM, et al. Clinical significance of non-alcoholic fatty liver disease as a risk factor for prehypertension. J Korean Med Sci. 2014;29:973-9. DOI:10.3346/jkms.2014.29.7.973 248. Ryoo JH, Suh YJ, Shin HC, et al. Clinical association between non-alcoholic fatty liver disease and the development of hypertension. J Gastroenterol Hepatol. 2014;29:1926-31. DOI:10.1111/jgh.12643 249. Sung KC, Wild SH, Byrne CD. Development of new fatty liver, or resolution of existing fatty liver, over five years of follow-up, and risk of incident hypertension. J Hepatol. 2014;60:1040-45. DOI:10.1016/j.jhep.2014.01.009 250. Zhao YC, Zhao GJ, Chen Z, et al. Nonalcoholic Fatty Liver Disease: An Emerging Driver of Hypertension. Hypertension. 2020;75:275-84. DOI:10.1161/HYPERTENSIONAHA.119.13419 251. Schwimmer JB, Johnson JS, Angeles JE, et al. Microbiome signatures associated with steatohepatitis and moderate to severe fibrosis in children with nonalcoholic fatty liver disease. Gastroenterology. 2019;157:1109-22. DOI:10.1053/j.gastro.2019.06.028 252. Marques FZ, Jama HA, Tsyganov K, et al. Guidelines for Transparency on Gut Microbiome Studies in Essential and Experimental Hypertension. Hypertension. 2019;74(6):1279-93. DOI:10.1161/HYPERTENSIONAHA.119.13079 253. Spinosa M, Stine JG. Nonalcoholic Fatty Liver Disease-Evidence for a Thrombophilic State? Curr Pharm Des. 2020;26(10):1036-44. DOI:10.2174/1381612826666200131101553 254. Balta G, Altay C, Gurgey A. PAI-1 gene 4G/5G genotype: A risk factor for thrombosis in vessels of internal organs. Am J Hematol. 2002;71(2):89-93. DOI:10.1002/ajh.10192 255. Verrijken A, Francque S, Mertens I, et al. Prothrombotic factors in histologically proven nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Hepatology. 2014; 59(1):121-9. DOI:10.1002/hep.26510 256. Lombardi AM, Fabris R, Berti de Marinis G, et al. Defective ADAMTS13 synthesis as a possible consequence of NASH in an obese patient with recurrent thrombotic thrombocytopenic purpura. Eur J Haematol. 2014;92(6):497-501. DOI:10.1111/ejh.12273 257. Kotronen A, Joutsi-Korhonen L, Sevastianova K, et al. Increased coagulation factor VIII, IX, XI and XII activities in non-alcoholic fatty liver disease. Liver Int. 2011;31(2):176-83. DOI:10.1111/j.1478-3231.2010.02375.x 258. Tripodi A, Fracanzani AL, Primignani M, et al. Procoagulant imbalance in patients with non-alcoholic fatty liver disease. J Hepatol. 2014;61(1):148-54. DOI:10.1016/j.jhep.2014.03.013 259. Northup PG, Argo CK, Shah N, Caldwell SH. Hypercoagulation and thrombophilia in nonalcoholic fatty liver disease: mechanisms, human evidence, therapeutic implications, and preventive implications. Semin Liver Dis. 2012;32(1):39-48. DOI:10.1055/s-0032-1306425 260. Stine JG, Northup PG. Coagulopathy Before and After Liver Transplantation: From the Hepatic to the Systemic Circulatory Systems. Clin Liver Dis. 2017;21(2):253-74. DOI:10.1016/j.cld.2016.12.003 261. Meltzer ME, Lisman T, de Groot PG, et al. Venous thrombosis risk associated with plasma hypofibrinolysis is explained by elevated plasma levels of TAFI and PAI-1. Blood. 2010;116(1):113-21. DOI:10.1182/blood-2010-02-267740 262. Skurk T, Hauner H. Obesity and impaired fibrinolysis: role of adipose production of plasminogen activator inhibitor-1. Int J Obes Relat Metab Disord. 2004;28(11):1357-64. DOI:10.1038/sj.ijo.0802778 263. El-Sayed MS, El-Sayed Ali Z, Ahmadizad S. Exercise and training effects on blood haemostasis in health and disease: an update. Sports Med. 2004;34(3):181-200. DOI:10.2165/00007256-200434030-00004 264. Womack CJ, Nagelkirk PR, Coughlin AM. Exercise-induced changes in coagulation and fibrinolysis in healthy populations and patients with cardiovascular disease. Sports Med. 2003;33(11):795-807. DOI:10.2165/00007256-200333110-00002 265. Van Stralen KJ, Le Cessie S, Rosendaal FR, Doggen CJ. Regular sports activities decrease the risk of venous thrombosis. J Thromb Haemost. 2007;5(11):2186-92. DOI:10.1111/j.1538-7836.2007.02732.x 266. Kupchak BR, Creighton BC, Aristizabal JC, et al. Beneficial effects of habitual resistance exercise training on coagulation and fibrinolytic responses. Thromb Res. 2013;131(6):e227-34. DOI:10.1016/j.thromres.2013.02.014 267. Ben-Shlomo Y, Spears M, Boustred C, et al. Aortic pulse wave velocity improves cardiovascular event prediction: An individual participant meta-analysis of prospective observational data from 17,635 subjects. J Am Coll Cardiol. 2014;63:636-46. DOI:10.1016/j.jacc.2013.09.063 268. Cavalcante JL, Lima JA, Redheuil A, Al-Mallah MH. Aortic stiffness: Current understanding and future directions. J Am Coll Cardiol. 2011;57:1511-22. DOI:10.1016/j.jacc.2010.12.017 269. Athyros VG, Tziomalos K, Katsiki N, et al. Cardiovascular risk across the histological spectrum and the clinical manifestations of non-alcoholic fatty liver disease: An update. World J Gastroenterol. 2015;21:6820-34. DOI:10.3748/wjg.v21.i22.682 270. Васюк Ю.А., Иванова С.В., Школьник Е.Л., и др. Согласованное мнение российских экспертов по оценке артериальной жесткости в клинической практике. Кардиоваскулярная терапия и профилактика. 2016;15(2):4-19 [Vasyuk YuA, Ivanova SV, Shkolnik EL, et al. Consensus of Russian experts on the evaluation of arterial stiffness in clinical practice. Cardiovascular Therapy and Prevention. 2016;15(2):4-19 (in Russian)]. DOI:10.15829/1728-8800-2016-2-4-19 271. Blacher J, Guerin AP, Pannier B, et al. Impact of aortic stiffness on survival in end-stage renal disease. Circulation. 1999;99:2434-39. DOI:10.1161/01.cir.99.18.2434 272. Laurent S, Boutouyrie P, Asmar R, et al. Aortic stiffness is an independent predictor of all-cause and cardiovascular mortality in hypertensive patients. Hypertension. 2001;37:1236-41. DOI:10.1161/01.hyp.37.5.1236 273. Cardoso CR, Ferreira MT, Leite NC, Salles GF. Prognostic impact of aortic stiffness in high-risk type 2 diabetic patients: The Rio de Janeiro Type 2 Diabetes Cohort Study. Diabetes Care. 2013;36:3772-78. DOI:10.2337/dc13-0506 274. Willum-Hansen T, Staessen JA, Torp-Pedersen C, et al. Prognostic value of aortic pulse wave velocity as index of arterial stiffness in the general population. Circulation. 2006;113:664-670. DOI:10.1161/CIRCULATIONAHA.105.579342 275. Jaruvongvanich V, Chenbhanich J, Sanguankeo A, et al. Increased arterial stiffness in nonalcoholic fatty liver disease: a systematic review and meta-analysis. Eur J Gastroenterol Hepatol. 2017;29(9):e28-e35. DOI:10.1097/MEG.0000000000000909 276. Huang RC, Beilin LJ, Ayonrinde O, et al. Importance of cardiometabolic risk factors in the association between nonalcoholic fatty liver disease and arterial stiffness in adolescents. Hepatology. 2013;58:1306-14. DOI:10.1002/hep.26495 277. Sunbul M, Agirbasli M, Durmus E, et al. Arterial stiffness in patients with non-alcoholic fatty liver disease is related to fibrosis stage and epicardial adipose tissue thickness. Atherosclerosis. 2014;237:490-3. DOI:10.1016/j.atherosclerosis.2014.10.004 278. Ozturk K, Uygun A, Guler AK, et al. Nonalcoholic fatty liver disease is an independent risk factor for atherosclerosis in young adult men. Atherosclerosis. 2015;240:380-386. DOI:10.1016/j.atherosclerosis.2015.04.009 279. Chen Y, Xu M, Wang T, et al. Advanced fibrosis associates with atherosclerosis in subjects with nonalcoholic fatty liver disease. Atherosclerosis. 2015;241:145-50. DOI:10.1016/j.atherosclerosis.2015.05.002 280. Villela-Nogueira CA, Leite NC, Cardoso CR, Salles GF. NAFLD and Increased Aortic Stiffness: Parallel or Common Physiopathological Mechanisms? Int J Mol Sci. 2016;17(4):460. DOI:10.3390/ijms17040460 281. Chou CY, Yang YC, Wu JS, et al. Non-alcoholic fatty liver disease associated with increased arterial stiffness in subjects with normal glucose tolerance, but not pre-diabetes and diabetes. Diabetes Vasc Dis Res. 2015;12:359-65. DOI:10.1177/1479164115585009 282. Packer M. Atrial Fibrillation and Heart Failure With Preserved Ejection Fraction in Patients With Nonalcoholic Fatty Liver Disease. Am J Med. 2020;133(2):170-7. DOI:10.1016/j.amjmed.2019.09.002 283. Packer M. Leptin-aldosterone-neprilysin axis: identification of its distinctive role in the pathogenesis of the three phenotypes of heart failure in people with obesity. Circulation. 2018;137:1614-31. DOI:10.1161/CIRCULATIONAHA.117.032474 284. Whitsett M, Wilcox J, Yang A, et al. Atrial fibrillation is highly prevalent yet undertreated in patients with biopsy-proven nonalcoholic steatohepatitis. Liver Int. 2019;39:933-40. DOI:10.1111/liv.14018 285. Wijarnpreecha K, Lou S, Panjawatanan P, et al. Association between diastolic cardiac dysfunction and nonalcoholic fatty liver disease: A systematic review and meta-analysis. Dig Liver Dis. 2018;50(11):1166-75. DOI:10.1016/j.dld.2018.09.004 286. Chung GE, Lee JH, Lee H, et al. Nonalcoholic fatty liver disease and advanced fibrosis are associated with left ventricular diastolic dysfunction. Atherosclerosis. 2018;272:137-44. DOI:10.1016/j.atherosclerosis.2018.03.027 287. Zhang Z, Wang P, Guo F, et al. Chronic heart failure in patients with nonalcoholic fatty liver disease: prevalence, clinical features, and relevance. J Int Med Res. 2018;46:3959-69. DOI:10.1177/0300060518782780 288. Hyogo H, Yamagishi S, Maeda S, et al. Atorvastatin improves disease activity of nonalcoholic steatohepatitis partly through its tumour necrosis factor-α-lowering property. Dig Liver Dis. 2012;44:492-6. DOI:10.1016/j.dld.2011.12.013 289. Athyros VG, Tziomalos K, Gossios TD, et al. Greace Study Collaborative Group. Safety and efficacy of long-term statin treatment for cardiovascular events in patients with coronary heart disease and abnormal liver tests in the Greek Atorvastatin and Coronary Heart Disease Evaluation (GREACE) Study: a post-hoc analysis. Lancet. 2010;376:1916-22. DOI:10.1016/S0140-6736(10)61272-X 290. Armstrong MJ, Gaunt P, Aithal GP, et al. Liraglutide safety and efficacy in patients with non-alcoholic steatohepatitis (LEAN): a multicenter, double-blind, randomized, placebo-controlled phase 2 study. Lancet. 2016;387:679-90. DOI:10.1016/S0140-6736(15)00803-X
________________________________________________
1. Kleiner DE, Makhlouf HR. Histology of Nonalcoholic Fatty Liver Disease and Nonalcoholic Steatohepatitis in Adults and Children. Clin Liver Dis. 2016;20(2):293-312. 2. Jichitu A, Bungau S, Stanescu AMA, et al. Non-Alcoholic Fatty Liver Disease and Cardiovascular Comorbidities: Pathophysiological Links, Diagnosis, and Therapeutic Management. Diagnostics (Basel). 2021;11(4):689. DOI:10.3390/diagnostics11040689 3. Ivashkin VT, Mayevskaya MV, Pavlov ChS, et al. Clinical guidelines for the diagnosis and treatment of non-alcoholic fatty liver disease of the Russian Society for the Study of the Liver and the Russian Gastroenterological Association. Russian Journal of Gastroenterology, Hepatology, Coloproctology. 2016;26(2):24-42 (in Russian). DOI:10.22416/1382-4376-2016-26-2-24-42 4. Sharkhun OO. Formation of cardiometabolic disorders in NAFLD associated with insulin resistance.Abstract of the dissertation for the degree of Doctor of Medical Sciences.Moscow, 2019 (in Russian). 5. Komova AG, Mayevskaya MV, Ivashkin VT. Principles of effective diagnosis of diffuse liver diseases at the outpatient stage. Russian Journal of Gastroenterology, Hepatology, Coloproctology. 2014;24(5):36-41 (in Russian). 6. Povsic M, Wong OY, Perry R, Bottomley J. A Structured Literature Review of the Epidemiology and Disease Burden of Non-Alcoholic Steatohepatitis (NASH). Adv Ther. 2019;36(7):1574-94. DOI:10.1007/s12325-019-00960-3 7. Estes C, Anstee QM, Arias-Loste MT, et al. Modeling NAFLD disease burden in China, France, Germany, Italy, Japan, Spain, United Kingdom, and United States for the period 2016–2030. J Hepatol. 2018;69(4):896-904. DOI:10.1016/j.jhep.2018.05.036 8. Day CP, James OF. Steatohepatitis: a tale of two ‘hits’? Gastroenterology. 1998;114:842-5. 9. Byrne CD, Targher G. NAFLD: A multisystem disease. J Hepatol. 2015;62(1S):S47-S64. 10. Fang YL, Chen H, Wang CL, Liang L. Pathogenesis of non-alcoholic fatty liver disease in children and adolescence: from “two hit theory” to “multiple hit model”. World J Gastroenterol. 2018;24:2974-83. 11. Xian YX, Weng JP, Xu F. MAFLD vs. NAFLD: shared features and potential changes in epidemiology, pathophysiology, diagnosis, and pharmacotherapy. Chin Med J. 2021;134:8-19. 12. Parthasarathy G, Revelo X, Malhi H. Pathogenesis of Nonalcoholic Steatohepatitis: An Overview. Hepatology Communications. 2020;4(4):478-92. 13. Haas JT, Francque S, Staels B. Pathophysiology and mechanisms of nonalcoholic fatty liver disease. Annu Rev Physiol. 2016;78:181-205. 14. Friedman J. Leptin at 20: an overview. J Endocrinol. 2014;223:1-T8. 15. Samuel VT, Shulman GI. The pathogenesis of insulin resistance: integrating signaling pathways and substrate flux. J Clin Invest. 2016;126:12-22. 16. Ipsen DH, Lykkesfeldt J, Tveden-Nyborg P. Molecular mechanisms of hepatic lipid accumulation in non-alcoholic fatty liver disease. Cell Mol Life Sci. 2018;75:3313-27. 17. Lambert JE, Ramos-Roman MA, Browning JD, Parks EJ. Increased de novo lipogenesis is a distinct characteristic of individuals with nonalcoholic fatty liver disease. Gastroenterology. 2014;146:726-35. 18. Ter Horst KW, Serlie MJ. Fructose consumption, lipogenesis, and non-alcoholic fatty liver disease. Nutrients. 2017;9:E981. 19. Basaranoglu M, Basaranoglu G, Bugianesi E. Carbohydrate intake and nonalcoholic fatty liver disease: Fructose as a weapon of mass destruction. Hepatobiliary Surg Nutr. 2015;4:109-16. DOI:10.3978/j.issn.2304-3881.2014.11.05 20. Jensen T, Abdelmalek MF, Sullivan S, et al. Fructose and sugar: a major mediator of non-alcoholic fatty liver disease. J Hepatol. 2018; 68:1063-75. 21. Birkenfeld AL, Shulman GI. Nonalcoholic fatty liver disease, hepatic insulin resistance, and type 2 diabetes. Hepatology. 2014;59:713-23. 22. Ghorpade DS, Ozcan L, Zheng Z, et al. Hepatocyte-secreted DPP4 in obesity promotes adipose inflammation and insulin resistance. Nature. 2018;555:673-77. 23. Ferramosca A, Zara V. Modulation of hepatic steatosis by dietary fatty acids. World J Gastroenterol. 2014;20:1746-55. 24. Malhi H, Gores GJ. Molecular mechanisms of lipotoxicity in nonalcoholic fatty liver disease. Semin Liver Dis. 2008;28:360-9. 25. Musso G, Cassader M, Paschetta E, Gambino R. Bioactive lipid species and metabolic pathways in progression and resolution of nonalcoholic steatohepatitis. Gastroenterology. 2018;155:282-302.e288. 26. Parry SA, Rosqvist F, Mozes FE, et al. Intrahepatic fat and postprandial glycemia increase after consumption of a diet enriched in saturated fat compared with free sugars. Diabetes Care. 2020;43:1134-41. 27. Drapkina OM, Bueverov AO. Nonalcoholic fatty disease as a multidisciplinary pathology. Moscow: Vidox, 2019 (in Russian). 28. Buzzetti E, Pinzani M, Tsochatzis EA. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabolism. 2016;65:1038-48. 29. Schiff YR, Sorrell MF, Maddray WS. Alcoholic, medicinal, genetic and metabolic diseases. Moscow: GEOTAR-Media, 2011 (in Russian). 30. Sasaki A, Nitta H, Otsuka K, et al. Bariatric surgery and non-alcoholic fatty liver disease: current and potential future treatments. Front Endocrinol. 2014;5:164. 31. Shen J, Sakaida I, Uchida K, et al. Leptin enhances TNF-alpha production via p38 and JNK MAPK in LPS-stimulated Kupffer cells. Life Sci. 2005;77:1502-15. 32. Subichin M, Clanton J, Makuszewski M, et al. Liver disease in the morbidly obese: a review of 1000 consecutive patients undergoing weight loss surgery. Surg Obes Relat Dis. 2015;11:137-41. 33. Stanton MC, Chen S-C, Jackson JV, et al. Inflammatory signals shift from adipose to liver during high fat feeding and influence the development of steatohepatitis in mice. J Inflamm (Lond). 2011;8:8. 34. Virtue S, Vidal-Puig A. Adipose tissue expandability, lipotoxicity and the metabolic syndrome – an allostatic perspective. Biochim Biophys Acta. 2010;1801:338-49. 35. Stojsavljevic S, Gomercic Palcic M, Virovic Jukic L, et al. Adipokines and proinflammatory cytokines, the key mediators in the pathogenesis of nonalcoholic fatty liver disease. World J Gastroenterol. 2014;20:18070-91. 36. Osborn O, Olefsky JM. The cellular and signaling networks linking the immune system and metabolism in disease. Nat Med. 2012;18:363-74. 37. Marra F, Svegliati-Baroni G. Lipotoxicity and the gut-liver axis in NASH pathogenesis. J Hepatol. 2018;68:280-95. 38. Di Maira G, Pastore M, Marra F. Liver fibrosis in the context of nonalcoholic steatohepatitis: the role of adipokines. Minerva Gastroenterol Dietol. 2018;64:39-50. DOI:10.23736/S1121-421X.17.02427-8 39. Remmerie A, Martens L, Scott CL. Macrophage subsets in obesity, aligning the liver and adipose tissue. Front Endocrinol (Lausanne). 2020;11:259. 40. Machado MV, Cortez-Pinto H. Gut microbiota and nonalcoholic fatty liver disease. Ann Hepatol. 2012;11(4): 440-9. 41. Anstee QM, Targher G, Day CP. Progression of NAFLD to diabetes mellitus, cardiovascular disease or cirrhosis. Nat Rev Gastroenterol Hepatol. 2013;10:330-44. 42. Thomson AW, Knolle PA. Antigen-presenting cell function in the tolerogenic liver environment. Nat Rev Immunol. 2010;10:753-66. 43. Lotze MT, Zeh HJ, Rubartelli A, et al. The grateful dead: damage-associated molecular pattern molecules and reduction/oxidation regulate immunity. Immunol Rev. 2007;220:60-81. 44. Szabo G, Csak T. Inflammasomes in liver diseases. J Hepatol. 2012;57:642-54. 45. Luedde T, Schwabe RF. NF-κB in the liver – linking injury, fibrosis and hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol. 2011;8:108-18. 46. Klein I, Cornejo JC, Polakos NK, et al. Kupffer cell heterogeneity: functional properties of bone marrow derived and sessile hepatic macrophages. Blood. 2007;110:4077-85. 47. Tomita K, Tamiya G, Ando S, et al. Tumour necrosis factor alpha signalling through activation of Kupffer cells plays an essential role in liver fibrosis of non-alcoholic steatohepatitis in mice. Gut. 2006;55:415-24. 48. Kremer M, Hines IN, Milton RJ, Wheeler MD. Favored T helper 1 response in a mouse model of hepatosteatosis is associated with enhanced T cell-mediated hepatitis. Hepatology. 2006;44:216-27. 49. Ghazarian M, Revelo XS, Nohr MK, et al. Type I interferon responses drive intrahepatic T cells to promote metabolic syndrome. Sci Immunol. 2017;2:7616. 50. Plotnikova EYu, Gracheva TYu, Yerzhanova EA. The role of intestinal microflora in the formation of non-alcoholic fatty liver disease. The Attending Physician. 2017;2:32-8 (in Russian). 51. Poeta M, Pierri L, Vajro P. Gut-Liver Axis Derangement in Non-Alcoholic Fatty Liver Disease. Children (Basel). 2017;4:66. 52. Paolella G, Mandato C, Pierri L, et al. Gut-liver axis and probiotics: their role in non-alcoholic fatty liver disease. World J Gastroenterol. 2014;20:15518-31. 53. Zorn AM, Wells JM. Vertebrate endoderm development and organ formation. Annu Rev Cell Dev Biol. 2009;25:221-51. 54. Zhang Y, Lee FY, Barrera G, et al. Activation of the nuclear receptor FXR improves hyperglycemia and hyperlipidemia in diabetic mice. Proc Natl Acad Sci USA. 2006;103:1006-11. 55. Watanabe M, Houten SM, Wang L, et al. Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c. J Clin Invest. 2004;113:1408-18. 56. Parseus A, Sommer N, Sommer F, et al. Microbiota-induced obesity requires farnesoid X receptor. Gut. 2017;66:429-37. 57. Van Nierop FS, Scheltema MJ, Eggink HM, et al. Clinical relevance of the bile acid receptor TGR5 in metabolism. Lancet Diabetes Endocrinol. 2017;5:224-33. 58. Amir M, Czaja MJ. Autophagy in nonalcoholic steatohepatitis. Expert Rev Gastroenterol Hepatol. 2011;5(2):159-66. 59. Wu P, Zhao J, Guo Y, et al. Ursodeoxycholic acid alleviates nonalcoholic fatty liver disease by inhibiting apoptosis and improving autophagy via activating AMPK. Biochem Biophys Res Commun. 2020;27;529(3):834-8. 60. Kurashima Y, Kiyono H. Mucosal ecological network of epithelium and immune cells for gut homeostasis and tissue healing. Annu Rev Immunol. 2017;35:119-47. 61. Nevo S, Kadouri N, Abramson J. Tuft cells: From the mucosa to the thymus. Immunol Lett. 2019;210:1-9. 62. Turner JR. Intestinal mucosal barrier function in health and disease. Nat Rev Immunol. 2009;9:799-809. 63. Van Itallie CM, Holmes J, Bridges A, et al. The density of small tight junction pores varies among cell types and is increased by expression of claudin-2. J Cell Sci. 2008;121:298-305. 64. Clemente MG, Mandato C, Poeta M, Vajro P. Pediatric non-alcoholic fatty liver disease: Recent solutions, unresolved issues, and future research directions. World J Gastroenterol. 2016;22:8078-93. 65. Ulluwishewa D, Anderson RC, McNabb WC, et al. Regulation of tight junction permeability by intestinal bacteria and dietary components. J Nutr. 2011;141:769-76. 66. Kapil S, Duseja A, Sharma BK, et al. Small intestinal bacterial overgrowth and toll-like receptor signaling in patients with non-alcoholic fatty liver disease. J Gastroenterol Hepatol. 2016;31:213-21. 67. Akhmedov VA, Melikov TI. Genetic aspects of the formation of non-alcoholic fatty liver disease. The Attending Physician. 2019;8:28-31 (in Russian). 68. Al-Serri A, Anstee QM, Valenti L, et al. The sod2 c47t polymorphism influences NAFLD fibrosis severity: evidence from case-control and intra-familial allele association studie. J Hepatol. 2011;56(2):448-54. 69. Dongiovanni P, Romeo S, Valenti L. Genetic Factors in the Pathogenesis of Nonalcoholic Fatty Liver and Steatohepatitis. BioMed Research International. 2015;460190:10. 70. Petersen KF, Dufour S, Hariri A, et al. Apolipoprotein C3 gene variants in nonalcoholic fatty liver disease. N Engl J Med. 2010;362(12):1082-89. 71. Sazci A, Akpinar G, Aygun C, et al. Association of apolipoprotein E polymorphisms in patients with non-alcoholic steatohepatitis. Dig Dis Sci. 2008;53:3218-24. 72. BasuRay S, Wang Y, Smagris E, et al. Accumulation of PNPLA3 on lipid droplets is the basis of associated hepatic steatosis. Proc Natl Acad Sci USA. 2019;116:9521-26. 73. Kotronen A, Johansson LE, Johansson LM, et al. A common variant in PNPLA3, which encodes adiponutrin, is associated with liver fat content in humans. Diabetologia. 2009;52:1056-60. 74. Kawaguchi T, Sumida Y, Umemura A, et al. Japan Study Group of Nonalcoholic Fatty Liver, Genetic polymorphisms of the human PNPLA3 gene are strongly associated with severity of non-alcoholic fatty liver disease in Japanese. PLoS One. 2012;7:e38322. 75. Zain SM, Mohamed R, Mahadeva S, et al. A multi-ethnic study of a PNPLA3 gene variant and its association with disease severity in non-alcoholic fatty liver disease. Hum Genet. 2012;131(7):1145-52. 76. Takeuchi Y, Ikeda F, Moritou Y, et al. The impact of patatin-like phospholipase domaincontaining protein 3 polymorphism on hepatocellular carcinoma prognosis. J Gastroenterol. 2012;48(3):405-12. 77. Musso G, Gambino R, De Michiel F, et al. Adiponectin gene polymorphisms modulate acute adiponectin response to dietary fat: possible pathogenetic role in NASH. Hepatology. 2008;47:1167-77. 78. Li X-L, Sui J-Q, Lu L-L, et al. Gene polymorphisms associated with non-alcoholic fatty liver disease and coronary artery disease: a concise review. Lipids Health Dis. 2016;15:53. 79. Zhang C, Guo L, Guo X. Interaction of polymorphisms of Leptin receptor gene Gln223Arg, MnSOD9Ala/Val genes and smoking in nonalcoholic fatty liver disease. Wei Sheng Yan Jiu. 2014;43(5):724-31. 80. Fedchuk L, Nascimbeni F, Pais R, et al. Performance and limitations of steatosis biomarkers in patients with nonalcoholic fatty liver disease. Aliment Pharmacol Ther. 2014;40:1209-22. 81. Bril F, Ortiz-Lopez C, Lomonaco R, et al. Clinical value of liver ultrasound for the diagnosis of nonalcoholic fatty liver disease in overweight and obese patients. Liver Internat. 2015;35:2139-46. 82. Petroff D, Blank V, Newsome PN, et al. Assessment of hepatic steatosis by controlled attenuation parameter using the M and XL probes: an individual patient data meta-analysis. Lancet Gastroenterol Hepatol. 2021;6(3):185-98. DOI:10.1016/S2468-1253(20)30357-5 83. EASL Clinical Practice Guidelines on non-invasive tests for evaluation of liver disease severity and prognosis – 2021 update. J Hepatol. 2021;75(3):659-89. DOI:10.1016/j.jhep.2021.05.025 84. Staufer K, Halilbasic E, Spindelboeck W, et al. Evaluation and comparison of six noninvasive tests for prediction of significant or advanced fibrosis in nonalcoholic fatty liver disease. United European Gastroenterol J. 2019;7(8):1113-23. DOI:10.1177/2050640619865133 85. Xiao G, Zhu S, Xiao X, et al. Comparison of laboratory tests, ultrasound, or magnetic resonance elastography to detect fibrosis in patients with nonalcoholic fatty liver disease: a meta-analysis. Hepаtology. 2017;66:1486-501. 86. Papatheodoridi M, Hiriart JB, Lupsor-Platon M, et al. Refining the Baveno VI elastography criteria for the definition of compensated advanced chronic liver disease. J Hepatol. 2021;74(5):1109-16. DOI:10.1016/j.jhep.2020.11.050 87. Simeone JC, Bae JP, Hoogwerf BJ, et al. Clinical course of nonalcoholic fatty liver disease: an assessment of severity, progression, and outcomes. Clin Epidemiol. 2017;9:679-88. DOI:10.2147/CLEP.S144368 88. Mayevskaya MV, Nadinskaya MYu, Lunkov VD, et al. The effect of ursodeoxycholic acid on inflammation, steatosis and fibrosis of the liver and factors of atherogenesis in patients with non-alcoholic fatty liver disease: the results of the study SUCCESS. Russian Journal of Gastroenterology, Hepatology, Coloproctology. 2019;29(6):22-9 (in Russian). DOI:10.22416/1382-4376-2019-29-6-22-29 89. Streba LA, Vere CC, Rogoveanu I, Streba CT. Nonalcoholic fatty liver disease, metabolic risk factors, and hepatocellular carcinoma: an open question. World J Gastroenterol. 2015;21(14):4103-10. DOI:10.3748/wjg.v21.i14.4103 90. Vilar-Gomez E, Martinez-Perez Y, Calzadilla-Bertot L, et al. Weight Loss Through Lifestyle Modification Significantly Reduces Features of Nonalcoholic Steatohepatitis. Gastroenterology. 2015;149(2):367-78. DOI:10.1053/j.gastro.2015.04.005 91. Koutoukidis DA, Astbury NM, Tudor KE, et al. Association of Weight Loss Interventions With Changes in Biomarkers of Nonalcoholic Fatty Liver Disease: A Systematic Review and Meta-analysis. JAMA Intern Med. 2019;179(9):1262-71. DOI:10.1001/jamainternmed.2019.2248. Erratum in: JAMA Intern Med. 2019;179(9):1303-04. 92. Keating SE, Hackett DA, George J, Johnson NA. Exercise and non-alcoholic fatty liver disease: a systematic review and meta-analysis. J Hepatol. 2012;57(1):157-66. DOI:10.1016/j.jhep.2012.02.023 93. Cheng S, Ge J, Zhao C, et al. Effect of aerobic exercise and diet on liver fat in pre-diabetic patients with non-alcoholic-fatty-liver-disease: A randomized controlled trial. Sci Rep. 2017;7(1):15952.DOI:10.1038/s41598-017-16159-x 94. Hallsworth K, Thoma C, Hollingsworth KG, et al. Modified high-intensity interval training reduces liver fat and improves cardiac function in non-alcoholic fatty liver disease: a randomized controlled trial. Clin Sci (Lond). 2015;129(12):1097-105. DOI:10.1042/CS20150308 95. Hashida R, Kawaguchi T, Bekki M, et al. Aerobic vs. resistance exercise in non-alcoholic fatty liver disease: A systematic review. J Hepatol. 2017;66(1):142-52. DOI:10.1016/j.jhep.2016.08.023 96. Katsagoni CN, Georgoulis M, Papatheodoridis GV, et al. Effects of lifestyle interventions on clinical characteristics of patients with non-alcoholic fatty liver disease: A meta-analysis. Metabolism. 2017;68:119-32. DOI:10.1016/j.metabol.2016.12.006 97. Golabi P, Locklear CT, Austin P, et al. Effectiveness of exercise in hepatic fat mobilization in non-alcoholic fatty liver disease: Systematic review. World J Gastroenterol. 2016;22(27):6318-27. DOI:10.3748/wjg.v22.i27.6318 98. Smart NA, King N, McFarlane JR, et al. Effect of exercise training on liver function in adults who are overweight or exhibit fatty liver disease: a systematic review and meta-analysis. Br J Sports Med. 2018;52(13):834-43. DOI:10.1136/bjsports-2016-096197 99. Rector RS, Thyfault JP, Morris RT, et al. Daily exercise increases hepatic fatty acid oxidation and prevents steatosis in Otsuka Long-Evans Tokushima Fatty rats. Am J Physiol Gastrointest Liver Physiol. 2008;294(3):G619-26. DOI:10.1152/ajpgi.00428.2007 100. European Association for the Study of the Liver (EASL); European Association for the Study of Diabetes (EASD); European Association for the Study of Obesity (EASO). EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. J Hepatol. 2016;64(6):1388-402. DOI:10.1016/j.jhep.2015.11.004 101. Ryan MC, Itsiopoulos C, Thodis T, et al. The Mediterranean diet improves hepatic steatosis and insulin sensitivity in individuals with non-alcoholic fatty liver disease. J Hepatol. 2013;59(1):138-43. DOI:10.1016/j.jhep.2013.02.012 102. Kontogianni MD, Tileli N, Margariti A, et al. Adherence to the Mediterranean diet is associated with the severity of non-alcoholic fatty liver disease. Clin Nutr. 2014;33(4):678-83. DOI:10.1016/j.clnu.2013.08.014 103. Saeed N, Nadeau B, Shannon C, Tincopa M. Evaluation of Dietary Approaches for the Treatment of Non-Alcoholic Fatty Liver Disease: A Systematic Review. Nutrients. 2019;11(12):3064. DOI:10.3390/nu11123064 104. Moosavian SP, Arab A, Paknahad Z. The effect of a Mediterranean diet on metabolic parameters in patients with non-alcoholic fatty liver disease: A systematic review of randomized controlled trials. Clin Nutr ESPEN. 2020;35:40-6. DOI:10.1016/j.clnesp.2019.10.008 105. Tendler D, Lin S, Yancy WS Jr, et al. The effect of a low-carbohydrate, ketogenic diet on nonalcoholic fatty liver disease: a pilot study. Dig Dis Sci. 2007;52(2):589-93. DOI:10.1007/s10620-006-9433-5 106. Wong VW, Wong GL, Chan RS, et al. Beneficial effects of lifestyle intervention in non-obese patients with non-alcoholic fatty liver disease. J Hepatol. 2018;69(6):1349-56. DOI:10.1016/j.jhep.2018.08.011 107. Francque SM, Marchesini G, Kautz A, et al. Non-alcoholic fatty liver disease: A patient guideline. JHEP Rep. 2021;3(5):100322. DOI:10.1016/j.jhepr.2021.100322 108. Xia Y, Zhang S, Zhang Q, et al. Insoluble dietary fibre intake is associated with lower prevalence of newly-diagnosed non-alcoholic fatty liver disease in Chinese men: a large population-based cross-sectional study. Nutr Metab (Lond). 2020;17:4. DOI:10.1186/s12986-019-0420-1 109. Zhao L, Zhang F, Ding X, et al. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science. 2018;359(6380):1151-56. DOI:10.1126/science.aao5774 110. Kenneally S, Sier JH, Moore JB. Efficacy of dietary and physical activity intervention in non-alcoholic fatty liver disease: a systematic review. BMJ Open Gastroenterol. 2017;4(1):e000139. DOI:10.1136/bmjgast-2017-000139 111. Parry SA, Hodson L. Managing NAFLD in Type 2 Diabetes: The Effect of Lifestyle Interventions, a Narrative Review. Adv Ther. 2020;37(4):1381-406. DOI:10.1007/s12325-020-01281-6 112. Lemstra M, Bird Y, Nwankwo C, et al. Weight loss intervention adherence and factors promoting adherence: a meta-analysis. Patient Prefer Adherence. 2016;10:1547-59. DOI:10.2147/PPA.S103649 113. Scragg J, Hallsworth K, Taylor G, et al Factors associated with engagement and adherence to a low-energy diet to promote 10% weight loss in patients with clinically significant non-alcoholic fatty liver disease. BMJ Open Gastroenterol. 2021;8:e000678. DOI:10.1136/bmjgast-2021-000678 114. Angulo P, Kleiner DE, Dam-Larsen S, et al. Liver Fibrosis, but No Other Histologic Features, Is Associated With Long-term Outcomes of Patients With Nonalcoholic Fatty Liver Disease. Gastroenterology. 2015;149(2):389-97.e10. DOI:10.1053/j.gastro.2015.04.043 115. Polyzos SA, Kang ES, Boutari C, et al. Current and emerging pharmacological options for the treatment of nonalcoholic steatohepatitis. Metabolism. 2020;111S:154203. DOI:10.1016/j.metabol.2020.154203 116. Sanyal AJ, Chalasani N, Kowdley KV, et al. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N Engl J Med. 2010;362(18):1675-85. DOI:10.1056/NEJMoa0907929 117. Cusi K, Orsak B, Bril F, et al. Long-Term Pioglitazone Treatment for Patients With Nonalcoholic Steatohepatitis and Prediabetes or Type 2 Diabetes Mellitus: A Randomized Trial. Ann Intern Med. 2016;165(5):305-15. DOI:10.7326/M15-1774 118. Musso G, Cassader M, Paschetta E, Gambino R. Thiazolidinediones and Advanced Liver Fibrosis in Nonalcoholic Steatohepatitis: A Meta-analysis. JAMA Intern Med. 2017;177(5):633-40. DOI:10.1001/jamainternmed.2016.9607 119. Budd J, Cusi K. Role of Agents for the Treatment of Diabetes in the Management of Nonalcoholic Fatty Liver Disease. Curr Diab Rep. 2020;20(11):59. DOI:10.1007/s11892-020-01349-1 120. Chalasani N, Younossi Z, Lavine JE, et al. The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases. Hepatology. 2018;67(1):328-57. DOI:10.1002/hep.29367 121. Ando Y, Jou JH. Nonalcoholic Fatty Liver Disease and Recent Guideline Updates. Clin Liver Dis (Hoboken). 2021;17(1):23-8. DOI:10.1002/cld.1045. PMID: 33552482; PMCID: PMC7849298. 122. Bril F, Biernacki DM, Kalavalapalli S, et al. Role of Vitamin E for Nonalcoholic Steatohepatitis in Patients With Type 2 Diabetes: A Randomized Controlled Trial. Diabetes Care. 2019;42(8):1481-88. DOI:10.2337/dc19-0167 123. Miller ER 3rd, Pastor-Barriuso R, Dalal D, et al. Meta-analysis: high-dosage vitamin E supplementation may increase all-cause mortality. Ann Intern Med. 2005;142(1):37-46. DOI:10.7326/0003-4819-142-1-200501040-00110 124. Abner EL, Schmitt FA, Mendiondo MS, et al. Vitamin E and all-cause mortality: a meta-analysis. Curr Aging Sci. 2011;4(2):158-70. DOI:10.2174/1874609811104020158 125. Dufour JF, Oneta CM, Gonvers JJ, et al. Swiss Association for the Study of the Liver. Randomized placebo-controlled trial of ursodeoxycholic acid with vitamin e in nonalcoholic steatohepatitis. Clin Gastroenterol Hepatol. 2006;4(12):1537-43. DOI:10.1016/j.cgh.2006.09.025 126. Ratziu V, de Ledinghen V, Oberti F, et al. FRESGUN. A randomized controlled trial of high-dose ursodesoxycholic acid for nonalcoholic steatohepatitis. J Hepatol. 2011;54(5):1011-9. DOI:10.1016/j.jhep.2010.08.030 127. Simental-Mendía LE, Simental-Mendía M, Sánchez-García A, et al. Impact of ursodeoxycholic acid on circulating lipid concentrations: a systematic review and meta-analysis of randomized placebo-controlled trials. Lipids Health Dis. 2019;18(1):88. DOI:10.1186/s12944-019-1041-4 128. Maton PN, Ellis HJ, Higgins MJ, Dowling RH. Hepatic HMGCoA reductase in human cholelithiasis: effects of chenodeoxycholic and ursodeoxycholic acids. Eur J Clin Invest. 1980;10(4):325-32. DOI:10.1111/j.1365-2362.1980.tb00040.x 129. Salen G, Colalillo A, Verga D, et al. Effect of high and low doses of ursodeoxycholic acid on gallstone dissolution in humans. Gastroenterology. 1980;78(6):1412-8. 130. Ponz de Leon M, Carulli N, Loria P, et al. Cholesterol absorption during bile acid feeding. Effect of ursodeoxycholic acid (UDCA) administration. Gastroenterology. 1980;78(2):214-9. 131. Martsevich SYu, Kutishenko NP, Drozdova LYu, et al. Research PERSPECTIVE: improving the effectiveness and safety of statin therapy in patients with diseases of the liver, gallbladder and/or biliary tract using ursodeoxycholic acid. Terapevticheskii Arkhiv (Ter. Arkh.). 2014;86(12):48-52 (in Russian). 132. Nadinskaia M, Maevskaya M, Ivashkin V, et al. Ursodeoxycholic acid as a means of preventing atherosclerosis, steatosis and liver fibrosis in patients with nonalcoholic fatty liver disease. World J Gastroenterol. 2021;27(10):959-75. DOI:10.3748/wjg.v27.i10.959 133. Sánchez-García A, Sahebkar A, Simental-Mendía M, Simental-Mendía LE. Effect of ursodeoxycholic acid on glycemic markers: A systematic review and meta-analysis of clinical trials. Pharmacol Res. 2018;135:144-9. DOI:10.1016/j.phrs.2018.08.008 134. Stokes CS, Gluud LL, Casper M, Lammert F. Ursodeoxycholic acid and diets higher in fat prevent gallbladder stones during weight loss: a meta-analysis of randomized controlled trials. Clin Gastroenterol Hepatol. 2014;12(7):1090-100.e2; quiz e61. DOI:10.1016/j.cgh.2013.11.031 135. Boerlage TCC, Haal S, Maurits de Brauw L, et al. Ursodeoxycholic acid for the prevention of symptomatic gallstone disease after bariatric surgery: study protocol for a randomized controlled trial (UPGRADE trial). BMC Gastroenterol. 2017;17(1):164. DOI:10.1186/s12876-017-0674-x 136. Ratziu V, Sanyal A, Harrison SA, et al. Cenicriviroc Treatment for Adults With Nonalcoholic Steatohepatitis and Fibrosis: Final Analysis of the Phase 2b CENTAUR Study. Hepatology. 2020;72(3):892-905. DOI:10.1002/hep.31108 137. Harrison SA, Wong VW, Okanoue T, et al. STELLAR-3 and STELLAR-4 Investigators. Selonsertib for patients with bridging fibrosis or compensated cirrhosis due to NASH: Results from randomized phase III STELLAR trials. J Hepatol. 2020;73(1):26-39. DOI:10.1016/j.jhep.2020.02.027 138. Fougerat A, Montagner A, Loiseau N, et al. Peroxisome Proliferator-Activated Receptors and Their Novel Ligands as Candidates for the Treatment of Non-Alcoholic Fatty Liver Disease. Cells. 2020;9(7):1638. DOI:10.3390/cells9071638 139. Younossi ZM, Ratziu V, Loomba R, et al. REGENERATE Study Investigators. Obeticholic acid for the treatment of non-alcoholic steatohepatitis: interim analysis from a multicentre, randomised, placebo-controlled phase 3 trial. Lancet. 2019;394(10215):2184-96. DOI:10.1016/S0140-6736(19)33041-7 140. Ratziu V, Harrison SA, Francque S, et al. GOLDEN-505 Investigator Study Group. Elafibranor, an Agonist of the Peroxisome Proliferator-Activated Receptor-α and -δ, Induces Resolution of Nonalcoholic Steatohepatitis Without Fibrosis Worsening. Gastroenterology. 2016;150(5):1147-59.e5. DOI:10.1053/j.gastro.2016.01.038 141. Agrawal R. The first approved agent in the Glitazar's Class: Saroglitazar. Curr Drug Targets. 2014;15(2):151-5. DOI:10.2174/13894501113149990199 142. Kaul U, Parmar D, Manjunath K, et al. New dual peroxisome proliferator activated receptor agonist-Saroglitazar in diabetic dyslipidemia and non-alcoholic fatty liver disease: integrated analysis of the real world evidence. Cardiovasc Diabetol. 2019;18(1):80. DOI:10.1186/s12933-019-0884-3 143. Yamashita S, Masuda D, Matsuzawa Y. Pemafibrate, a New Selective PPARα Modulator: Drug Concept and Its Clinical Applications for Dyslipidemia and Metabolic Diseases. Curr Atheroscler Rep. 2020;22(1):5. DOI:10.1007/s11883-020-0823-5 144. Sven MF, Pierre B, Manal FA, et al. A randomised, double-blind, placebo-controlled, multi-centre, dose-range, proof-of-concept, 24-week treatment study of lanifibranor in adult subjects with non-alcoholic steatohepatitis: Design of the NATIVE study. Contemp Clin Trials. 2020;98:106170. DOI:10.1016/j.cct.2020.106170 145. Global Burden of Disease Cancer Collaboration. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 cancer groups, 1990 to 2015: a systematic analysis for the global burden of disease study. JAMA Oncol. 2017;3:524-48. 146. Yang JD, Hainaut P, Gores GJ, et al. A global view of hepatocellular carcinoma: trends, risk, prevention and management. Nat Rev Gastroenterol Hepatol. 2019;16:589-604. 147. Younossi Z, Stepanova M, Ong JP, et al. Nonalcoholic steatohepatitis is the fastest growing cause of hepatocellular carcinoma in liver transplant candidates. Clin Gastroenterol Hepatol. 2019;17(4):748-55.e743. 148. Anstee QM, Reeves HL, Kotsiliti E, et al. From NASH to HCC: current concepts and future challenges. Nat Rev Gastroenterol Hepatol. 2019;16(7):411-28.30. 149. Anstee QM, Darlay R, Cockell S, et al. Genome-wide association study of non-alcoholic fatty liver and steatohepatitis in a histologically characterised cohort. J Hepatol. 2020;73(3):505-15. 150. Geh D, Anstee QM, Reeves HL. NAFLD-Associated HCC: Progress and Opportunities. J Hepatocell Carcinoma. 2021;8:223-39S272213. 151. Yang JD, Addissie BD, Mara KC, et al. GALAD score for hepatocellular carcinoma detection in comparison with liver ultrasound and proposal of GALADUS score. Cancer Epidemiol Biomarkers Prev. 2019;28(3):531-8. 152. Best J, Bechmann LP, Sowa JP, et al. GALAD score detects early hepatocellular carcinoma in an International cohort of patients with nonalcoholic steatohepatitis. Clin Gastroenterol Hepatol. 2020;18(3):728-35.e724. 153. Piscaglia F, Svegliati-Baroni G, Barchetti A, et al. Clinical patterns of hepatocellular carcinoma in nonalcoholic fatty liver disease: a multicenter prospective study. Hepatology. 2016;63(3):827-38. 154. Stine JG, Wentworth BJ, Zimmet A, et al. Systematic review with meta-analysis: risk of hepatocellular carcinoma in non-alcoholic steatohepatitis without cirrhosis compared to other liver diseases. Aliment Pharmacol Ther. 2018;48(7):696-703. 155. Ma S, Zheng Y, Xiao Y, et al. Meta-analysis of studies using metformin as a reducer for liver cancer risk in diabetic patients. Medicine (Baltimore). 2017;96(19):e6888. 156. Simon TG, Duberg AS, Aleman S, et al. Lipophilic statins and risk for hepatocellular carcinoma and death in patients with chronic viral hepatitis: results from a Nationwide Swedish Population. Ann Intern Med. 2019;171(5):318-27. 157. Simon TG, Duberg A-S, Aleman S, et al. Association of aspirin with hepatocellular carcinoma and liver-related mortality. N Engl J Med. 2020;382(11):1018-28. 158. Liu H, Xu HW, Zhang YZ, et al. Ursodeoxycholic acid induces apoptosis in hepatocellular carcinoma xenografts in mice. World J Gastroenterol. 2015;21(36):10367-74. DOI:10.3748/wjg.v21.i36.10367 159. Zhang H, Xu H, Zhang C, et al. Ursodeoxycholic acid suppresses the malignant progression of colorectal cancer through TGR5-YAP axis. Cell Death Discov. 2021;7:207. DOI:10.1038/s41420-021-00589-8 160. Alberts DS, Martínez ME, Hess LM, et al. Phoenix and Tucson Gastroenterologist Networks. Phase III trial of ursodeoxycholic acid to prevent colorectal adenoma recurrence. J Natl Cancer Inst. 2005;97(11):846-53. DOI:10.1093/jnci/dji144 161. Finn RS, Qin S, Ikeda M, et al. IMbrave150: updated overall survival data from a global, randomized, open-label Phase III study of atezolizumab + bevacizumab vs sorafenib in patients with unresectable hepatocellular carcinoma. J Clin Oncol. 2021;39:267. 162. Finn RS, Qin S, Ikeda M, et al. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. N Engl J Med. 2020;382(20):1894-905. 163. Bellentani S. The epidemiology of non-alcoholic fatty liver disease. Liver International. 2017;37:S1,81-84. DOI:10.1111/liv.13299 164. International Diabetes Federation. IDF Diabetes atlas. 10TH Edition, 2021. Available at: http://www.diabetesatlas.org. Accessed: 10.12.2021. 165. Portillo Sanchez P. High Prevalence of Nonalcoholic Fatty Liver Disease in Patients with Type 2 Diabetes Mellitus and Normal Plasma Aminotransferase Levels. J Clin Endocrinol Metab. 2014;100:jc20142739. DOI:10.1210/jc.2014-2739 166. Doycheva I. Non-invasive screening of diabetics in primary care for NAFLD and advanced fibrosis by MRI and MRE. Aliment Pharmacol Ther. 2016;43(1):83-95. DOI:10.1111/apt.13405 167. Eslam M, Sanyal AJ, George J. On behalf of an international consensus panel. MAFLD: A consensus-driven proposed nomenclature for metabolic associated fatty liver disease. Gastroenterology. 2020;158(7):1999-2014. DOI:10.1053/j.gastro.2019.11.312 168. Targher G, Marchesini G, Byrne CD. Risk of type 2 diabetes in patients with non-alcoholic fatty liver disease: Causal association or epiphenomenon? Diabetes Metab. 2016;42(3):142-56. DOI:10.1016/j.diabet.2016.04.002 169. Shah RV. Liver fat, statin use, and incident diabetes: The Multi-Ethnic Study of Atherosclerosis. Atherosclerosis. 2015;242(1):211-7. DOI:10.1016/j.atherosclerosis.2015.07.018 170. Brar G, Tsukamoto H. Alcoholic and non-alcoholic steatohepatitis: global perspective and emerging science. J Gastroenterol. 2019;54(3):218-25. DOI:10.1007/s00535-018-01542-w 171. Armstrong MJ, Gaunt P, Aithal GP, et al. Liraglutide safety and efficacy in patients with non-alcoholic steatohepatitis (LEAN): a multicentre, double-blind, randomised, placebocontrolled phase 2 study. Lancet. 2016;387(10019):679-90. DOI:10.1016/S0140-6736(15)00803-X 172. Newsome PN, Buchholtz K, Cusi K, et al. NN9931-4296 Investigators. A Placebo-Controlled Trial of Subcutaneous Semaglutide in Nonalcoholic Steatohepatitis. N Engl J Med. 2021;384(12):1113-24. DOI:10.1056/NEJMoa2028395 173. Boettcher E, Csako G, Pucino F, et al. Meta-analysis: pioglitazone improves liver histology and fibrosis in patients with nonalcoholic steatohepatitis. Aliment Pharmacol Ther. 2012;35(1):66-75. DOI:10.1111/j.1365-2036.2011.04912.x 174. Gautam A, Agrawal PK, Doneria J, Nigam A. Effects of Canagliflozin on Abnormal Liver Function Tests in Patients of Type 2 Diabetes with Non-Alcoholic Fatty Liver Disease. J Assoc Physicians India. 2018;66(8):62-6. 175. Lazo M, Clark J. The epidemiology of nonalcoholic fatty liver disease: a global perspective. Semin Liver Dis. 2008;28(4):339-50. 176. Misra V. Nonalcoholic Fatty Liver Disease and Cardiovascular Risk. Curr Gastroenterol Rep. 2009;11:50-5. 177. Stefan N. Causes and Metabolic Consequences of Fatty Liver. Endoc Rev. 2008;29(7):939-60. 178. Musso G. Non-alcoholic fatty liver disease from pathogenesis to management: an update. Obesity Reviews. 2010;11(6):430-45. 179. Ong J, Younossi Z. Epidemiology and natural history of NAFLD and NASH. Clin Liver Dis. 2007;11:1-16. 180. Leite N, et al. Prevalence and associated factors of non-alcoholic fatty liver disease in patients with type-2 diabetes mellitus. Liver Int. 2009;29:113-9. 181. Younossi Z. Global epidemiology of nonalcoholic fatty liver desease – Meta-analytic assessment of prevalence, incidence and outcomes. Hepatology. 2016;64:73-84. 182. Utzschneider K, Kahn S. The Role of Insulin Resistance in Nonalcoholic Fatty Liver Disease. J Clin Endocrinol Metab. 2006;91(12):4753-61. 183. Targher G. Non-alcoholic hepatic steatosis and its relation to increased plasma biomarkers of inflammation and endothelial dysfunction in non-diabetic men. Role of visceral adipose tissue. Diabet Med. 2005;22(10):1354-8. 184. Tilg H. Cytokines and the pathogenesis of non-alcoholic steatohepatitis. Gut. 2005;54:303-6. 185. Marchesini G, et al. Nonalcoholic fatty liver, steatohepatitis and the metabolic syndrome. Hepatology. 2003;37:917-23. 186. Karlas T, Petroff D, Sasso M, et al. Individual patient data meta-analysis of controlled attenuation parameter (CAP) technology for assessing steatosis. J Hepatol. 2017;66(5):1022-30. 187. Siddiqui MS, Vuppalanchi R, Van Natta ML, et al. Vibration-Controlled Transient Elastography to Assess Fibrosis and Steatosis in Patients With Nonalcoholic Fatty Liver Disease. Clin Gastroenterol Hepatol. 2019;17(1):156-63 e2. 188. Eddowes PJ, Sasso M, Allison M, et al. Accuracy of FibroScan Controlled Attenuation Parameter and Liver Stiffness Measurement in Assessing Steatosis and Fibrosis in Patients With Nonalcoholic Fatty Liver Disease. Gastroenterology. 2019;156(6):1717-30. 189. Haufe S. Randomized comparison of reduced fat and reduced carbohydrate hypocaloric diets on intrahepatic fat in overweight and obese human subjects. Hepatology. 2011;53:1504-14. 190. Asrih M. Diets and nonalcoholic fatty liver disease: the good and the bad. Clin Nutr. 2014;33:186-190. 191. Houmard J. Effect of the volume and intensity of exercise training on insulin sensitivity. J Appl Physiol. 2004;96:101-6. 192. Kopp C. Weight loss reduces tissue factor in morbidly obese patients. Obes Res. 2003;11(8):950-6. 193. American Association for the Study of Liver Diseases; United States Food and Drug Administration. Challenges and opportunities in drug and biomarker development for nonalcoholic steatohepatitis: findings and recommendations from an American Association for the Study of Liver Diseases-U.S. Food and Drug Administration Joint Workshop. Hepatology. 2015;61:1392-405. 194. Musso G. A meta-analysis of randomized trials for the treatment of nonalcoholic fatty liver disease. Hepatology. 2010;52:79-104. 195. Vilsbøll T. Effects of glucagon-like peptide-1 receptor agonists on weight loss: systematic review and meta-analyses of randomised controlled trials. BMJ. 2012;344:d7771. 196. Armstrong M. Liraglutide safety and efficacy in patients with non-alcoholic steatohepatitis (LEAN): a multicentre, double blind, randomised, placebo-controlled phase 2 study. Lancet. 2016;387:679-90. 197. Lassailly G. Bariatric Surgery Reduces Features of Nonalcoholic Steatohepatitis in Morbidly Obese Patients. Gastroenterology. 2015;149:379-88. 198. Bower G. Bariatric Surgery and Non-Alcoholic Fatty Liver Disease: a Systematic Review of Liver Biochemistry and Histology. Obes Surg. 2015;25:2280-9. 199. Nomura J, Busso N, Ives A, et al. Febuxostat, an inhibitor of xanthine oxidase, suppresses lipopolysaccharide-induced MCP-1 production via MAPK phosphatase-1-mediated inactivation of JNK. PLoS One. 2013;25(8):e75527. DOI:10.1371/journal. pone.0075527 200. Sertoglu E, Ercin CN, Celebi G, et al. The relationship of serum uric acid with nonalcoholic fatty liver disease. Clin Biochem. 2014;47(6):383-8. DOI:10.1016/j.clinbiochem.2014.01.029 201. Lonardo A, Loria P, Leonardi F, et al. Fasting insulin and uric acid levels but not indices of iron metabolism are independent predictors of non-alcoholic fatty liver disease. A case-control study. Dig Liver Dis. 2002;34(3):204-11. 202. Li Y, Xu C, Yu C, et al. Association of serum uric acid level with non-alcoholic fatty liver disease: A crosssectional study. J Hepatol. 2009;50(5):1029-34. DOI:10.1016/j.jhep.2008.11.021 203. Ryu S, Chang Y, Kim SG, et al. Serum uric acid levels predict incident nonalcoholic fatty liver disease in healthy Korean men. Metabolism. 2011;60(6):860-6. DOI:10.1016/j.metabol.2010.08.005 204. Gong S, Song J, Wang L, et al. Hyperuricemia and risk of nonalcoholic fatty liver disease: a systematic review and meta-analysis. Eur J Gastroenterol Hepatol. 2016;28(2):132-8. DOI:10.1097/MEG.0000000000000507 205. Sirota JC, McFann K, Targher G, et al. Elevated serum uric acid levels are associated with non-alcoholic fatty liver disease independently of metabolic syndrome features in the United States: Liver ultrasound data from the National Health and Nutrition Examination Survey. Metabolism. 2013;62(3):392-9. DOI:10.1016/j.metabol.2012.08.013 206. Oral A, Sahin T, Turker F, et al. Relationship between Serum Uric Acid Levels and Nonalcoholic Fatty Liver Disease in Non-Obese Patients. Medicina. 2019;55(9):600. DOI:10.3390/medicina55090600 207. Federal Clinical Guidelines on "Rheumatology" approved by the ARR in 2013 with additions from 2016. Available at: 10.12.2021. Accessed: 10.12.2021 (in Russian). 208. Filip R, Radzki RP, Bieńko M. Novel insights into the relationship between nonalcoholic fatty liver disease and osteoporosis. Clin Interv Aging. 2018;13:1879-91. DOI:10.2147/CIA.S170533 209. Zhu X, Yan H, Chang X, et al. Association between non-alcoholic fatty liver disease-associated hepatic fibrosis and bone mineral density in postmenopausal women with type 2 diabetes or impaired glucose regulation. BMJ Open Diabetes Res Care. 2020;8(1):e000999. DOI:10.1136/bmjdrc-2019-000999 210. Mikami K, Endo T, Sawada N, et al. Association of Bone Metabolism with Fatty Liver Disease in the Elderly in Japan: A Community-based Study. Intern Med. 2020;59(10):1247-56. DOI:10.2169/internalmedicine.3906-19 211. Chen HJ, Yang HY, Hsueh KC, et al. Increased risk of osteoporosis in patients with nonalcoholic fatty liver disease: A population-based retrospective cohort study. Medicine (Baltimore). 2018;97(42):e12835. DOI:10.1097/MD.0000000000012835 212. Rosato V, Masarone M, Dallio M, et al. NAFLD and Extra-Hepatic Comorbidities: Current Evidence on a Multi-Organ Metabolic Syndrome. Int J Environ Res Public Health. 2019;16(18):3415. DOI:10.3390/ijerph16183415 213. Adams LA, Anstee QM, Tilg H, Targher G. Non-alcoholic fatty liver disease and its relationship with cardiovascular disease and other extrahepatic diseases. Gut. 2017;66(6):1138-53. DOI:10.1136/gutjnl-2017-313884 214. Yilmaz Y. Review article: non-alcoholic fatty liver disease and osteoporosis – clinical and molecular crosstalk. Aliment Pharmacol Ther. 2012;36(4):345-52. DOI:10.1111/j.1365-2036.2012.05196.x 215. Poggiogalle E, Donini LM, Lenzi A, et al. Non-alcoholic fatty liver disease connections with fat-free tissues: A focus on bone and skeletal muscle. World J Gastroenterol. 2017;23(10):1747-57. DOI:10.3748/wjg.v23.i10.1747 216. Sung J, Ryu S, Song YM, Cheong HK. Relationship Between Non-alcoholic Fatty Liver Disease and Decreased Bone Mineral Density: A Retrospective Cohort Study in Korea. J Prev Med Public Health. 2020;53(5):342-52. DOI:10.3961/jpmph.20.089 217. Chen DZ, Xu QM, Wu XX, et al. The Combined Effect of Nonalcoholic Fatty Liver Disease and Metabolic Syndrome on Osteoporosis in Postmenopausal Females in Eastern China. Int J Endocrinol. 2018;2018:2314769. DOI:10.1155/2018/2314769 218. Belaya ZhE, Rozhinskaya LYa, Grebennikova TA, et al. Summary of the draft federal clinical guidelines on osteoporosis.Osteoporosis and Osteopathies. 2020;23(2):4-21 (in Russian). DOI:10.14341/osteo12710 219. Targher G, Bertolini L, Scala L, et al. Associations between serum 25-hydroxyvitamin D3 concentrations and liver histology in patients with nonalcoholic fatty liver disease. Nutr Metab Cardiovasc Dis. 2007;17:517-24. 220. Barchetta I, Angelico F, Del Ben M, et al. Strong association between non alcoholic fatty liver disease (NAFLD) and low 25(OH) vitamin D levels in an adult population with normal serum liver enzymes. BMC Med. 2011;9:85. 221. Sookoian S, Pirola CJ. Non-alcoholic fatty liver disease is strongly associated with carotid atherosclerosis: a systematic review. J Hepatol. 2008;49(4):600-7. 222. Madan SA, John F, Pyrsopoulos N, et al. Nonalcoholic fatty liver disease and carotid artery atherosclerosis in children and adults: a meta-analysis. Eur J Gastroenterol Hepatol. 2015;27(11):1237-48. 223. Bhatia L, Scorletti E, Curzen N, et al. Improvement in non-alcoholic fatty liver disease severity is associated with a reduction in carotid intima-media thickness progression. Atherosclerosis. 2016;246:13-20. 224. Oni ET, Agatston AS, Blaha MJ, et al. A systematic review: burden and severity of subclinical cardiovascular disease among those with nonalcoholic fatty liver; hould we care? Atherosclerosis. 2013;230(2):258-67. 225. Luo J, Xu L, Li J, et al. Nonalcoholic fatty liver disease as a potential risk factor of cardiovascular disease. Eur J Gastroenterol Hepatol. 2015;27(3):193-9. 226. Targher G, Byrne CD, Lonardo A, et al. Non-alcoholic fatty liver disease and risk of incident cardiovascular disease: A meta-analysis. J Hepatol. 2016;65:589-600. 227. Ekstedt M, Hagström H, Nasr P, et al. Fibrosis stage is the strongest predictor for disease-specific mortality in NAFLD after up to 33 years of follow-up. Hepatology. 2015;61:1547-54. 228. Mahfood Haddad T, Hamdeh S, Kanmanthareddy A, Alla VM. Nonalcoholic fatty liver disease and the risk of clinical cardiovascular events: A systematic review and meta-analysis. Diabetes Metab Syndr. 2017;11(Suppl.1):209-16. 229. Mellinger JL, Pencina KM, Massaro JM, et al. Hepatic steatosis and cardiovascular disease outcomes: An analysis of the Framingham Heart Study. J Hepatol. 2015;63:470-6. 230. Wong VS, Wong GL-H, Yip GW-K, et al. Coronary artery disease and cardiovascular outcomes in patients with non-alcoholic fatty liver disease. Gut. 2011;60:1721-27. 231. Wong VW, Wong GL, Yeung JC, et al. Long-term clinical outcomes after fatty liver screening in patients undergoing coronary angiogram: A prospective cohort study. Hepatology. 2016;63:754-63. 232. Ichikawa K, Miyoshi T, Osawa K, et al. Incremental prognostic value of non-alcoholic fatty liver disease over coronary computed tomography angiography findings in patients with suspected coronary artery disease. Eur J Prev Cardiol. 2021;19:zwab120. DOI:10.1093/eurjpc/zwab12 233. Targher G, Bertolini L, Rodella S, et al. Nonalcoholic Fatty Liver Disease Is Independently Associated With an Increased Incidence of Cardiovascular Events in Type 2 Diabetic Patients. Diabetes Care. 2007;30:2119-21. 234. Hu J, Xu Y, He Z, et al. Increased risk of cerebrovascular accident related to non-alcoholic fatty liver disease: A meta-analysis. Oncotarget. 2017;9:2752-60. 235. Athyros VG, Boutari C, Stavropoulos K, et al. Statins: An Under-Appreciated Asset for the Prevention and the Treatment of NAFLD or NASH and the Related Cardiovascular Risk. Curr Vasc Pharmacol. 2018;16:246-53. 236. Ishii N, Ohashi T, Nakade Y, et al. Ezetimibe for the treatment of non-alcoholic fatty liver disease: A meta-analysis. Hepatol Res. 2017;47:1417-28. 237. Lee CH, Fu Y, Yang SJ, Chi CC. Effects of Omega-3 Polyunsaturated Fatty Acid Supplementation on Non-Alcoholic Fatty Liver: A Systematic Review and Meta-Analysis. Nutrients. 2020;12(9):2769. DOI:10.3390/nu12092769 238. Lopez-Suarez A, Guerrero JM, Elvira-Gonzalez J, et al. Nonalcoholic fatty liver disease is associated with blood pressure in hypertensive and nonhypertensive individuals from the general population with normal levels of alanine aminotransferase. Eur J Gastroenterol Hepatol. 2011;23:1011-17. DOI:10.1097/MEG.0b013e32834b8d52 239. Feng RN, Du SS, Wang C, et al. Leannon-alcoholic fatty liver disease increases risk for metabolic disorders in a normal weight Chinese population. World J Gastroenterol. 2014;20:17932-40. DOI:10.3748/wjg.v20.i47.17932 240. Lorbeer R, Bayerl C, Auweter S, et al. Association between MRI-derived hepatic fat fraction and blood pressure in participants without history of cardiovascular disease. J Hypertens. 2017;35:737-44. DOI:10.1097/HJH.0000000000001245 241. Wang J, Chiu WH, Chen RC, et al. The clinical investigation of disparity of nonalcoholic fatty liver disease in a Chinese occupational population in Taipei, Taiwan: experience at a teaching hospital. Asia Pac J Public Health. 2015;27:NP1793-804. DOI:10.1177/1010539513483830 242. Qian LY, Tu JF, Ding YH, et al. Association of blood pressure level with nonalcoholic fatty liver disease in nonhypertensive population: normal is not the new normal. Medicine (Baltimore). 2016;95:e4293. DOI:10.1097/MD.0000000000004293 243. Bonnet F, Gastaldelli A, Pihan-Le Bars F, et al. D.E.S.I.R., RISC Study Groups. Gamma-glutamyltransferase, fatty liver index and hepatic insulin resistance are associated with incident hypertension in two longitudinal studies. J Hypertens. 2017;35:493-500. DOI:10.1097/HJH.0000000000001204 244. Zhou K, Cen J. The fatty liver index (FLI) and incident hypertension: a longitudinal study among Chinese population. Lipids Health Dis. 2018;17:214. DOI:10.1186/s12944-018-0858-6 245. Huh JH, Ahn SV, Koh SB, et al. A Prospective Study of fatty liver index and incident hypertension: the KoGES-ARIRANG Study. PLoS One. 2015;10:e0143560. DOI:10.1371/journal.pone.0143560 246. Lau K, Lorbeer R, Haring R, et al. The association between fatty liver disease and blood pressure in a population-based prospective longitudinal study. J Hypertens. 2010;28:1829-35. DOI:10.1097/HJH.0b013e32833c211b 247. Ryoo JH, Ham WT, Choi JM, et al. Clinical significance of non-alcoholic fatty liver disease as a risk factor for prehypertension. J Korean Med Sci. 2014;29:973-9. DOI:10.3346/jkms.2014.29.7.973 248. Ryoo JH, Suh YJ, Shin HC, et al. Clinical association between non-alcoholic fatty liver disease and the development of hypertension. J Gastroenterol Hepatol. 2014;29:1926-31. DOI:10.1111/jgh.12643 249. Sung KC, Wild SH, Byrne CD. Development of new fatty liver, or resolution of existing fatty liver, over five years of follow-up, and risk of incident hypertension. J Hepatol. 2014;60:1040-45. DOI:10.1016/j.jhep.2014.01.009 250. Zhao YC, Zhao GJ, Chen Z, et al. Nonalcoholic Fatty Liver Disease: An Emerging Driver of Hypertension. Hypertension. 2020;75:275-84. DOI:10.1161/HYPERTENSIONAHA.119.13419 251. Schwimmer JB, Johnson JS, Angeles JE, et al. Microbiome signatures associated with steatohepatitis and moderate to severe fibrosis in children with nonalcoholic fatty liver disease. Gastroenterology. 2019;157:1109-22. DOI:10.1053/j.gastro.2019.06.028 252. Marques FZ, Jama HA, Tsyganov K, et al. Guidelines for Transparency on Gut Microbiome Studies in Essential and Experimental Hypertension. Hypertension. 2019;74(6):1279-93. DOI:10.1161/HYPERTENSIONAHA.119.13079 253. Spinosa M, Stine JG. Nonalcoholic Fatty Liver Disease-Evidence for a Thrombophilic State? Curr Pharm Des. 2020;26(10):1036-44. DOI:10.2174/1381612826666200131101553 254. Balta G, Altay C, Gurgey A. PAI-1 gene 4G/5G genotype: A risk factor for thrombosis in vessels of internal organs. Am J Hematol. 2002;71(2):89-93. DOI:10.1002/ajh.10192 255. Verrijken A, Francque S, Mertens I, et al. Prothrombotic factors in histologically proven nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Hepatology. 2014; 59(1):121-9. DOI:10.1002/hep.26510 256. Lombardi AM, Fabris R, Berti de Marinis G, et al. Defective ADAMTS13 synthesis as a possible consequence of NASH in an obese patient with recurrent thrombotic thrombocytopenic purpura. Eur J Haematol. 2014;92(6):497-501. DOI:10.1111/ejh.12273 257. Kotronen A, Joutsi-Korhonen L, Sevastianova K, et al. Increased coagulation factor VIII, IX, XI and XII activities in non-alcoholic fatty liver disease. Liver Int. 2011;31(2):176-83. DOI:10.1111/j.1478-3231.2010.02375.x 258. Tripodi A, Fracanzani AL, Primignani M, et al. Procoagulant imbalance in patients with non-alcoholic fatty liver disease. J Hepatol. 2014;61(1):148-54. DOI:10.1016/j.jhep.2014.03.013 259. Northup PG, Argo CK, Shah N, Caldwell SH. Hypercoagulation and thrombophilia in nonalcoholic fatty liver disease: mechanisms, human evidence, therapeutic implications, and preventive implications. Semin Liver Dis. 2012;32(1):39-48. DOI:10.1055/s-0032-1306425 260. Stine JG, Northup PG. Coagulopathy Before and After Liver Transplantation: From the Hepatic to the Systemic Circulatory Systems. Clin Liver Dis. 2017;21(2):253-74. DOI:10.1016/j.cld.2016.12.003 261. Meltzer ME, Lisman T, de Groot PG, et al. Venous thrombosis risk associated with plasma hypofibrinolysis is explained by elevated plasma levels of TAFI and PAI-1. Blood. 2010;116(1):113-21. DOI:10.1182/blood-2010-02-267740 262. Skurk T, Hauner H. Obesity and impaired fibrinolysis: role of adipose production of plasminogen activator inhibitor-1. Int J Obes Relat Metab Disord. 2004;28(11):1357-64. DOI:10.1038/sj.ijo.0802778 263. El-Sayed MS, El-Sayed Ali Z, Ahmadizad S. Exercise and training effects on blood haemostasis in health and disease: an update. Sports Med. 2004;34(3):181-200. DOI:10.2165/00007256-200434030-00004 264. Womack CJ, Nagelkirk PR, Coughlin AM. Exercise-induced changes in coagulation and fibrinolysis in healthy populations and patients with cardiovascular disease. Sports Med. 2003;33(11):795-807. DOI:10.2165/00007256-200333110-00002 265. Van Stralen KJ, Le Cessie S, Rosendaal FR, Doggen CJ. Regular sports activities decrease the risk of venous thrombosis. J Thromb Haemost. 2007;5(11):2186-92. DOI:10.1111/j.1538-7836.2007.02732.x 266. Kupchak BR, Creighton BC, Aristizabal JC, et al. Beneficial effects of habitual resistance exercise training on coagulation and fibrinolytic responses. Thromb Res. 2013;131(6):e227-34. DOI:10.1016/j.thromres.2013.02.014 267. Ben-Shlomo Y, Spears M, Boustred C, et al. Aortic pulse wave velocity improves cardiovascular event prediction: An individual participant meta-analysis of prospective observational data from 17,635 subjects. J Am Coll Cardiol. 2014;63:636-46. DOI:10.1016/j.jacc.2013.09.063 268. Cavalcante JL, Lima JA, Redheuil A, Al-Mallah MH. Aortic stiffness: Current understanding and future directions. J Am Coll Cardiol. 2011;57:1511-22. DOI:10.1016/j.jacc.2010.12.017 269. Athyros VG, Tziomalos K, Katsiki N, et al. Cardiovascular risk across the histological spectrum and the clinical manifestations of non-alcoholic fatty liver disease: An update. World J Gastroenterol. 2015;21:6820-34. DOI:10.3748/wjg.v21.i22.682 270. Vasyuk YuA, Ivanova SV, Shkolnik EL, et al. Consensus of Russian experts on the evaluation of arterial stiffness in clinical practice. Cardiovascular Therapy and Prevention. 2016;15(2):4-19 (in Russian). DOI:10.15829/1728-8800-2016-2-4-19 271. Blacher J, Guerin AP, Pannier B, et al. Impact of aortic stiffness on survival in end-stage renal disease. Circulation. 1999;99:2434-39. DOI:10.1161/01.cir.99.18.2434 272. Laurent S, Boutouyrie P, Asmar R, et al. Aortic stiffness is an independent predictor of all-cause and cardiovascular mortality in hypertensive patients. Hypertension. 2001;37:1236-41. DOI:10.1161/01.hyp.37.5.1236 273. Cardoso CR, Ferreira MT, Leite NC, Salles GF. Prognostic impact of aortic stiffness in high-risk type 2 diabetic patients: The Rio de Janeiro Type 2 Diabetes Cohort Study. Diabetes Care. 2013;36:3772-78. DOI:10.2337/dc13-0506 274. Willum-Hansen T, Staessen JA, Torp-Pedersen C, et al. Prognostic value of aortic pulse wave velocity as index of arterial stiffness in the general population. Circulation. 2006;113:664-670. DOI:10.1161/CIRCULATIONAHA.105.579342 275. Jaruvongvanich V, Chenbhanich J, Sanguankeo A, et al. Increased arterial stiffness in nonalcoholic fatty liver disease: a systematic review and meta-analysis. Eur J Gastroenterol Hepatol. 2017;29(9):e28-e35. DOI:10.1097/MEG.0000000000000909 276. Huang RC, Beilin LJ, Ayonrinde O, et al. Importance of cardiometabolic risk factors in the association between nonalcoholic fatty liver disease and arterial stiffness in adolescents. Hepatology. 2013;58:1306-14. DOI:10.1002/hep.26495 277. Sunbul M, Agirbasli M, Durmus E, et al. Arterial stiffness in patients with non-alcoholic fatty liver disease is related to fibrosis stage and epicardial adipose tissue thickness. Atherosclerosis. 2014;237:490-3. DOI:10.1016/j.atherosclerosis.2014.10.004 278. Ozturk K, Uygun A, Guler AK, et al. Nonalcoholic fatty liver disease is an independent risk factor for atherosclerosis in young adult men. Atherosclerosis. 2015;240:380-386. DOI:10.1016/j.atherosclerosis.2015.04.009 279. Chen Y, Xu M, Wang T, et al. Advanced fibrosis associates with atherosclerosis in subjects with nonalcoholic fatty liver disease. Atherosclerosis. 2015;241:145-50. DOI:10.1016/j.atherosclerosis.2015.05.002 280. Villela-Nogueira CA, Leite NC, Cardoso CR, Salles GF. NAFLD and Increased Aortic Stiffness: Parallel or Common Physiopathological Mechanisms? Int J Mol Sci. 2016;17(4):460. DOI:10.3390/ijms17040460 281. Chou CY, Yang YC, Wu JS, et al. Non-alcoholic fatty liver disease associated with increased arterial stiffness in subjects with normal glucose tolerance, but not pre-diabetes and diabetes. Diabetes Vasc Dis Res. 2015;12:359-65. DOI:10.1177/1479164115585009 282. Packer M. Atrial Fibrillation and Heart Failure With Preserved Ejection Fraction in Patients With Nonalcoholic Fatty Liver Disease. Am J Med. 2020;133(2):170-7. DOI:10.1016/j.amjmed.2019.09.002 283. Packer M. Leptin-aldosterone-neprilysin axis: identification of its distinctive role in the pathogenesis of the three phenotypes of heart failure in people with obesity. Circulation. 2018;137:1614-31. DOI:10.1161/CIRCULATIONAHA.117.032474 284. Whitsett M, Wilcox J, Yang A, et al. Atrial fibrillation is highly prevalent yet undertreated in patients with biopsy-proven nonalcoholic steatohepatitis. Liver Int. 2019;39:933-40. DOI:10.1111/liv.14018 285. Wijarnpreecha K, Lou S, Panjawatanan P, et al. Association between diastolic cardiac dysfunction and nonalcoholic fatty liver disease: A systematic review and meta-analysis. Dig Liver Dis. 2018;50(11):1166-75. DOI:10.1016/j.dld.2018.09.004 286. Chung GE, Lee JH, Lee H, et al. Nonalcoholic fatty liver disease and advanced fibrosis are associated with left ventricular diastolic dysfunction. Atherosclerosis. 2018;272:137-44. DOI:10.1016/j.atherosclerosis.2018.03.027 287. Zhang Z, Wang P, Guo F, et al. Chronic heart failure in patients with nonalcoholic fatty liver disease: prevalence, clinical features, and relevance. J Int Med Res. 2018;46:3959-69. DOI:10.1177/0300060518782780 288. Hyogo H, Yamagishi S, Maeda S, et al. Atorvastatin improves disease activity of nonalcoholic steatohepatitis partly through its tumour necrosis factor-α-lowering property. Dig Liver Dis. 2012;44:492-6. DOI:10.1016/j.dld.2011.12.013 289. Athyros VG, Tziomalos K, Gossios TD, et al. Greace Study Collaborative Group. Safety and efficacy of long-term statin treatment for cardiovascular events in patients with coronary heart disease and abnormal liver tests in the Greek Atorvastatin and Coronary Heart Disease Evaluation (GREACE) Study: a post-hoc analysis. Lancet. 2010;376:1916-22. DOI:10.1016/S0140-6736(10)61272-X 290. Armstrong MJ, Gaunt P, Aithal GP, et al. Liraglutide safety and efficacy in patients with non-alcoholic steatohepatitis (LEAN): a multicenter, double-blind, randomized, placebo-controlled phase 2 study. Lancet. 2016;387:679-90. DOI:10.1016/S0140-6736(15)00803-X
1 ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова» Минздрава России (Сеченовский Университет), Москва, Россия;
2 ОСП «Российский геронтологический научно-клинический центр» ФГАОУ ВО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России, Москва, Россия;
3 ФГБУ «Национальный медицинский исследовательский центр эндокринологии» Минздрава России, Москва, Россия;
4 ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н.Н. Блохина» Минздрава России, Москва, Россия;
5 ФГБОУ ВО «Ставропольский государственный медицинский университет» Минздрава России, Ставрополь, Россия;
6 ФГАОУ ВО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России, Москва, Россия;
7 ФГБОУ ВО «Кубанский государственный медицинский университет» Минздрава России, Краснодар, Россия;
8 ФГАУ «Национальный медицинский исследовательский центр “Лечебно-реабилитационный центр”» Минздрава России, Москва, Россия;
9 ФГБУ «Национальный медицинский исследовательский центр кардиологии» Минздрава России, Москва, Россия
*liver.orc@mail.ru
________________________________________________
Marina V. Maevskaya*1, Yulia V. Kotovskaya2, Vladimir T. Ivashkin1, Olga N. Tkacheva2, Ekaterina A. Troshina3, Marina V. Shestakova3, Valeriy V. Breder4, Natalia I. Geyvandova5, Vladimir L. Doshchitsin6, Ekaterina N. Dudinskaya2, Ekaterina V. Ershova3, Khava B. Kodzoeva1, Kseniya A. Komshilova3, Natalia V. Korochanskaya7, Alexander Yu. Mayorov3, Ekaterina E. Mishina3, Maria Yu. Nadinskaia1, Igor G. Nikitin6,8, Nana V. Pogosova9, Aida I. Tarzimanova1, Minara Sh. Shamkhalova3
1 Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia;
2 Russian Clinical and Research Center of Gerontology of Pirogov Russian National Research Medical University, Moscow, Russia;
3 Endocrinology Research Centre, Moscow, Russia;
4 Blokhin National Medical Research Center of Oncology, Moscow, Russia;
5 Stavropol State Medical University, Stavropol, Russia;
6 Pirogov Russian National Research Medical University, Moscow, Russia;
7 Kuban State Medical University, Krasnodar, Russia;
8 National Medical Research Center "Treatment and Rehabilitation Center", Moscow, Russia;
9 National Medical Research Center of Cardiology, Moscow, Russia
*liver.orc@mail.ru